51
|
A Critical Role for IL-21 Receptor Signaling in the Coxsackievirus B3-Induced Myocarditis. Inflammation 2017; 40:1428-1435. [DOI: 10.1007/s10753-017-0586-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
52
|
Rajaei T, Farajifard H, Rafatpanah H, Bustani R, Valizadeh N, Rajaei B, Rezaee SA. Role of IL-21 in HTLV-1 infections with emphasis on HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Med Microbiol Immunol 2017; 206:195-201. [PMID: 28378248 DOI: 10.1007/s00430-017-0492-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/13/2017] [Indexed: 12/26/2022]
Abstract
Interleukin-21 (IL-21) enhances the survival and cytotoxic properties of cytotoxic T cells (CTLs) and exhibits essential roles in controlling chronic viral infections. HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a chronic progressive inflammatory disease of the nervous system. The main determinant of disease progression is efficiency of the CTL response to Human T lymphotropic virus types I (HTLV-1). In this study, the expression of host IL-21 and HTLV-I Tax and proviral load (PVL) was evaluated to understand the role and mechanism of IL-21 in HTLV-1 infections and the subsequent development of HAM/TSP. A cross-sectional study was carried out on 20 HAM/TSP patients, 20 asymptomatic HTLV-1 carriers (ACs) and 20 healthy controls (HCs) to evaluate the expression of IL-21 and Tax and PVL in non-activated and phorbol myristate acetate (PMA)-ionomycin-activated peripheral blood mononuclear cells (PBMCs). The mean mRNA expression of IL-21 in the non-activated and activated PBMCs was higher (by 5-13 times) in the HAM/TSP patients than in ACs and HCs (p < 0.05); however, there was no significant difference between ACs and HCs. In contrast to the IL-21 mRNA expression, the serum level of the IL-21 protein was significantly lower in the HAM/TSP patients than in ACs and HCs (p < 0.05). Furthermore, higher expression of Tax and PVL was observed in the HAM/TSP subjects than ACs (p < 0.05). In addition, Tax gene expression was positively correlated with PVL (R = 0.595, p = 0.000) and IL-21 gene expression (R = 0.395, p = 0.021) in the HTLV-1-infected subjects. In conclusion, the increase in IL-21 mRNA expression may reflect the attempt of infected T cells to induce an appropriate antiviral response, and the decrease in IL-21 protein expression may reflect the inhibition of IL-21 mRNA translation by viral factors in favour of virus evasion and dissemination.
Collapse
Affiliation(s)
- Taraneh Rajaei
- Immunology Center, Inflammation and Inflammatory Diseases Research Centre, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Farajifard
- Department of Immunology, Tehran University of Medical Sciences, Tehran, Iran
| | - Houshang Rafatpanah
- Immunology Center, Inflammation and Inflammatory Diseases Research Centre, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Bustani
- Department of Neurology and HTLV-1 Foundation, Ghaem Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Valizadeh
- Immunology Center, Inflammation and Inflammatory Diseases Research Centre, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahareh Rajaei
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Seyed Abdolrahim Rezaee
- Immunology Center, Inflammation and Inflammatory Diseases Research Centre, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
53
|
Lebre MC, Vieira PL, Tang MW, Aarrass S, Helder B, Newsom-Davis T, Tak PP, Screaton GR. Synovial IL-21/TNF-producing CD4 + T cells induce joint destruction in rheumatoid arthritis by inducing matrix metalloproteinase production by fibroblast-like synoviocytes. J Leukoc Biol 2017; 101:775-783. [PMID: 27733582 DOI: 10.1189/jlb.5a0516-217rr] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 12/16/2023] Open
Abstract
Bone and cartilage destruction is one of the key manifestations of rheumatoid arthritis (RA). Although the role of T helper (Th)17 cells in these processes is clear, the role of IL-21-producing cells T cells has been neglected. We sought to investigate the role of IL-21 in RA by focusing on the functional characteristics of the main producers of this cytokine, synovial CD4+IL-21+ T cells. We show that the frequency of both synovial fluid (SF) CD4+IL-21+ or CD4+IL-21+TNF+ T cells in patients with RA was significantly higher compared with patients with psoriatic arthritis (PsA). The frequency of peripheral blood (PB) IL-21+CD4+ T cells in patients with RA positively correlated with disease activity score 28 (DAS28), serum anticyclic citrullinated peptide (anti-CCP) antibodies and IgM-rheumatoid factor (IgM-RF). IL-21 levels in RA SF were associated with matrix metalloproteinase (MMP)-1 and MMP-3. Related to this, IL-21 induced significantly the secretion of MMP-1 and MMP-3 in RA synovial biopsies. Sorted SF CD4+IL-21+ T cells significantly induced the release of MMP-1 and MMP-3 by fibroblast-like synoviocytes (FLS) compared with medium or CD4+IL-21- T cells in a coculture system. Neutralization of both IL-21 and TNF resulted in significantly less production of MMP by FLS. The results of this study indicate a new role for synovial CD4+IL-21+TNF+ T cells in promoting synovial inflammation/joint destruction in patients with RA. Importantly, IL-21 blockade in combination with anti-TNF might be an effective therapy in patients with RA by inhibiting MMP-induced inflammation/joint destruction.
Collapse
Affiliation(s)
- Maria C Lebre
- Department of Clinical Immunology and Rheumatology, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and
| | - Pedro L Vieira
- Department of Immunology, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Man Wai Tang
- Department of Clinical Immunology and Rheumatology, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and
| | - Saïda Aarrass
- Department of Clinical Immunology and Rheumatology, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and
| | - Boy Helder
- Department of Clinical Immunology and Rheumatology, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and
| | - Thomas Newsom-Davis
- Department of Immunology, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Paul P Tak
- Department of Clinical Immunology and Rheumatology, University of Amsterdam, Amsterdam, The Netherlands
| | - Gavin R Screaton
- Department of Immunology, Imperial College London, Hammersmith Campus, London, United Kingdom
| |
Collapse
|
54
|
Sharma G, Saini MK, Thakur K, Kapil N, Garg NK, Raza K, Goni VG, Pareek A, Katare OP. Aceclofenac cocrystal nanoliposomes for rheumatoid arthritis with better dermatokinetic attributes: a preclinical study. Nanomedicine (Lond) 2017; 12:615-638. [PMID: 28186461 DOI: 10.2217/nnm-2016-0405] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIM The aim of present research was to complex aceclofenac with lysine (LYS) and the developed aceclofenac-LYS cocrystal was encapsulated in lipid bilayers of liposomes by employing dual carrier approach for the treatment of pain-related disorders in rheumatoid arthritis (RA). MATERIALS & METHODS The developed carriers were characterized for particle size, drug release, ex vivo and in vivo studies, dermatokinetic modeling, complete freund's adjuvant (CFA)-induced RA rat model, radiant heat tail-flick method, formalin-induced paw-licking model, paw edema model and xylene-induced ear edema model in mice. RESULTS The developed nanoliposomes offered nanometric size, controlled drug release and enhanced drug permeation. Further, hydrogel incorporated nanoproduct was found to be rheologically acceptable and substantially compatible with rodent skin. CONCLUSION The studies indicated the superiority of LYS-conjugated liposome-entrapped nanocarriers for improved management of conditions like RA over the marketed product.
Collapse
Affiliation(s)
- Gajanand Sharma
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014 India
| | - Mandeep Kaur Saini
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014 India
| | - Kanika Thakur
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014 India
| | - Namarta Kapil
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014 India
| | - Neeraj Kumar Garg
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014 India
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences & Pharmacy, Central University of Rajasthan, Bandar Sindri, Distt Ajmer, Rajasthan, 305 817 India
| | - Vijay G Goni
- Department of Orthopaedics, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012 India
| | - Anil Pareek
- Medical Affairs & Clinical Research Department, Ipca Laboratories Limited, Mumbai, 400 067 India
| | - Om Prakash Katare
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014 India
| |
Collapse
|
55
|
Bombardieri M, Lewis M, Pitzalis C. Ectopic lymphoid neogenesis in rheumatic autoimmune diseases. Nat Rev Rheumatol 2017; 13:141-154. [PMID: 28202919 DOI: 10.1038/nrrheum.2016.217] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ectopic lymphoid neogenesis often occurs in the target tissues of patients with chronic rheumatic autoimmune diseases such as rheumatoid arthritis, Sjögren syndrome and other connective tissue disorders, including systemic lupus erythematosus and myositis. However, the mechanisms of ectopic lymphoid-like structure (ELS) formation and function are not entirely understood. For example, it is unclear whether ELSs indicate distinct disease phenotypes or whether they are evolutionary manifestations of chronic inflammation. Also unclear is why ELSs form in some patients but not in others. Nonetheless, ELSs frequently display functional features of ectopic germinal centres and can actively contribute to the maintenance of autoimmunity through the production of disease-specific autoantibodies; furthermore, they seem to influence disease severity and response to both synthetic and biologic DMARDs. In this Review, we discuss current knowledge and gaps in understanding of ELS formation and function including their prevalence in the above rheumatic autoimmune diseases; the mechanisms underlying their formation, maintenance and function, including positive and negative regulatory pathways; their functional relevance in the perpetuation of autoimmunity; their relationship with disease phenotypes, clinical outcomes and response to treatment; and the potential for specific targeting of ELSs through novel therapeutic modalities.
Collapse
Affiliation(s)
- Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, John Vane Science Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Myles Lewis
- Centre for Experimental Medicine and Rheumatology, John Vane Science Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, John Vane Science Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
56
|
Rahe MC, Murtaugh MP. Interleukin-21 Drives Proliferation and Differentiation of Porcine Memory B Cells into Antibody Secreting Cells. PLoS One 2017; 12:e0171171. [PMID: 28125737 PMCID: PMC5268775 DOI: 10.1371/journal.pone.0171171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/16/2017] [Indexed: 01/11/2023] Open
Abstract
Immunological prevention of infectious disease, especially viral, is based on antigen-specific long-lived memory B cells. To test for cellular proliferation and differentiation factors in swine, an outbred model for humans, CD21+ B cells were activated in vitro with CD40L and stimulated with purported stimulatory cytokines to characterize functional responses. IL-21 induced a 3-fold expansion in total cell numbers with roughly 15% of all B cells differentiating to IgM or IgG antibody secreting cells (ASCs.) However, even with robust proliferation, cellular viability rapidly deteriorated. Therefore, a proliferation inducing ligand (APRIL) and B cell activating factor (BAFF) were evaluated as survival and maintenance factors. BAFF was effective at enhancing the viability of mature B cells as well as ASCs, while APRIL was only effective for ASCs. Both cytokines increased approximately two-fold the amount of IgM and IgG which was secreted by IL-21 differentiated ASCs. Mature B cells from porcine reproductive and respiratory virus (PRRSV) immune and naïve age-matched pigs were activated and treated with IL-21 and then tested for memory cell differentiation using a PRRSV non-structural protein 7 ELISPOT and ELISA. PRRSV immune pigs were positive on both ELISPOT and ELISA while naïve animals were negative on both assays. These results highlight the IL-21-driven expansion and differentiation of memory B cells in vitro without stimulation of the surface immunoglobulin receptor complex, as well as the establishment of a defined memory B cell culture system for characterization of vaccine responses in outbred animals.
Collapse
Affiliation(s)
- Michael C. Rahe
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States of America
- * E-mail:
| | - Michael P. Murtaugh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States of America
| |
Collapse
|
57
|
Sharma J, Bhar S, Devi CS. A review on interleukins: The key manipulators in rheumatoid arthritis. Mod Rheumatol 2017; 27:723-746. [DOI: 10.1080/14397595.2016.1266071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jatin Sharma
- School of Biosciences and Technology, VIT University, Vellore, India
| | - Sutonuka Bhar
- School of Biosciences and Technology, VIT University, Vellore, India
| | - C. Subathra Devi
- School of Biosciences and Technology, VIT University, Vellore, India
| |
Collapse
|
58
|
Vallières F, Girard D. Mechanism involved in interleukin-21-induced phagocytosis in human monocytes and macrophages. Clin Exp Immunol 2016; 187:294-303. [PMID: 27774606 DOI: 10.1111/cei.12886] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2016] [Indexed: 01/10/2023] Open
Abstract
The interleukin (IL)-21/IL-21 receptor (R) is a promising system to be exploited for the development of therapeutic strategies. Although the biological activities of IL-21 and its cell signalling events have been largely studied in immunocytes, its interaction with human monocytes and macrophages have been neglected. Previously, we reported that IL-21 enhances Fc gamma receptor (FcRγ)-mediated phagocytosis in human monocytes and in human monocyte-derived macrophages (HMDM) and identified Syk as a novel molecular target of IL-21. Here, we elucidate further how IL-21 promotes phagocytosis in these cells. Unlike its ability to enhance phagocytosis of opsonized sheep red blood cells (SRBCs), IL-21 did not promote phagocytosis of Escherichia coli and zymosan by monocytes and did not alter the cell surface expression of CD16, CD32 and CD64. In HMDM, IL-21 was found to enhance phagocytosis of zymosan. In addition, we found that IL-21 activates p38, protein kinase B (Akt), signal transducer and activator of transcription (STAT)-1 and STAT-3 in monocytes and HMDM. Using a pharmacological approach, we demonstrate that IL-21 enhances phagocytosis by activating some mitogen-activated protein kinases (MAPKs) and phosphoinositide 3-kinase (PI3K)-Akt and Janus kinase (JAK)-STAT pathways. These results obtained in human monocytes and macrophages have to be considered for a better exploitation of the IL-21/IL-21R system for therapeutic purposes.
Collapse
Affiliation(s)
- F Vallières
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - D Girard
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Institut Armand-Frappier, Laval, QC, Canada
| |
Collapse
|
59
|
Garg NK, Singh B, Tyagi RK, Sharma G, Katare OP. Effective transdermal delivery of methotrexate through nanostructured lipid carriers in an experimentally induced arthritis model. Colloids Surf B Biointerfaces 2016; 147:17-24. [PMID: 27478959 DOI: 10.1016/j.colsurfb.2016.07.046] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/17/2016] [Accepted: 07/20/2016] [Indexed: 02/07/2023]
Abstract
Rheumatoid arthritis (RA), an autoimmune and inflammatory pathology, is resulted due to the disruption of immune-homeostasis and failure of host immune-surveillance mechanism leading to cartilage degradation and bone erosion. Orally and parenterally administered methotrexate (MTX) have had adverse systemic complications in RA therapeutics. Therefore, transdermal application of MTX is recommended for the treatment of RA [1]. Present study is designed to develop MTX loaded nanostructured lipid carriers and chemical enhancer co-incorporated hydrogel (gel-(MTX-NLCs+CE)) for an efficient transdermal delivery of MTX in a Freund's adjuvants induced experimental animal model of RA. A gel-(MTX-NLCs+CE) was formulated and evaluated for its biocompatibility in hyper keratinocytes (HaCaT) and human monocytic cells (U937). Further, systemic and local inflammation was assessed by the estimation of pro-inflammatory cytokines & joint-destructive enzymes (TNF-α, IL-6, MMP-1 & IL-1β,; iNOS & COX-2) in the serum and synovial fluid, respectively in an experimentally induced RA animal model. Prepared formulations were also evaluated with respect to arthritis index, arthritis score and histopathology of paw and ankle bones. The biocompatibility study of formulation on U937 and HaCaT is suggestive of safe and greater therapeutic efficacy of the developed formulations. Our results show that transcutaneous ability of MTX loaded nanostructured lipid carries (NLCs) and chemical enhancer (CE) co-incorporated hydrogel significantly (p<0.001) decreases the inflammation in RA animal model. In conclusion, developed NLCs-based gel formulation loaded with MTX opens new avenues for developing novel therapeutic modality for RA patients with the acceptably minimum adverse effects.
Collapse
Affiliation(s)
- Neeraj K Garg
- Drug Delivery Research Group, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Bhupinder Singh
- Drug Delivery Research Group, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India; UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles & Nanocomposites (Biomedical Sciences), Panjab University, Chandigarh 160 014, India
| | - Rajeev K Tyagi
- Department of Periodontics, College of Dental Medicine Georgia Regents University, 1120, 15th Street, Augusta, GA 30912, USA; Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad 382 481 Gujarat, India
| | - Gajanand Sharma
- Drug Delivery Research Group, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Om Prakash Katare
- Drug Delivery Research Group, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
60
|
Corsiero E, Nerviani A, Bombardieri M, Pitzalis C. Ectopic Lymphoid Structures: Powerhouse of Autoimmunity. Front Immunol 2016; 7:430. [PMID: 27799933 PMCID: PMC5066320 DOI: 10.3389/fimmu.2016.00430] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 09/30/2016] [Indexed: 12/24/2022] Open
Abstract
Ectopic lymphoid structures (ELS) often develop at sites of inflammation in target tissues of autoimmune diseases, such as rheumatoid arthritis, Sjögren’s syndrome, multiple sclerosis, myasthenia gravis, and systemic lupus erythematosus. ELS are characterized by the formation of organized T/B cells aggregates, which can acquire follicular dendritic cells network supporting an ectopic germinal center response. In this review, we shall summarize the mechanisms that regulate the formation of ELS in tertiary lymphoid organs, with particular emphasis on the role of lymphoid chemokines in both formation and maintenance of ELS, the role of emerging positive and negative regulators of ELS development and function, including T follicular helper cells and IL-27, respectively. Finally, we shall discuss the main functions of ELS in supporting the affinity maturation, clonal selection, and differentiation of autoreactive B cells contributing to the maintenance and perpetuation of humoral autoimmunity.
Collapse
Affiliation(s)
- Elisa Corsiero
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London , London , UK
| | - Alessandra Nerviani
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London , London , UK
| | - Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London , London , UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London , London , UK
| |
Collapse
|
61
|
Xing R, Zhang Y, Li C, Sun L, Yang L, Zhao J, Liu X. Interleukin-21 promotes osteoclastogenesis in RAW264.7 cells through the PI3K/AKT signaling pathway independently of RANKL. Int J Mol Med 2016; 38:1125-34. [PMID: 27599586 PMCID: PMC5029957 DOI: 10.3892/ijmm.2016.2722] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 08/26/2016] [Indexed: 12/14/2022] Open
Abstract
Cytokines play a key role in the bone destruction of rheumatoid arthritis (RA). Interleukin-21 (IL-21) promotes osteoclastogenesis in RA in a receptor activator of nuclear factor-κB ligand (RANKL)-dependent way. Whether IL-21 is capable of promoting osteoclastogenesis directly in the absence of RANKL remains unknown. In the present study, we examined the osteoclastogenic activity of IL-21 in RAW264.7 cells in the absence of RANKL. We found that IL-21 enhanced osteoclastogenesis and this was demonstrated by increased numbers of tartrate-resistant acid phosphatase (TRAP)-positive stained, multinucleated cells compared with the negative control. Western blot analysis and immunocytochemistry showed the positive expression of calcitonin receptor (CTR) in the IL-21 group. RT-PCR and RT-qPCR also verified the increased mRNA expression of CTR and cathepsin K in the IL-21 group compared with the negative control. The scanning electronic microscope images showed a few resorption pits on the bone slices cultured with IL-21. The phosphoinositide 3-kinase (PI3K)/AKT pathway inhibitor LY294002 significantly suppressed IL-21-induced osteoclastogenesis. Taken together, these findings suggest that IL-21 has direct osteoclastogenic potential independently of RANKL. IL-21 may promote osteoclastogenesis through the PI3K/AKT signaling pathway. Therapy targeting IL-21 may be of value in preventing bone erosions in patients with RA.
Collapse
Affiliation(s)
- Rui Xing
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Yingjian Zhang
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Changhong Li
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Lin Sun
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Lin Yang
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Jinxia Zhao
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Xiangyuan Liu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, P.R. China
| |
Collapse
|
62
|
Wu Y, van Besouw NM, Shi Y, Hoogduijn MJ, Wang L, Baan CC. The Biological Effects of IL-21 Signaling on B-Cell-Mediated Responses in Organ Transplantation. Front Immunol 2016; 7:319. [PMID: 27602031 PMCID: PMC4994014 DOI: 10.3389/fimmu.2016.00319] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/08/2016] [Indexed: 02/05/2023] Open
Abstract
Antibody-mediated rejection has emerged as one of the major issues limiting the success of organ transplantation. It exerts a highly negative impact on graft function and outcome, and effective treatment is lacking. The triggers for antibody development, and the mechanisms leading to graft dysfunction and failure, are incompletely understood. The production of antibodies is dependent on instructions from various immunocytes including CD4 T-helper cells that secrete interleukin (IL)-21 and interact with antigen-specific B-cells via costimulatory molecules. In this article, we discuss the role of IL-21 in the activation and differentiation of B-cells and consider the mechanisms of IL-21 and B-cell interaction. An improved understanding of the biological mechanisms involved in antibody-mediated complications after organ transplantation could lead to the development of novel therapeutic strategies, which control humoral alloreactivity, potentially preventing and treating graft-threatening antibody-mediated rejection.
Collapse
Affiliation(s)
- Yongkang Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China; Sector Nephrology & Transplantation, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nicole M van Besouw
- Sector Nephrology & Transplantation, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Yunying Shi
- Department of Nephrology, West China Hospital, Sichuan University , Chengdu , China
| | - Martin J Hoogduijn
- Sector Nephrology & Transplantation, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Lanlan Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University , Chengdu , China
| | - Carla C Baan
- Sector Nephrology & Transplantation, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| |
Collapse
|
63
|
Interleukin-21 signaling in B cells, but not in T cells, is indispensable for the development of collagen-induced arthritis in mice. Arthritis Res Ther 2016; 18:188. [PMID: 27535236 PMCID: PMC4989522 DOI: 10.1186/s13075-016-1086-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/02/2016] [Indexed: 01/09/2023] Open
Abstract
Background Interleukin-21 (IL-21) is a T-cell-derived cytokine whose receptor is expressed on a variety of cells and therefore might have pleiotropic roles in the pathogenesis of rheumatoid arthritis (RA). In this study, we investigated the involvement of IL-21 signaling in the development of collagen-induced arthritis (CIA), an animal model of RA, using IL-21 receptor knockout (Il21r KO) mice. Methods Il21r KO mice or wild-type (WT) C57BL/6 mice were immunized with chicken type II collagen (CII) emulsified in complete Freund adjuvant on day 0 and were given a boost injection on day 21. The production of anti-CII antibody, development of T-cell and B-cell subsets, and T-cell responses to CII were analyzed. CIA was induced in Rag2 KO mice to which combinations of WT or Il21r KO CD4 T cells and WT or Il21r KO B cells had been transferred, in order to examine the role of IL-21 signaling in each cell subset. Results Il21r KO mice were resistant to the development of CIA. CII-specific IgG but not IgM production was impaired in Il21r KO mice. This is consistent with a reduction of germinal center B cells in the draining lymph nodes. In contrast, CII-specific Th1 and Th17 responses were unaffected in Il21r KO mice. There was also no difference in the number of CII-specific follicular helper T cells between WT and Il21r KO mice. By analyzing the development of CIA in T-cell and B-cell mixed transfer experiments, we confirmed that IL-21 receptor expression on B cells, but not on T cells, was essential for the development of CIA. Conclusion IL-21 signaling in B cells, but not in T cells, plays essential roles in the production of pathogenic autoantibodies that induce CIA development.
Collapse
|
64
|
Alvarez-Diaz S, Dillon CP, Lalaoui N, Tanzer MC, Rodriguez DA, Lin A, Lebois M, Hakem R, Josefsson EC, O'Reilly LA, Silke J, Alexander WS, Green DR, Strasser A. The Pseudokinase MLKL and the Kinase RIPK3 Have Distinct Roles in Autoimmune Disease Caused by Loss of Death-Receptor-Induced Apoptosis. Immunity 2016; 45:513-526. [PMID: 27523270 DOI: 10.1016/j.immuni.2016.07.016] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 05/23/2016] [Accepted: 06/06/2016] [Indexed: 12/12/2022]
Abstract
The kinases RIPK1 and RIPK3 and the pseudo-kinase MLKL have been identified as key regulators of the necroptotic cell death pathway, although a role for MLKL within the whole animal has not yet been established. Here, we have shown that MLKL deficiency rescued the embryonic lethality caused by loss of Caspase-8 or FADD. Casp8(-/-)Mlkl(-/-) and Fadd(-/-)Mlkl(-/-) mice were viable and fertile but rapidly developed severe lymphadenopathy, systemic autoimmune disease, and thrombocytopenia. These morbidities occurred more rapidly and with increased severity in Casp8(-/-)Mlkl(-/-) and Fadd(-/-)Mlkl(-/-) mice compared to Casp8(-/-)Ripk3(-/-) or Fadd(-/-)Ripk3(-/-) mice, respectively. These results demonstrate that MLKL is an essential effector of aberrant necroptosis in embryos caused by loss of Caspase-8 or FADD. Furthermore, they suggest that RIPK3 and/or MLKL may exert functions independently of necroptosis. It appears that non-necroptotic functions of RIPK3 contribute to the lymphadenopathy, autoimmunity, and excess cytokine production that occur when FADD or Caspase-8-mediated apoptosis is abrogated.
Collapse
Affiliation(s)
- Silvia Alvarez-Diaz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Christopher P Dillon
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Najoua Lalaoui
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Maria C Tanzer
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Diego A Rodriguez
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ann Lin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Marion Lebois
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Razq Hakem
- Ontario Cancer Institute, University Health Network, and Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9, Canada
| | - Emma C Josefsson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Lorraine A O'Reilly
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Warren S Alexander
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia.
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia.
| |
Collapse
|
65
|
Wu C, Li Z, Fu X, Yu S, Lao S, Yang B. Antigen-specific human NKT cells from tuberculosis patients produce IL-21 to help B cells for the production of immunoglobulins. Oncotarget 2016; 6:28633-45. [PMID: 26416419 PMCID: PMC4745682 DOI: 10.18632/oncotarget.5764] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/05/2015] [Indexed: 12/25/2022] Open
Abstract
Natural killer T (NKT) cells from mouse and human play an important role in the immune responses against Mycobacterium tuberculosis. However, the function of CD3(+)TCRvβ11(+) NKT cells at the local site of M. tuberculosis infection remains poorly defined. In the present study, we found that after stimulation with M. tuberculosis antigens, NKT cells isolated from tuberculosis (TB) pleural fluid mononuclear cells (PFMCs) produced IL-21 and other cytokines including IFN-γ, TNF-α, IL-2 and IL-17. IL-21-expressing NKT cells in PFMCs displayed effector memory phenotype, expressing CD45RO(high)CD62L(low)CCR7(low). Moreover, NKT cells expressed high levels of CXCR5 and all of IL-21-expressing NKT cells co-expressed CXCR5. The frequency of BCL-6-expression was higher in IL-21-expressing but not in non-IL-21-expressing CD3(+)TCRvβ11(+) NKT cells. Sorted CD3(+)TCRvβ11(+) NKT cells from PFMCs produced IFN-γ and IL-21 after stimulation, which expressed CD40L. Importantly, CD3(+)TCRvβ11(+) NKT cells provided help to B cells for the production of IgG and IgA. Taken together, our data demonstrate that CD3(+)TCRvβ11(+) NKT cells from a local site of M. tuberculosis infection produce IL-21, express CXCR5 and CD40L, help B cells to secrete IgG and IgA, and may participate in local immune responses against M. tuberculosis infection.
Collapse
Affiliation(s)
- Changyou Wu
- Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-Sen University, Guangzhou, China
| | - Zitao Li
- Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoying Fu
- Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-Sen University, Guangzhou, China
| | - Sifei Yu
- Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-Sen University, Guangzhou, China
| | - Suihua Lao
- Chest Hospital of Guangzhou, Guangzhou, China
| | - Binyan Yang
- Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
66
|
Abe K, Takahashi A, Imaizumi H, Hayashi M, Okai K, Kanno Y, Watanabe H, Ohira H. Interleukin-21 plays a critical role in the pathogenesis and severity of type I autoimmune hepatitis. SPRINGERPLUS 2016; 5:777. [PMID: 27386263 PMCID: PMC4912506 DOI: 10.1186/s40064-016-2512-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/06/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIMS Recently, the number of follicular helper T (Tfh) cells expressing interleukin (IL)-21 was found to increase in peripheral blood of human and murine models of autoimmune hepatitis (AIH). IL-21, the most recently discovered member of the type-I cytokine family, exerts various effects on the immune system, including B cell activation, plasma cell differentiation, and immunoglobulin production. We aimed to assess the relationship of serum IL-21 levels in patients with type I AIH with clinical and laboratory parameters and histology. METHODS Ninety-two Japanese patients with liver disease (22 AIH, 20 primary biliary cholangitis, 19 drug-induced liver injury, 8 acute hepatitis B, 8 chronic hepatitis C, 10 non-alcoholic steatohepatitis, 5 viral hepatitis) and 10 healthy volunteers were recruited. Serum IL-21 levels were detected by enzyme-linked immunosorbent assay. Real-time polymerase chain reaction measured mRNA levels of Bcl-6, IL-21, and CXCR5 (Tfh-related factors) in peripheral mononuclear cells. RESULTS Mean age at diagnosis of AIH was 58.6 years, male-to-female ratio was 4:18, 18.2 % of participants had cirrhosis, and 22.7 % had severe disease. IL-21 levels were significantly increased in the serum of patients with AIH compared to those with other liver diseases and controls (p < 0.0001). Particularly, serum IL-21 levels were significantly increased in severe AIH cases compared to non-severe cases (p < 0.05). Serum IL-21 levels correlated positively with total serum bilirubin levels (r = 0.46, p < 0.05), grading of necroinflammatory activity (r = 0.68, p < 0.005) and negatively with serum albumin levels in patients with AIH (r = -0.49, p < 0.05). In patients with biochemical remission of AIH, serum IL-21 levels remained elevated and correlated positively with serum IgG levels (r = 0.84, p < 0.01). Expression of Tfh-related factors, such as Bcl-6 and IL-21, in peripheral blood mononuclear cells of patients with AIH was significantly higher than that in healthy volunteers. CONCLUSIONS IL-21 may play an important role in the pathogenesis and severity of AIH, and may present a promising target for AIH therapy.
Collapse
Affiliation(s)
- Kazumichi Abe
- Department of Gastroenterology and Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima City, Fukushima 960-1295 Japan
| | - Atsushi Takahashi
- Department of Gastroenterology and Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima City, Fukushima 960-1295 Japan
| | - Hiromichi Imaizumi
- Department of Gastroenterology and Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima City, Fukushima 960-1295 Japan
| | - Manabu Hayashi
- Department of Gastroenterology and Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima City, Fukushima 960-1295 Japan
| | - Ken Okai
- Department of Gastroenterology and Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima City, Fukushima 960-1295 Japan
| | - Yukiko Kanno
- Department of Gastroenterology and Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima City, Fukushima 960-1295 Japan
| | - Hiroshi Watanabe
- Department of Gastroenterology and Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima City, Fukushima 960-1295 Japan
| | - Hiromasa Ohira
- Department of Gastroenterology and Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima City, Fukushima 960-1295 Japan
| |
Collapse
|
67
|
Cellular immune profile of kidney transplant patients developing anti-HLA antibodies during childhood. Pediatr Nephrol 2016; 31:1001-10. [PMID: 26692023 DOI: 10.1007/s00467-015-3274-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND In the field of kidney transplantation, identifying early signatures of humoral rejection is a key challenge. METHODS We investigated the presence of anti-HLA antibodies and the distribution of lymphocyte subpopulations in 77 kidney-transplanted children and young adults compared to 23 healthy controls. Moreover, we tested whether the presence of anti-HLA antibodies could be related to modification in lymphocyte phenotype. Finally, we correlated the presence of anti-HLA antibodies and specific alteration of lymphocyte subsets with clinical outcomes. RESULTS In kidney-transplanted children who developed anti-HLA antibodies, we observed an expansion of double-negative B cells (CD19 + CD27-IgD-), indicating premature aging of this compartment. Moreover, we reported signs of impaired B cell regulation, indicated by a higher IL-21R+ B cell frequency associated with an abnormal increase of follicular helper T cells. Finally, a considerable reduction in CD8+ effector T and invariant Natural killer T (NKT) cells was observed. The stability of graft function over time is significantly correlated with the frequency of peripheral effector CD4+ and CD8+ T cells and invariant NKT cells. CONCLUSIONS This study supports the usefulness of lymphocyte subset as one of a spectrum of early diagnostic tools required to identify patients at risk of developing donor alloimmune response.
Collapse
|
68
|
Loyon R, Picard E, Mauvais O, Queiroz L, Mougey V, Pallandre JR, Galaine J, Mercier-Letondal P, Kellerman G, Chaput N, Wijdenes J, Adotévi O, Ferrand C, Romero P, Godet Y, Borg C. IL-21-Induced MHC Class II+ NK Cells Promote the Expansion of Human Uncommitted CD4+ Central Memory T Cells in a Macrophage Migration Inhibitory Factor-Dependent Manner. THE JOURNAL OF IMMUNOLOGY 2016; 197:85-96. [PMID: 27233967 DOI: 10.4049/jimmunol.1501147] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 04/18/2016] [Indexed: 01/15/2023]
Abstract
NK cells are critical for innate immunity-mediated protection. The main roles of NK cells rely on their cytotoxic functions or depend on the tuning of Th1 adaptive immunity by IFN-γ. However, the precise influence of inflammatory cytokines on NK cell and CD4 T lymphocyte interactions was never investigated. In this study, we provide evidence that IL-21, a cytokine produced during chronic inflammation or infectious diseases, promotes the differentiation of a specific subset of NK cells coexpressing CD86 and HLA-DR and lacking NKp44. More importantly, IL-21-propagated HLA-DR(+) NK cells produce macrophage migration inhibitory factor and provide costimulatory signaling during naive CD4(+) T cell priming inducing the differentiation of uncommitted central memory T cells. Central memory T cells expanded in the presence of HLA-DR(+) NK cells are CXCR3(+)CCR6(-)CCR4(-)CXCR5(-) and produce IL-2, as well as low levels of TNF-α. Costimulation of CD4(+) T cells by HLA-DR(+) NK cells prevents the acquisition of effector memory phenotype induced by IL-2. Moreover, we identified this population of NK HLA-DR(+) macrophage migration inhibitory factor(+) cells in inflammatory human appendix. Collectively, these results demonstrate a novel function for IL-21 in tuning NK and CD4(+) T cell interactions promoting a specific expansion of central memory lymphocytes.
Collapse
Affiliation(s)
- Romain Loyon
- INSERM Unit 1098, University of Franche-Comté, 25000 Besançon, France
| | - Emilie Picard
- INSERM Unit 1098, University of Franche-Comté, 25000 Besançon, France
| | - Olivier Mauvais
- Department of Head and Neck Surgery, University Hospital of Besançon, 25000 Besançon, France
| | - Lise Queiroz
- INSERM Unit 1098, University of Franche-Comté, 25000 Besançon, France; Clinical Investigation Center for Biotherapies, 25000 Besançon, France
| | - Virginie Mougey
- INSERM Unit 1098, University of Franche-Comté, 25000 Besançon, France; Etablissement Français du Sang, 25000 Besançon, France
| | - Jean-René Pallandre
- INSERM Unit 1098, University of Franche-Comté, 25000 Besançon, France; INSERM Unit 1007, University of Paris Descartes, 75270 Paris, France
| | - Jeanne Galaine
- INSERM Unit 1098, University of Franche-Comté, 25000 Besançon, France
| | - Patricia Mercier-Letondal
- INSERM Unit 1098, University of Franche-Comté, 25000 Besançon, France; Etablissement Français du Sang, 25000 Besançon, France
| | | | - Nathalie Chaput
- INSERM Unit 1015, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - John Wijdenes
- INSERM Unit 1098, University of Franche-Comté, 25000 Besançon, France
| | - Olivier Adotévi
- INSERM Unit 1098, University of Franche-Comté, 25000 Besançon, France; Clinical Investigation Center for Biotherapies, 25000 Besançon, France; Department of Medical Oncology, University Hospital of Besançon, 25000 Besançon, France; and
| | - Christophe Ferrand
- INSERM Unit 1098, University of Franche-Comté, 25000 Besançon, France; Etablissement Français du Sang, 25000 Besançon, France
| | - Pedro Romero
- Ludwig Center for Cancer Research of the University of Lausanne, Lausanne 1066, Switzerland
| | - Yann Godet
- INSERM Unit 1098, University of Franche-Comté, 25000 Besançon, France
| | - Christophe Borg
- INSERM Unit 1098, University of Franche-Comté, 25000 Besançon, France; Clinical Investigation Center for Biotherapies, 25000 Besançon, France; Etablissement Français du Sang, 25000 Besançon, France; Department of Medical Oncology, University Hospital of Besançon, 25000 Besançon, France; and
| |
Collapse
|
69
|
Affiliation(s)
- Carola G. Vinuesa
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia;
| | - Michelle A. Linterman
- Lymphocyte Signalling and Development Institute Strategic Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom;
| | - Di Yu
- Laboratory for Molecular Immunomodulation, Department of Biochemistry and Molecular Biology, and Center for Inflammatory Diseases, Monash University, Melbourne, Victoria 3800, Australia;
| | - Ian C.M. MacLennan
- School of Immunity and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
70
|
Yang DJ, Han B. [Roles of interleukin-21 and its receptor in autoimmune diseases]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:466-471. [PMID: 27165599 PMCID: PMC7390374 DOI: 10.7499/j.issn.1008-8830.2016.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/24/2016] [Indexed: 06/05/2023]
Abstract
Interleukin-21 (IL-21) is a new member of the interleukin-2 family. It is mainly synthesized and secreted by the activated of CD4(+) T cells and natural killer T cells. IL-21 receptor (IL-21R) is mainly expressed in T cells, B cells, and natural killer (NK) cells. After binding to its receptor, IL-21 can regulate the activation and proliferation of T cells, B cells, and NK cells through activating JAKs-STATs signaling pathways. As a new immunoregulatory factor, IL-21 and its receptor play important roles in the development and progression of various autoimmune diseases. Regulation of the expression levels of IL-21 and IL-21R and blocking of their signal transduction pathways with blockers may be new treatment options for autoimmune diseases.
Collapse
Affiliation(s)
- De-Juan Yang
- Department of pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China.
| | | |
Collapse
|
71
|
Tavakolpour S. Interleukin 21 as a new possible player in pemphigus: Is it a suitable target? Int Immunopharmacol 2016; 34:139-145. [DOI: 10.1016/j.intimp.2016.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/15/2016] [Accepted: 02/19/2016] [Indexed: 11/26/2022]
|
72
|
Xing R, Jin Y, Sun L, Yang L, Li C, Li Z, Liu X, Zhao J. Interleukin-21 induces migration and invasion of fibroblast-like synoviocytes from patients with rheumatoid arthritis. Clin Exp Immunol 2016; 184:147-58. [PMID: 26646950 DOI: 10.1111/cei.12751] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/27/2015] [Accepted: 12/01/2015] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by synovial fibroblast hyperplasia and bone erosion. Fibroblast-like synoviocytes (FLS) play a pivotal role in RA pathogenesis through aggressive migration and matrix invasion, and certain proinflammatory cytokines may affect synoviocyte invasion. Whether interleukin (IL)-21 influences this process remains controversial. Here, we evaluated the potential regulatory effect of IL-21 on the migration, invasion and matrix metalloproteinase (MMP) expression in RA-FLS. We found that IL-21 promoted the migration, invasion and MMP (MMP-2, MMP-3, MMP-9, MMP-13) production in RA-FLS. Moreover, IL-21 induced activation of the phosphoinositide 3-kinase (PI3K), signal transducer and activator of transcription-3 (STAT-3) and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) pathways, and blockage of these pathways [PI3K/protein kinase B (AKT) inhibitor LY294002, STAT-3 inhibitor STA-21 and ERK1/2 inhibitor PD98059] attenuated IL-21-induced migration and secretion of MMP-3 and MMP-9. In conclusion, our results suggest that IL-21 promotes migration and invasion of RA-FLS. Therefore, therapeutic strategies targeting IL-21 might be effective for the treatment of RA.
Collapse
Affiliation(s)
- R Xing
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, PR China
| | - Y Jin
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, PR China
| | - L Sun
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, PR China
| | - L Yang
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, PR China
| | - C Li
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, PR China
| | - Z Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, PR China
| | - X Liu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, PR China
| | - J Zhao
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, PR China
| |
Collapse
|
73
|
Mateen S, Zafar A, Moin S, Khan AQ, Zubair S. Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis. Clin Chim Acta 2016; 455:161-71. [PMID: 26883280 DOI: 10.1016/j.cca.2016.02.010] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 12/14/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic, inflammatory autoimmune disease of unknown etiology. It is characterized by the presence of rheumatoid factor and anti-citrullinated peptide antibodies. Initial phase of RA involves the activation of both T and B cells. Cytokines have a crucial role in the pathophysiology of RA as pro-inflammatory cytokines such as TNFα, IL-1, IL-17 stimulates inflammation and degradation of bone and cartilage. There occurs an imbalance between the pro- and anti-inflammatory cytokine activities which leads to multisystem immune complications. There occurs a decline in the number of Treg cells which may also play an important role in pathophysiology of the disease. In RA patients, serum or plasma level of cytokines may indicate the severity of disease. Cytokine gene polymorphism could be used as markers of susceptibility and severity of RA. Anti-cytokine agents seem to emerge as potent drug molecules to treat RA. Many clinical trials are ongoing and several positive results have been obtained. There is a need to develop potential anti-cytokine agents that target numerous pathways involved in the pathogenesis of RA. This review article describes the effector functions of pro- and anti-inflammatory cytokines and the role of cytokine gene polymorphism in the pathogenesis of RA. Anti-cytokine agents that are currently available and those that are still in clinical trials have also been summarized.
Collapse
Affiliation(s)
- Somaiya Mateen
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh -202002, India.
| | - Atif Zafar
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh -202002, India
| | - Shagufta Moin
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh -202002, India
| | - Abdul Qayyum Khan
- Department of Orthopedic Surgery, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh -202002, India
| | - Swaleha Zubair
- Women's college, Aligarh Muslim University, Aligarh, Uttar Pradesh -202002, India
| |
Collapse
|
74
|
Blanco P, Ueno H, Schmitt N. T follicular helper (Tfh) cells in lupus: Activation and involvement in SLE pathogenesis. Eur J Immunol 2016; 46:281-90. [DOI: 10.1002/eji.201545760] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Patrick Blanco
- Univ. Bordeaux; CIRID, UMR/CNRS; 5164 Bordeaux France
- CNRS; CIRID, UMR; 5164 Bordeaux France
- CHU de Bordeaux; Bordeaux France
| | - Hideki Ueno
- Baylor Institute for Immunology Research; Dallas USA
| | | |
Collapse
|
75
|
Biological effects of IL-21 on different immune cells and its role in autoimmune diseases. Immunobiology 2016; 221:357-67. [DOI: 10.1016/j.imbio.2015.09.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/19/2015] [Accepted: 09/25/2015] [Indexed: 12/14/2022]
|
76
|
Hu Y, Wang X, Yu S, Hou Y, Ma D, Hou M. Neutralizations of IL-17A and IL-21 regulate regulatory T cell/T-helper 17 imbalance via T-helper 17-associated signaling pathway in immune thrombocytopenia. Expert Opin Ther Targets 2016; 19:723-32. [PMID: 25976230 DOI: 10.1517/14728222.2015.1016499] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE The imbalance of regulatory T cell/T-helper 17 (Treg/Th17) is critical for the pathogenesis of immune thrombocytopenia (ITP) and IL-17A and IL-21 are overexpressed in ITP. The effects and mechanisms of IL-17A and IL-21 in Treg/Th17 imbalance and ITP pathophysiology are not clarified. METHODS Peripheral blood mononuclear cells (PBMCs) and CD3(+) T cells from ITP patients and healthy controls were treated with cytokines or antibodies to increase or neutralize IL-17A or IL-21 levels for 72 h. Treg/Th17 differentiation, apoptosis, proliferation and Th17 differentiation-associated transcriptional factors were analyzed. RESULTS Natural Treg/Th17 decreased in newly diagnosed ITP patients and recovered after remission. IL-17A or IL-21 increased Th17, decreased Tregs and downregulated Treg/Th17 in vitro. Conversely, neutralization of IL-17A or IL-21 decreased Th17, increased Tregs and up-regulated Treg/Th17. The reverse effects of IL-17A or IL-21 were mediated by Th17-associated transcriptional factors. IL-17A or IL-21 enhanced STAT-1, STAT-3, STAT-5 or RAR-related orphan receptor C (RORC), whereas anti-IL-17A or anti-IL-21 mAb downregulated STAT-1, STAT-5 or RORC transcripts in ITP PBMCs. Proliferation showed no significant difference. IL-21 inhibited apoptosis in ITP PBMCs. CONCLUSION IL-17A and IL-21 induce Th17 and inhibit Tregs re-differentiation via Th17-associated signaling pathway in ITP patients in vitro. It highlights the potential value of IL-17A or IL-21 blockade as a novel therapeutic target for ITP.
Collapse
Affiliation(s)
- Yu Hu
- Shandong University, Qilu Hospital, Department of Hematology , Jinan , China
| | | | | | | | | | | |
Collapse
|
77
|
Xing R, Yang L, Jin Y, Sun L, Li C, Li Z, Zhao J, Liu X. Interleukin-21 Induces Proliferation and Proinflammatory Cytokine Profile of Fibroblast-like Synoviocytes of Patients with Rheumatoid Arthritis. Scand J Immunol 2015; 83:64-71. [PMID: 26482544 DOI: 10.1111/sji.12396] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/06/2015] [Indexed: 01/23/2023]
Affiliation(s)
- R. Xing
- Department of Rheumatology and Immunology; Peking University Third Hospital; Beijing 100191 China
| | - L. Yang
- Department of Rheumatology and Immunology; Peking University Third Hospital; Beijing 100191 China
| | - Y. Jin
- Department of Rheumatology and Immunology; Peking University Third Hospital; Beijing 100191 China
| | - L. Sun
- Department of Rheumatology and Immunology; Peking University Third Hospital; Beijing 100191 China
| | - C. Li
- Department of Rheumatology and Immunology; Peking University Third Hospital; Beijing 100191 China
| | - Z. Li
- Department of Anesthesiology; Peking University Third Hospital; Beijing 100191 China
| | - J. Zhao
- Department of Rheumatology and Immunology; Peking University Third Hospital; Beijing 100191 China
| | - X. Liu
- Department of Rheumatology and Immunology; Peking University Third Hospital; Beijing 100191 China
| |
Collapse
|
78
|
Elevated expression of interleukin-21 and its correlation to T-cell subpopulation in patients with ulcerative colitis. Cent Eur J Immunol 2015; 40:331-6. [PMID: 26648777 PMCID: PMC4655383 DOI: 10.5114/ceji.2015.54595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 04/24/2015] [Indexed: 01/21/2023] Open
Abstract
Objective To investigate the expression of interleukin-21 (IL-21) and its correlation to T-cell subpopulation including Th1, Tc1 and Th17 cells in Ulcerative colitis (UC). Material and methods We examined the expression of IL-21, IL-17 and IFN-γ in UC patients and controls by enzyme-linked immunosorbent assay (ELISA) and flow cytometry. Results We found that IL-21 was expressed on CD3+CD8-T cells by flow cytometry. Plasma IL-21 level and the percentage of CD3+CD8-IL-21+ T cells were significantly elevated in UC patients compared to controls. The percentage of CD3+CD8-IL-17+ T (Th17), CD3+CD8-IFN-γ+ T (Th1) and CD3+CD8+ IFN-γ+ T (Tc1) cells was also significantly increased in UC patients. Moreover, we found a significant positive correlation between CD3+CD8-IL-21+T cells and Th17 cells. Conclusions Elevated IL-21 and its positive correlation to Th17 cells may play a role in the pathogenesis of UC.
Collapse
|
79
|
Jones GW, Jones SA. Ectopic lymphoid follicles: inducible centres for generating antigen-specific immune responses within tissues. Immunology 2015; 147:141-51. [PMID: 26551738 PMCID: PMC4717241 DOI: 10.1111/imm.12554] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 10/28/2015] [Accepted: 11/01/2015] [Indexed: 02/06/2023] Open
Abstract
Lymphoid neogenesis is traditionally viewed as a pre‐programmed process that promotes the formation of lymphoid organs during development. Here, the spatial organization of T and B cells in lymph nodes and spleen into discrete structures regulates antigen‐specific responses and adaptive immunity following immune challenge. However, lymphoid neogenesis is also triggered by chronic or persistent inflammation. Here, ectopic (or tertiary) lymphoid organs frequently develop in inflamed tissues as a response to infection, auto‐immunity, transplantation, cancer or environmental irritants. Although these structures affect local immune responses, the contribution of these lymphoid aggregates to the underlining pathology are highly context dependent and can elicit either protective or deleterious outcomes. Here we review the cellular and molecular mechanisms responsible for ectopic lymphoid neogenesis and consider the relevance of these structures in human disease.
Collapse
Affiliation(s)
- Gareth W Jones
- Division of Infection and Immunity, The School of Medicine, Cardiff University, Cardiff, UK
| | - Simon A Jones
- Division of Infection and Immunity, The School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
80
|
Xue L, Hickling T, Song R, Nowak J, Rup B. Contribution of enhanced engagement of antigen presentation machinery to the clinical immunogenicity of a human interleukin (IL)-21 receptor-blocking therapeutic antibody. Clin Exp Immunol 2015; 183:102-13. [PMID: 26400440 DOI: 10.1111/cei.12711] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2015] [Indexed: 01/21/2023] Open
Abstract
Reliable risk assessment for biotherapeutics requires accurate evaluation of risk factors associated with immunogenicity. Immunogenicity risk assessment tools were developed and applied to investigate the immunogenicity of a fully human therapeutic monoclonal antibody, ATR-107 [anti-interleukin (IL)-21 receptor] that elicited anti-drug antibodies (ADA) in 76% of healthy subjects in a Phase 1 study. Because the ATR-107 target is expressed on dendritic cells (DCs), the immunogenicity risk related to engagement with DC and antigen presentation pathways was studied. Despite the presence of IL-21R on DCs, ATR-107 did not bind to the DCs more extensively than the control therapeutic antibody (PF-1) that had elicited low clinical ADA incidence. However, ATR-107, but not the control therapeutic antibody, was translocated to the DC late endosomes, co-localized with intracellular antigen-D related (HLA-DR) molecules and presented a dominant T cell epitope overlapping the complementarity determining region 2 (CDR2) of the light chain. ATR-107 induced increased DC activation exemplified by up-regulation of DC surface expression of CD86, CD274 (PD-L1) and CD40, increased expansion of activated DC populations expressing CD86(hi), CD40(hi), CD83(hi), programmed death ligand 1 (PD-L1)(hi), HLA-DR(hi) or CCR7(hi), as well as elevated secretion of tumour necrosis factor (TNF)-α by DCs. DCs exposed to ATR-107 stimulated an autologous T cell proliferative response in human donor cells, in concert with the detection of immunoglobulin (Ig)G-type anti-ATR-107 antibody response in clinical samples. Collectively, the enhanced engagement of antigen presentation machinery by ATR-107 was suggested. The approaches and findings described in this study may be relevant to identifying lower immunogenicity risk targets and therapeutic molecules.
Collapse
Affiliation(s)
- L Xue
- Pharmacokinetics, Dynamics and Metabolism- NBE, Pfizer Inc., Andover, MA, USA
| | - T Hickling
- Pharmacokinetics, Dynamics and Metabolism- NBE, Pfizer Inc., Andover, MA, USA
| | - R Song
- Drug Safety R & D, Pfizer Inc., Andover, MA, USA
| | - J Nowak
- Clinical Pharmacology, Pfizer Inc., Andover, MA, USA
| | - B Rup
- Pharmacokinetics, Dynamics and Metabolism- NBE, Pfizer Inc., Andover, MA, USA
| |
Collapse
|
81
|
Meguro K, Suzuki K, Hosokawa J, Sanayama Y, Tanaka S, Furuta S, Ikeda K, Takatori H, Suto A, Sakamoto A, Ohara O, Nakajima H. Role of Bcl-3 in the Development of Follicular Helper T Cells and in the Pathogenesis of Rheumatoid Arthritis. Arthritis Rheumatol 2015; 67:2651-60. [DOI: 10.1002/art.39266] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 06/25/2015] [Indexed: 12/12/2022]
Affiliation(s)
| | - Kotaro Suzuki
- Chiba University Graduate School of Medicine; Chiba Japan
| | | | | | - Shigeru Tanaka
- Chiba University Graduate School of Medicine; Chiba Japan
| | | | - Kei Ikeda
- Chiba University Graduate School of Medicine; Chiba Japan
| | | | - Akira Suto
- Chiba University Graduate School of Medicine; Chiba Japan
| | - Akemi Sakamoto
- Chiba University Graduate School of Medicine; Chiba Japan
| | | | | |
Collapse
|
82
|
Wang SP, Iwata S, Nakayamada S, Niiro H, Jabbarzadeh-Tabrizi S, Kondo M, Kubo S, Yoshikawa M, Tanaka Y. Amplification of IL-21 signalling pathway through Bruton’s tyrosine kinase in human B cell activation. Rheumatology (Oxford) 2015; 54:1488-1497. [DOI: 10.1093/rheumatology/keu532] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
83
|
Nata T, Basheer A, Cocchi F, van Besien R, Massoud R, Jacobson S, Azimi N, Tagaya Y. Targeting the binding interface on a shared receptor subunit of a cytokine family enables the inhibition of multiple member cytokines with selectable target spectrum. J Biol Chem 2015; 290:22338-51. [PMID: 26183780 DOI: 10.1074/jbc.m115.661074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Indexed: 02/04/2023] Open
Abstract
The common γ molecule (γc) is a shared signaling receptor subunit used by six γc-cytokines. These cytokines play crucial roles in the differentiation of the mature immune system and are involved in many human diseases. Moreover, recent studies suggest that multiple γc-cytokines are pathogenically involved in a single disease, thus making the shared γc-molecule a logical target for therapeutic intervention. However, the current therapeutic strategies seem to lack options to treat such cases, partly because of the lack of appropriate neutralizing antibodies recognizing the γc and, more importantly, because of the inherent and practical limitations in the use of monoclonal antibodies. By targeting the binding interface of the γc and cytokines, we successfully designed peptides that not only inhibit multiple γc-cytokines but with a selectable target spectrum. Notably, the lead peptide inhibited three γc-cytokines without affecting the other three or non-γc-cytokines. Biological and mutational analyses of our peptide provide new insights to our current understanding on the structural aspect of the binding of γc-cytokines the γc-molecule. Furthermore, we provide evidence that our peptide, when conjugated to polyethylene glycol to gain stability in vivo, efficiently blocks the action of one of the target cytokines in animal models. Collectively, our technology can be expanded to target various combinations of γc-cytokines and thereby will provide a novel strategy to the current anti-cytokine therapies against immune, inflammatory, and malignant diseases.
Collapse
Affiliation(s)
- Toshie Nata
- From the Cell Biology Laboratory, Division of Basic Science, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | | | - Fiorenza Cocchi
- From the Cell Biology Laboratory, Division of Basic Science, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Richard van Besien
- From the Cell Biology Laboratory, Division of Basic Science, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Raya Massoud
- the Section of Neuroimmunology, NINDS, National Institutes of Health, Bethesda, Maryland 20890
| | - Steven Jacobson
- the Section of Neuroimmunology, NINDS, National Institutes of Health, Bethesda, Maryland 20890
| | | | - Yutaka Tagaya
- From the Cell Biology Laboratory, Division of Basic Science, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201,
| |
Collapse
|
84
|
Tangye SG. Advances in IL-21 biology - enhancing our understanding of human disease. Curr Opin Immunol 2015; 34:107-15. [PMID: 25801685 DOI: 10.1016/j.coi.2015.02.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/12/2015] [Accepted: 02/26/2015] [Indexed: 12/20/2022]
Abstract
Cytokines play critical roles in regulating the development and function of immune cells. Cytokines function by binding specific multimeric receptor complexes and activating intracellular signaling pathways that often involve JAKs and STATs. In addition to contributing to immunity, when production of cytokines is perturbed, they can contribute to disease. IL-21 is a pleiotropic cytokine produced predominantly by CD4(+) T cells and NKT cells. Gene-targeting studies in mice and in vitro analyses of human and murine lymphocytes have revealed central roles of IL-21 in regulating effector functions of T cells, NK cells and B cells. However, recent discoveries of loss-of function mutations in IL21 or IL21R in humans have unveiled unexpected roles for IL-21 in immune regulation. This review will focus on recent advances in IL-21 biology that have highlighted its critical role in normal immunity and how dysregulated IL-21 production can lead to immunodeficiency and autoimmune conditions.
Collapse
Affiliation(s)
- Stuart G Tangye
- Immunology and Immunodeficiency Group, Immunology Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St Vincent's Clinical School, UNSW Australia, Darlinghurst, NSW, Australia.
| |
Collapse
|
85
|
|
86
|
Zhang X, Lindwall E, Gauthier C, Lyman J, Spencer N, Alarakhia A, Fraser A, Ing S, Chen M, Webb-Detiege T, Zakem J, Davis W, Choi YS, Quinet R. Circulating CXCR5+CD4+helper T cells in systemic lupus erythematosus patients share phenotypic properties with germinal center follicular helper T cells and promote antibody production. Lupus 2015; 24:909-17. [PMID: 25654980 DOI: 10.1177/0961203314567750] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 12/18/2014] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the production of autoantibodies. Recently, a specific highly activated T helper cell subset, follicular helper T (Tfh) cell, has emerged as a key immunoregulator of germinal center (GC) formation and high-affinity antibody production. To identify the pathophysiological role of Tfh cells in SLE patients, we compared the phenotypic and functional properties of circulating Tfh-like cells in lupus patients to GC-Tfh cells, and correlated the percentage of Tfh-like cells with autoantibody production and SLE disease activity. METHODS Peripheral blood was collected from 29 lupus patients and 25 healthy controls. Tonsils were obtained surgically from non-SLE controls and used as a source of GC-Tfh cells. Tfh cells were defined by their signature surface markers (CXCR5, ICOS, CD57, PD-1 and BTLA) via flow cytometry. IL-21 expression levels from Tfh cells were measured by real-time PCR and intracellular staining. The function of Tfh cells was carried out by co-culture of Tfh cells and autologous B cells in vitro. IgG in the culture supernatant was detected by ELISA. RESULTS The frequency of circulating Tfh-like cells was significantly increased in SLE patients compared to healthy controls (p < 0.05). The Tfh-like cells not only display similar phenotypes and signature cytokines with GC-Tfh cells, but also are capable of driving B cells to differentiate into IgG-secreting plasma cells in vitro. In addition, the frequency of Tfh-like cells correlated positively with the percentage of circulating plasmablasts, levels of serum anti-dsDNA antibodies and ANA. CONCLUSION The accumulated circulating Tfh-like cells in lupus patients share phenotypic and functional properties with GC-Tfh cells. Tfh-like cells may serve as perpetuators in the pathogenesis of SLE by enhancing the self-reactive B cell clones to further differentiate into auto antibody-producing plasmablasts, and ultimately cause autoimmunity.
Collapse
Affiliation(s)
- X Zhang
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, Louisiana, USA
| | - E Lindwall
- Department of Rheumatology, Ochsner Medical Center, New Orleans, Louisiana, USA
| | - C Gauthier
- Department of Rheumatology, Ochsner Medical Center, New Orleans, Louisiana, USA
| | - J Lyman
- Department of Rheumatology, Ochsner Medical Center, New Orleans, Louisiana, USA
| | - N Spencer
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - A Alarakhia
- Department of Rheumatology, Ochsner Medical Center, New Orleans, Louisiana, USA
| | - A Fraser
- Department of Rheumatology, Ochsner Medical Center, New Orleans, Louisiana, USA
| | - S Ing
- Department of Rheumatology, Ochsner Medical Center, New Orleans, Louisiana, USA
| | - M Chen
- Department of Rheumatology, Ochsner Medical Center, New Orleans, Louisiana, USA
| | - T Webb-Detiege
- Department of Rheumatology, Ochsner Medical Center, New Orleans, Louisiana, USA The Univeristy of Queensland, School of Medicine, Ochsner Clinical School, New Orleans, Louisiana, USA
| | - J Zakem
- Department of Rheumatology, Ochsner Medical Center, New Orleans, Louisiana, USA
| | - W Davis
- Department of Rheumatology, Ochsner Medical Center, New Orleans, Louisiana, USA The Univeristy of Queensland, School of Medicine, Ochsner Clinical School, New Orleans, Louisiana, USA
| | - Y Sung Choi
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, Louisiana, USA
| | - R Quinet
- Department of Rheumatology, Ochsner Medical Center, New Orleans, Louisiana, USA The Univeristy of Queensland, School of Medicine, Ochsner Clinical School, New Orleans, Louisiana, USA
| |
Collapse
|
87
|
Lei L, He ZY, Zhao C, Sun XJ, Zhong XN. Elevated frequencies of CD4+IL-21+T, CD4+IL-21R+T and IL-21+Th17 cells, and increased levels of IL-21 in bleomycin-induced mice may be associated with dermal and pulmonary inflammation and fibrosis. Int J Rheum Dis 2014; 19:392-404. [PMID: 25545680 DOI: 10.1111/1756-185x.12522] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ling Lei
- Department of Rheumatology and Clinical Immunology; The First Affiliated Hospital of Guangxi Medical University; Nanning Guangxi China
| | - Zhi-Yi He
- Department of Respiratory Medicine; The First Affiliated Hospital of Guangxi Medical University; Nanning Guangxi China
| | - Cheng Zhao
- Department of Rheumatology and Clinical Immunology; The First Affiliated Hospital of Guangxi Medical University; Nanning Guangxi China
| | - Xue-Jiao Sun
- Department of Respiratory Medicine; The First Affiliated Hospital of Guangxi Medical University; Nanning Guangxi China
| | - Xiao-Ning Zhong
- Department of Respiratory Medicine; The First Affiliated Hospital of Guangxi Medical University; Nanning Guangxi China
| |
Collapse
|
88
|
Abstract
Cell proliferation and cell death are integral elements in maintaining homeostatic balance in metazoans. Disease pathologies ensue when these processes are disturbed. A plethora of evidence indicates that malfunction of cell death can lead to inflammation, autoimmunity, or immunodeficiency. Programmed necrosis or necroptosis is a form of nonapoptotic cell death driven by the receptor interacting protein kinase 3 (RIPK3) and its substrate, mixed lineage kinase domain-like (MLKL). RIPK3 partners with its upstream adaptors RIPK1, TRIF, or DAI to signal for necroptosis in response to death receptor or Toll-like receptor stimulation, pathogen infection, or sterile cell injury. Necroptosis promotes inflammation through leakage of cellular contents from damaged plasma membranes. Intriguingly, many of the signal adaptors of necroptosis have dual functions in innate immune signaling. This unique signature illustrates the cooperative nature of necroptosis and innate inflammatory signaling pathways in managing cell and organismal stresses from pathogen infection and sterile tissue injury.
Collapse
Affiliation(s)
- Francis Ka-Ming Chan
- Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, Massachusetts 01605;
| | | | | |
Collapse
|
89
|
Jimeno R, Gomariz RP, Garín M, Gutiérrez-Cañas I, González-Álvaro I, Carrión M, Galindo M, Leceta J, Juarranz Y. The pathogenic Th profile of human activated memory Th cells in early rheumatoid arthritis can be modulated by VIP. J Mol Med (Berl) 2014; 93:457-67. [PMID: 25430993 PMCID: PMC4366555 DOI: 10.1007/s00109-014-1232-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/15/2014] [Accepted: 11/12/2014] [Indexed: 12/30/2022]
Abstract
UNLABELLED Our aim is to study the behavior of memory Th cells (Th17, Th17/1, and Th1 profiles) from early rheumatoid arthritis (eRA) patients after their in vitro activation/expansion to provide information about its contribution to RA chronicity. Moreover, we analyzed the potential involvement of vasoactive intestinal peptide (VIP) as an endogenous healing mediator. CD4(+)CD45RO(+) T cells from PBMCs of HD and eRA were activated/expanded in vitro in the presence/absence of VIP. FACS, ELISA, RT-PCR, and immunocytochemistry analyses were performed. An increase in CCR6(+)/RORC(+) cells and in RORC-proliferating cells and a decrease in T-bet-proliferating cells and T-bet(+)/RORC(+) cells were shown in eRA. mRNA expression of IL-17, IL-2, RORC, RORA, STAT3, and Tbx21 and protein secretion of IL-17, IFNγ, and GM-CSF were higher in eRA. VIP decreased the mRNA expression of IL-22, IL-2, STAT3, Tbx21, IL-12Rβ2, IL-23R, and IL-21R in HD and it decreased IL-21, IL-2, and STAT3 in eRA. VIP decreased IL-22 and GM-CSF secretion and increased IL-9 secretion in HD and it decreased IL-21 secretion in eRA. VPAC2/VPAC1 ratio expression was increased in eRA. All in all, memory Th cells from eRA patients show a greater proportion of Th17 cells with a pathogenic Th17 and Th17/1 profile compared to HD. VIP is able to modulate the pathogenic profile, mostly in HD. Our results are promising for therapy in the early stages of RA because they suggest that targeting molecules involved in the pathogenic Th17, Th17/1, and Th1 phenotypes and targeting VIP receptors could have a therapeutic effect modulating these subsets. KEY MESSAGES Th17 cells are more important than Th1 in the contribution to pathogenesis in eRA patients. Pathogenic Th17 and Th17/1 profile are abundant in activated/expanded memory Th cells from eRA patients. VIP decreases the pathogenic Th17, Th1, and Th17/1 profiles, mainly in healthy donors. The expression of VIP receptors is reduced in eRA patients respect to healthy donors, whereas the ratio of VPAC2/VPAC1 expression is higher.
Collapse
Affiliation(s)
- Rebeca Jimeno
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Ryu JG, Lee J, Kim EK, Seo HB, Park JS, Lee SY, Moon YM, Yoo SH, Park YW, Park SH, Cho ML, Kim HY. Treatment of IL-21R-Fc control autoimmune arthritis via suppression of STAT3 signal pathway mediated regulation of the Th17/Treg balance and plasma B cells. Immunol Lett 2014; 163:143-50. [PMID: 25447400 DOI: 10.1016/j.imlet.2014.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 08/19/2014] [Accepted: 09/10/2014] [Indexed: 01/28/2023]
Abstract
Interleukin-21 (IL-21) is a T cell-derived cytokine modulating T cell, B cell, and natural killer cell responses. To determine whether IL-21 contributes to pathologic processes, recombinant IL-21 receptor (R) fusion protein (rhIL-21R-Fc) was examined in mice models of autoimmune arthritis (collagen-induced arthritis). DBA/1J mice were immunized with chicken type II collagen and then treated intraperitoneally with rhIL-21R-Fc, which was initiated after the onset of arthritis symptoms in 20% of the cohort. The mice were assessed 3 times per week for signs of arthritis and histologic features as well as serum immunoglobulin. Cytokine messenger RNA levels in the spleen were also examined. STAT3 phosphorylation is dose dependently activated by IL-21 and inhibited by rhIL-21R-Fc in vitro using T cells. Treatment of DBA/1J mice with rhIL-21R-Fc reduced the clinical and histologic signs of CIA. The IL-17 and STAT3-expressing CD4(+) splenocytes dramatically decreased in the rhIL-21R-Fc treated mice. IL-21R-Fc treated mice also decreased the production of IgG, STAT3 phosphorylation, and plasma cell transcription factor (Blimp1). These findings demonstrate a pathogenic role of IL-21 in animal models of RA, suggesting IL-21 as a promising therapeutic target among human RA.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/prevention & control
- Blotting, Western
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Humans
- Immunoglobulin G/immunology
- Immunoglobulin G/metabolism
- Injections, Intraperitoneal
- Interleukin-17/genetics
- Interleukin-17/immunology
- Interleukin-17/metabolism
- Interleukins/genetics
- Interleukins/immunology
- Interleukins/metabolism
- Male
- Mice, Inbred DBA
- Microscopy, Confocal
- Phosphorylation/drug effects
- Phosphorylation/immunology
- Plasma Cells/immunology
- Plasma Cells/metabolism
- Positive Regulatory Domain I-Binding Factor 1
- Receptors, Interleukin-21/genetics
- Receptors, Interleukin-21/immunology
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
- STAT3 Transcription Factor/immunology
- STAT3 Transcription Factor/metabolism
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Transcription Factors/genetics
- Transcription Factors/immunology
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Jun-Geol Ryu
- Rheumatism Research Center, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-040, South Korea
| | - Jennifer Lee
- Rheumatism Research Center, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-040, South Korea
| | - Eun-Kyung Kim
- Rheumatism Research Center, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-040, South Korea
| | - Hyeon-Beom Seo
- Rheumatism Research Center, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-040, South Korea
| | - Jin-Sil Park
- Rheumatism Research Center, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-040, South Korea
| | - Seon-Yeong Lee
- Rheumatism Research Center, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-040, South Korea
| | - Young-Mee Moon
- Rheumatism Research Center, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-040, South Korea
| | - Seok-Ho Yoo
- Aging Research Center, Korea Research Institute of Bioscience & Biotechnology, Yuseong-gu, Daejeon 618-806, South Korea
| | - Young-woo Park
- Aging Research Center, Korea Research Institute of Bioscience & Biotechnology, Yuseong-gu, Daejeon 618-806, South Korea
| | - Sung-Hwan Park
- Rheumatism Research Center, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-040, South Korea
| | - Mi-La Cho
- Rheumatism Research Center, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-040, South Korea.
| | - Ho-Youn Kim
- Division of Rheumatology, Department of Internal Medicine, Konkuk University, Neungdong-ro, Seoul 143-701, South Korea.
| |
Collapse
|
91
|
Abdulahad WH, Lepse N, Stegeman CA, Huitema MG, Doornbos-van der Meer B, Tadema H, Rutgers A, Limburg PC, Kallenberg CGM, Heeringa P. Increased frequency of circulating IL-21 producing Th-cells in patients with granulomatosis with polyangiitis (GPA). Arthritis Res Ther 2014; 15:R70. [PMID: 23799890 PMCID: PMC4060544 DOI: 10.1186/ar4247] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/26/2013] [Accepted: 06/24/2013] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION The present study aimed to explore a possible role for IL-21 producing Th-cells in the immunopathogenesis of granulomatosis with polyangiitis (GPA). METHODS Peripheral blood from 42 GPA patients in remission and 29 age-matched healthy controls (HCs) were stimulated in vitro, and the frequencies of IL-21 producing Th-cells were determined by flow cytometry. Since Th17-cells produce a low level of IL-21, IL-17 was also included in the analysis. Given that IL-21 is a hallmark cytokine for T follicular helper cells (T(FH)), we next evaluated the expression of their key transcription factor BCL-6 by RT-PCR and flow cytometry. To investigate the effect of IL-21 on autoantibody-production, PBMCs from GPA patients were stimulated in vitro with BAFF/IL-21 and total IgG and ANCA levels were measured in supernatants. In addition, the expression of IL-21-receptor on B-cells was analyzed. RESULTS Percentages of IL-21 producing Th-cells were significantly elevated in GPA-patients compared to HCs, and were restricted to ANCA-positive patients. The expression of BCL-6 was significantly higher in ANCA-positive GPA-patients, as compared with ANCA-negative patients and HCs. IL-21 enhanced the production of IgG and ANCA in vitro in stimulated PBMCs from GPA patients. No difference was found in the expression of the IL-21-receptor on B-cells between ANCA-negative patients, ANCA-positive patients, and HCs. CONCLUSION The increased frequency of circulating IL-21 producing Th-cells in ANCA-positive GPA patients and the stimulating capacity of IL-21 on ANCA-production suggest a role for these cells in the immunopathogenesis of GPA. Blockade of IL-21 could constitute a new therapeutic strategy for GPA.
Collapse
|
92
|
Magyari L, Varszegi D, Kovesdi E, Sarlos P, Farago B, Javorhazy A, Sumegi K, Banfai Z, Melegh B. Interleukins and interleukin receptors in rheumatoid arthritis: Research, diagnostics and clinical implications. World J Orthop 2014; 5:516-536. [PMID: 25232528 PMCID: PMC4133458 DOI: 10.5312/wjo.v5.i4.516] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/05/2014] [Accepted: 05/16/2014] [Indexed: 02/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease, resulting in a chronic, systemic inflammatory disorder. It may affect many tissues and organs, but it primarily affects the flexible joints. In clinical practice patient care generates many questions about diagnosis, prognosis, and treatment. It is challenging for health care specialists to keep up to date with the medical literature. This review summarizes the pathogenesis, the polymorphisms of interleukin and interleukin genes and the standard available and possible future immunologic targets for RA treatment. The identification of disease-associated interleukin and interleukin receptor genes can provide precious insight into the genetic variations prior to disease onset in order to identify the pathways important for RA pathogenesis. The knowledge of the complex genetic background may prove useful for developing novel therapies and making personalized medicine based on the individual’s genetics.
Collapse
|
93
|
Di Fusco D, Izzo R, Figliuzzi MM, Pallone F, Monteleone G. IL-21 as a therapeutic target in inflammatory disorders. Expert Opin Ther Targets 2014; 18:1329-38. [DOI: 10.1517/14728222.2014.945426] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
94
|
Iwamoto T, Suto A, Tanaka S, Takatori H, Suzuki K, Iwamoto I, Nakajima H. Interleukin-21-Producing c-Maf-Expressing CD4+ T Cells Induce Effector CD8+ T Cells and Enhance Autoimmune Inflammation in Scurfy Mice. Arthritis Rheumatol 2014; 66:2079-90. [DOI: 10.1002/art.38658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 04/01/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Taro Iwamoto
- Chiba University Graduate School of Medicine; Chiba Japan
| | - Akira Suto
- Chiba University Graduate School of Medicine; Chiba Japan
| | - Shigeru Tanaka
- Chiba University Graduate School of Medicine; Chiba Japan
| | | | - Kotaro Suzuki
- Chiba University Graduate School of Medicine; Chiba Japan
| | | | | |
Collapse
|
95
|
Carbo A, Olivares-Villagómez D, Hontecillas R, Bassaganya-Riera J, Chaturvedi R, Piazuelo MB, Delgado A, Washington MK, Wilson KT, Algood HMS. Systems modeling of the role of interleukin-21 in the maintenance of effector CD4+ T cell responses during chronic Helicobacter pylori infection. mBio 2014; 5:e01243-14. [PMID: 25053783 PMCID: PMC4120195 DOI: 10.1128/mbio.01243-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/25/2014] [Indexed: 01/25/2023] Open
Abstract
The development of gastritis during Helicobacter pylori infection is dependent on an activated adaptive immune response orchestrated by T helper (Th) cells. However, the relative contributions of the Th1 and Th17 subsets to gastritis and control of infection are still under investigation. To investigate the role of interleukin-21 (IL-21) in the gastric mucosa during H. pylori infection, we combined mathematical modeling of CD4(+) T cell differentiation with in vivo mechanistic studies. We infected IL-21-deficient and wild-type mice with H. pylori strain SS1 and assessed colonization, gastric inflammation, cellular infiltration, and cytokine profiles. Chronically H. pylori-infected IL-21-deficient mice had higher H. pylori colonization, significantly less gastritis, and reduced expression of proinflammatory cytokines and chemokines compared to these parameters in infected wild-type littermates. These in vivo data were used to calibrate an H. pylori infection-dependent, CD4(+) T cell-specific computational model, which then described the mechanism by which IL-21 activates the production of interferon gamma (IFN-γ) and IL-17 during chronic H. pylori infection. The model predicted activated expression of T-bet and RORγt and the phosphorylation of STAT3 and STAT1 and suggested a potential role of IL-21 in the modulation of IL-10. Driven by our modeling-derived predictions, we found reduced levels of CD4(+) splenocyte-specific tbx21 and rorc expression, reduced phosphorylation of STAT1 and STAT3, and an increase in CD4(+) T cell-specific IL-10 expression in H. pylori-infected IL-21-deficient mice. Our results indicate that IL-21 regulates Th1 and Th17 effector responses during chronic H. pylori infection in a STAT1- and STAT3-dependent manner, therefore playing a major role controlling H. pylori infection and gastritis. Importance: Helicobacter pylori is the dominant member of the gastric microbiota in more than 50% of the world's population. H. pylori colonization has been implicated in gastritis and gastric cancer, as infection with H. pylori is the single most common risk factor for gastric cancer. Current data suggest that, in addition to bacterial virulence factors, the magnitude and types of immune responses influence the outcome of colonization and chronic infection. This study uses a combined computational and experimental approach to investigate how IL-21, a proinflammatory T cell-derived cytokine, maintains the chronic proinflammatory T cell immune response driving chronic gastritis during H. pylori infection. This research will also provide insight into a myriad of other infectious and immune disorders in which IL-21 is increasingly recognized to play a central role. The use of IL-21-related therapies may provide treatment options for individuals chronically colonized with H. pylori as an alternative to aggressive antibiotics.
Collapse
Affiliation(s)
| | - Danyvid Olivares-Villagómez
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | - Rupesh Chaturvedi
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - M Blanca Piazuelo
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alberto Delgado
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - M Kay Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | |
Collapse
|
96
|
Pitzalis C, Jones GW, Bombardieri M, Jones SA. Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat Rev Immunol 2014; 14:447-62. [PMID: 24948366 DOI: 10.1038/nri3700] [Citation(s) in RCA: 487] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ectopic lymphoid-like structures often develop at sites of inflammation where they influence the course of infection, autoimmune disease, cancer and transplant rejection. These lymphoid aggregates range from tight clusters of B cells and T cells to highly organized structures that comprise functional germinal centres. Although the mechanisms governing ectopic lymphoid neogenesis in human pathology remain poorly defined, the presence of ectopic lymphoid-like structures within inflamed tissues has been linked to both protective and deleterious outcomes in patients. In this Review, we discuss investigations in both experimental model systems and patient cohorts to provide a perspective on the formation and functions of ectopic lymphoid-like structures in human pathology, with particular reference to the clinical implications and the potential for therapeutic targeting.
Collapse
Affiliation(s)
- Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London, School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Gareth W Jones
- Cardiff Institute for Infection and Immunity, The School of Medicine, Cardiff University, The Tenovus Building, Heath Campus, Cardiff CF14 4XN, Wales, UK
| | - Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London, School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Simon A Jones
- Cardiff Institute for Infection and Immunity, The School of Medicine, Cardiff University, The Tenovus Building, Heath Campus, Cardiff CF14 4XN, Wales, UK
| |
Collapse
|
97
|
van den Berg WB, McInnes IB. Th17 cells and IL-17 a--focus on immunopathogenesis and immunotherapeutics. Semin Arthritis Rheum 2014; 43:158-70. [PMID: 24157091 DOI: 10.1016/j.semarthrit.2013.04.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/10/2013] [Accepted: 04/13/2013] [Indexed: 01/01/2023]
Abstract
IMPORTANCE Accumulating evidence suggests that IL-17 A has broad pathogenic roles in multiple autoimmune and immune-mediated inflammatory diseases, including psoriasis and rheumatoid arthritis (RA). The development of new therapies that inhibit IL-17 pathway signaling is of clinical significance. OBJECTIVES This review aims to summarize the current preclinical evidence on the role of Th17 cells and IL-17 and related cytokines in immune-mediated disease pathophysiology, with a focus on psoriasis and rheumatoid arthritis, as well as to summarize recent clinical trials in these indications with newly developed IL-17 pathway inhibitors. METHODS A systematic literature search was conducted of PubMed using relevant keywords. Studies were assessed according to recent relevance to IL-17-mediated pathophysiology and clinical IL-17 inhibition. Experimental animal models of autoimmune disease and clinical studies that focused on IL-17 pathway inhibitors were included. RESULTS Preclinical studies suggest that IL-17A is an attractive therapeutic target. Several IL-17A inhibitors have advanced into clinical trials, including the anti-IL-17A monoclonal antibodies, secukinumab and ixekizumab, and the anti-17RA monoclonal antibody brodalumab. Each has shown variable and sometimes favorable results in proof-of-concept and phase II clinical trials and is currently undergoing further clinical evaluation in a range of immune-mediated diseases. CONCLUSION Targeting the IL-17 pathway shows promise as strategy to treat immune-mediated diseases ranging from skin to joints.
Collapse
Affiliation(s)
- Wim B van den Berg
- Rheumatology Research and Advanced Therapeutics, Department of Rheumatology, Radboud University Nijmegen Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands.
| | | |
Collapse
|
98
|
Marijnissen RJ, Roeleveld DM, Young D, Nickerson-Nutter C, Abdollahi-Roodsaz S, Garcia de Aquino S, van de Loo FAJ, van Spriel AB, Boots AMH, van den Berg WB, Koenders MI. Interleukin-21 receptor deficiency increases the initial toll-like receptor 2 response but protects against joint pathology by reducing Th1 and Th17 cells during streptococcal cell wall arthritis. Arthritis Rheumatol 2014; 66:886-95. [PMID: 24757141 DOI: 10.1002/art.38312] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 12/05/2013] [Indexed: 01/22/2023]
Abstract
OBJECTIVE The cytokine interleukin-21 (IL-21) can have both proinflammatory and immunosuppressive effects. The purpose of this study was to investigate the potential dual role of IL-21 in experimental arthritis in relation to Th17 cells. METHODS Antigen-induced arthritis (AIA) and chronic streptococcal cell wall (SCW) arthritis were induced in IL-21 receptor-deficient (IL-21R(-/-) ) and wild-type mice. Knee joints, synovial tissue, and serum were analyzed for arthritis pathology and inflammatory markers. RESULTS During AIA and chronic SCW arthritis, IL-21R deficiency protected against severe inflammation and joint destruction. This was accompanied by suppressed serum IgG1 levels and antigen-specific T cell responses. Levels of IL-17 were reduced during AIA, and synovial lymphocytes isolated during SCW arthritis for flow cytometry demonstrated that mainly IL-17+ interferon-γ (IFNγ)-positive T cells were reduced in IL-21R(-/-) mice. However, during the acute phases of SCW arthritis, significantly higher joint swelling scores were observed, consistent with enhanced tumor necrosis factor and IL-6 expression. Interestingly, IL-21R(-/-) mice were significantly less capable of up-regulating suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 messenger RNA. IL-21 stimulation also affected the Toll-like receptor 2 (TLR-2)/caspase recruitment domain 15 response to SCW fragments in vitro, indicating that impaired SOCS regulation in the absence of IL-21 signaling might contribute to the increased local activation during SCW arthritis. CONCLUSION In contrast to the proinflammatory role of IL-21 in adaptive immunity, which drives IL-17+IFN+ cells and joint pathology during chronic experimental arthritis, IL-21 also has an important immunosuppressive role, presumably by inhibiting TLR signaling via SOCS-1 and SOCS-3. If this dual role of IL-21 in various immune processes is present in human disease, it could make IL-21 a difficult therapeutic target in rheumatoid arthritis.
Collapse
|
99
|
Roeleveld DM, van Nieuwenhuijze AEM, van den Berg WB, Koenders MI. The Th17 pathway as a therapeutic target in rheumatoid arthritis and other autoimmune and inflammatory disorders. BioDrugs 2014; 27:439-52. [PMID: 23620106 DOI: 10.1007/s40259-013-0035-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Production of the pro-inflammatory cytokine interleukin (IL)-17 by Th17 cells and other cells of the immune system protects the host against bacterial and fungal infections, but also promotes the development of rheumatoid arthritis (RA) and other autoimmune and inflammatory disorders. Several biologicals targeting IL-17, the IL-17 receptor, or IL-17-related pathways are being tested in clinical trials, and might ultimately lead to better treatment for patients suffering from various IL-17-mediated disorders. In this review, we provide a clear overview of current knowledge on Th17 cell regulation and the main Th17 effector cytokines in relation to IL-17-mediated conditions, as well as on recent IL-17-related drug developments. We demonstrate that targeting the Th17 pathway is a promising treatment for rheumatoid arthritis and various other autoimmune and inflammatory diseases. However, improvements in technical developments assisting in the identification of patients suffering from IL-17-driven disease are needed to enable the application of tailor-made, personalized medicine.
Collapse
|
100
|
Sglunda O, Mann HF, Hulejová H, Pecha O, Pleštilová L, RůŽičková O, Fojtíková M, Sléglová O, Forejtová S, Pavelka K, Vencovský J, Senolt L. Decrease in serum interleukin-21 levels is associated with disease activity improvement in patients with recent-onset rheumatoid arthritis. Physiol Res 2014; 63:475-81. [PMID: 24702489 DOI: 10.33549/physiolres.932701] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Interleukin-21 (IL-21) plays an important role in the pathogenesis of rheumatoid arthritis (RA). The aim of our study was to assess serum levels of IL-21 in patients with recent-onset RA in relation to disease activity and response to treatment. We analyzed serum levels of IL-21 in 51 RA patients, both before and 12 weeks after the initiation of treatment and in 36 healthy individuals. Disease activity was assessed at baseline and at weeks 12 and 24 using the Disease Activity Score for 28 joints, serum levels of C-reactive protein, and the total swollen joint count. We found that IL-21 levels were not increased in patients with recent-onset RA compared with healthy controls, but they had significantly decreased from baseline to week 12 during treatment. Baseline levels of IL-21 significantly correlated with measures of disease activity (p<0.02 for all). Although IL-21 levels did not predict achievement of remission, decrease in IL-21 levels correlated with improvement in disease activity after 12 weeks (p<0.02) and also after 24 weeks (p<0.04) of treatment. Our data suggest that circulating IL-21 levels may serve as a biomarker of disease activity and better outcome in early phase of RA.
Collapse
Affiliation(s)
- O Sglunda
- Institute of Rheumatology, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|