51
|
Min Y, Sheng J, Yu JL, Ni SX, Ma G, Gong H, Wang XS. Diverse Synthesis of Chiral Trifluoromethylated Alkanes via Nickel-Catalyzed Asymmetric Reductive Cross-Coupling Fluoroalkylation. Angew Chem Int Ed Engl 2021; 60:9947-9952. [PMID: 33569847 DOI: 10.1002/anie.202101076] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/06/2021] [Indexed: 11/06/2022]
Abstract
The trifluoromethyl group represents one of the most functional and widely used fluoroalkyl groups in drug design and screening, while the drug candidates containing chiral trifluoromethyl-bearing carbons are still few due to the lack of efficient methods for the asymmetric introduction of trifluoromethyl group into organic molecules. Herein, we described a nickel-catalyzed asymmetric trifluoroalkylation of aryl iodides, for the first time, by utilizing reductive cross-coupling in enantioselective fluoroalkylation. This novel method has demonstrated high efficiency, mild conditions, and excellent functional group tolerance, especially for substrates containing diverse pharmaceutical and bioactive molecules moieties. This strategy provided an efficient and facile way for diversity-oriented synthesis of chiral trifluoromethylated alkanes.
Collapse
Affiliation(s)
- Yue Min
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, Shanghai, 200444, China
| | - Jie Sheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Jian-Liang Yu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Shan-Xiu Ni
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Guobin Ma
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, Shanghai, 200444, China
| | - Hegui Gong
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, Shanghai, 200444, China
| | - Xi-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| |
Collapse
|
52
|
Wei B, Ren Q, Bein T, Knochel P. Übergangsmetallfreie Synthese polyfunktioneller Triarylmethane und 1,1‐Diarylalkane durch sequentielle Kreuzkupplungen von Benzaldiacetaten mit Organozinkreagenzien. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Baosheng Wei
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstraße 5–13, Haus F 81377 München Deutschland
| | - Qianyi Ren
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstraße 5–13, Haus F 81377 München Deutschland
| | - Thomas Bein
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstraße 5–13, Haus F 81377 München Deutschland
| | - Paul Knochel
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstraße 5–13, Haus F 81377 München Deutschland
| |
Collapse
|
53
|
Hu X, Ding A, Xu D, Guo H. Visible light-induced one-pot synthesis of CF 3/CF 2-substituted cyclobutene derivatives. Chem Commun (Camb) 2021; 57:7441-7444. [PMID: 34232233 DOI: 10.1039/d1cc02696h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient one-pot approach for the controllable synthesis of trifluoromethyl/gem-difluoromethylene substituted cyclobutene derivatives has been developed. The mechanism may involve visible light-induced [2+2]-cycloaddition of quinolinones with 1-bromo-1-trifluoromethylethene, followed by base-promoted dehydrobromination, [1,3]-H shift and further dehydrofluorination. A variety of CF3/CF2-substituted cyclobutenes that are currently difficult to obtain are afforded in good yields in this protocol, which may find its way into future fluorinated cyclobutene preparation.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China.
| | - Aishun Ding
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China.
| | - Dawen Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China. and Zhuhai Fudan Innovation Institute, Hengqin New Area, Zhuhai, Guangdong 519000, P. R. China.
| | - Hao Guo
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China.
| |
Collapse
|
54
|
Jiang X, Tang P. Diverse Synthesis of Chiral Trifluoromethylated Alkanes via Nickel- Catalyzed Asymmetric Reductive Cross-Coupling Fluoroalkylation. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202100045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
55
|
Varenikov A, Shapiro E, Gandelman M. Synthesis of Chiral α-CF 3-Substituted Benzhydryls via Cross-Coupling Reaction of Aryltitanates. Org Lett 2020; 22:9386-9391. [PMID: 33210926 DOI: 10.1021/acs.orglett.0c03673] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We describe a highly efficient approach toward α-CF3-substituted benzhydryls thanks to the employment of organotitanium(IV) based nucleophiles. The use of commercially available anesthetic halothane as a cheap fluorinated building block in a sequential one-pot nickel-catalyzed enantioselective cross-coupling reaction of aryl titanates allowed for the synthesis of chiral α-CF3-substituted benzhydryls in good yields and excellent enantioselectivities. Alternatively, α-CF3-benzyl bromides could be employed under similar conditions to obtain the same family of compounds in higher yields and excellent selectivities. A benzhydryl moiety is a common motif in many biologically active compounds, and their enantioenriched fluorinated analogs should be of great interest in the search for novel drugs and agrochemicals.
Collapse
Affiliation(s)
- Andrii Varenikov
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Evgeny Shapiro
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Mark Gandelman
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| |
Collapse
|