51
|
Feng D, Jiao Y, Wu P. Guiding Zn Uniform Deposition with Polymer Additives for Long-lasting and Highly Utilized Zn Metal Anodes. Angew Chem Int Ed Engl 2023:e202314456. [PMID: 37929923 DOI: 10.1002/anie.202314456] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/07/2023]
Abstract
The parasitic side reaction on Zn anode is the key issue which hinders the development of aqueous Zn-based energy storage systems on power-grid applications. Here, a polymer additive (PMCNA) engineered by copolymerizing 2-methacryloyloxyethyl phosphorylcholine (MPC) and N-acryloyl glycinamide (NAGA) was employed to regulate the Zn deposition environment for satisfying side reaction inhibition performance during long-term cycling with high Zn utilization. The PMCNA can preferentially adsorb on Zn metal surface to form a uniform protective layer for effective water molecule repelling and side reaction resistance. In addition, the PMCNA can guide Zn nucleation and deposition along 002 plane for further side reaction and dendrite suppression. Consequently, the PMCNA additive can enable the Zn//Zn battery with an ultrahigh depth of discharge (DOD) of 90.0 % for over 420 h, the Zn//active carbon (AC) capacitor with long cycling lifespan, and the Zn//PANI battery with Zn utilization of 51.3 % at low N/P ratio of 2.6.
Collapse
Affiliation(s)
- Doudou Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Yucong Jiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
52
|
Zhang T, Zhang S, Li L, Hu Y, Liu X, Lee JY. Self-Decoupled Oxygen Electrocatalysis for Ultrastable Rechargeable Zn-Air Batteries with Mild-Acidic Electrolyte. ACS NANO 2023; 17:17476-17488. [PMID: 37606308 DOI: 10.1021/acsnano.3c05845] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Rechargeable zinc-air batteries (ZABs) have been considered promising as next-generation sustainable energy storage devices; however, their large-scale deployment is hampered by the unsatisfactory cyclic lifespan. Employing neutral and mild-acidic electrolytes is effective in extending the cyclability, but the rapid performance degradation of the bifunctional catalysts owing to different microenvironmental requirements of the alternative oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is still a serious limitation of their cyclic life. Herein, we propose a "self-decoupling" strategy to significantly improve the stability of the bifunctional catalysts by constructing a smart interface in the bifunctional air electrode. This smart interface, containing a resistance-switchable sulfonic acid doped polyaniline nanoarray interlayer, is nonconductive at high potential but conductive at low potential, which enables spontaneous electrochemical decoupling of the bifunctional catalyst for the ORR and OER, respectively, and thus protects it from degradation. The resulting self-decoupled mild-acidic ZAB delivers stable cyclic performances in terms of a negligible energy efficiency loss of 0.015% cycle-1 and 3 times longer cycle life (∼1400 h) compared with the conventional mild-acidic ZAB using a normal bifunctional air electrode and the same low-cost ZnCo phosphide/nitrogen-doped carbon bifunctional catalyst. This work provides an effective strategy for tolerating alternative oxidation-reduction reactions and emphasizes the importance of smart nanostructure design for more sustainable batteries.
Collapse
Affiliation(s)
- Tianran Zhang
- College of Material Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong Province 256606, People's Republic of China
| | - Shengliang Zhang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - LanLan Li
- Key Lab for Micro- and Nano-Scale Boron Nitride Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300131, People's Republic of China
| | - Yuxiang Hu
- Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Xiangfeng Liu
- College of Material Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jim Yang Lee
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
53
|
Song X, Bai L, Wang C, Wang D, Xu K, Dong J, Li Y, Shen Q, Yang J. Synergistic Cooperation of Zn(002) Texture and Amorphous Zinc Phosphate for Dendrite-Free Zn Anodes. ACS NANO 2023. [PMID: 37498641 DOI: 10.1021/acsnano.3c04343] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Zn anodes of aqueous Zn metal batteries face challenges from dendrite growth and side reactions. Building Zn(002) texture mitigates the issues but does not eradicate them. Zn(002) still faces severe challenges from corrosive electrolytes and dendrite growth, especially after hundreds of cycles. Therefore, it is necessary to have a passivation layer covering Zn(002). Here, Zn(002) texture and surface coating are achieved on Zn foils by an one-step annealing process, as demonstrated by ZnS, ZnSe, ZnF2, Zn3(PO4)2 (ZPO), etc. Using ZPO as a model, the coupling between surface coating and Zn(002) is illustrated in terms of dendrite-suppressing ability and diffusion energy barrier of Zn2+. The modified Zn foils (Zn(002)@ZPO) exhibit the excellent electrochemical performance, far superior to Zn(002) or ZPO alone. In the full cells, the performance is greatly improved even under harsh conditions, i.e., high areal capacity and limited Zn resource. This work achieves crystal engineering and surface coating on Zn anodes simultaneously and discloses the in-depth insights about the synergy of crystal orientation and passivation layers.
Collapse
Affiliation(s)
- Xinxin Song
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Linyu Bai
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Chenggang Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
- School of Physics and Technology, University of Jinan, Jinan 250022, P. R. China
| | - Dongdong Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Kun Xu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Jingjing Dong
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yanlu Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Qiang Shen
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Jian Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
54
|
Zhuang W, Chen Q, Hou Z, Sun Z, Zhang T, Wan J, Huang L. Examining Concentration-Reliant Zn Deposition/Stripping Behavior in Organic Alcohol/Sulfones-Modified Aqueous Electrolytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300274. [PMID: 37026663 DOI: 10.1002/smll.202300274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/09/2023] [Indexed: 06/19/2023]
Abstract
The practical application of Zn metal anodes in electronic devices is hindered by dendrite growth and parasitic reactions. Electrolyte optimization, particularly the introduction of organic co-solvents, is widely used to circumvent these challenges. Various organic solvents in a wide range of concentrations have been reported; however, their influences and corresponding working mechanisms at different concentrations are largely unexplored in the same organic species. Herein, economical, low-flammable ethylene glycol (EG) is used as a model co-solvent in aqueous electrolytes to examine the relationship between its concentration, anode-stabilizing effect, and mechanism. Two maximal values are observed for the lifetime of Zn/Zn symmetric batteries under EG concentrations from 0.05 vol% to 48 vol%. Zn metal anodes can stably run for over 1700 h at a low EG content (0.25 vol%) and high EG content (40 vol%). Based on the complementary experimental and theoretical calculations, the enhancements in low- and high-content EG are ascribed to the specific surface adsorption for suppressed dendrite growth and the regulated solvation structure for inhibited side reactions, respectively. Intriguingly, a similar concentration-reliant bimodal phenomenon is observed in other low-flammable organic solvents (e.g., glycerol and dimethyl sulfoxide), thereby suggesting universality of this study and providing insight into electrolyte optimization.
Collapse
Affiliation(s)
- Weiman Zhuang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Shenzhen Key Laboratory of Solid State Batteries, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Qianwen Chen
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Zhen Hou
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 100872, P. R. China
| | - Zongzhao Sun
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Tianxu Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Jianyong Wan
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Limin Huang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Shenzhen Key Laboratory of Solid State Batteries, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|