51
|
Bylund GO, Wipemo LC, Lundberg LA, Wikström PM. RimM and RbfA are essential for efficient processing of 16S rRNA in Escherichia coli. J Bacteriol 1998; 180:73-82. [PMID: 9422595 PMCID: PMC106851 DOI: 10.1128/jb.180.1.73-82.1998] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The trmD operon is located at 56.7 min on the genetic map of the Escherichia coli chromosome and contains the genes for ribosomal protein (r-protein) S16, a 21-kDa protein (RimM, formerly called 21K), the tRNA (m1G37)methyltransferase (TrmD), and r-protein L19, in that order. Previously, we have shown that strains from which the rimM gene has been deleted have a sevenfold-reduced growth rate and a reduced translational efficiency. The slow growth and translational deficiency were found to be partly suppressed by mutations in rpsM, which encodes r-protein S13. Further, the RimM protein was shown to have affinity for free ribosomal 30S subunits but not for 30S subunits in the 70S ribosomes. Here we have isolated several new suppressor mutations, most of which seem to be located close to or within the nusA operon at 68.9 min on the chromosome. For at least one of these mutations, increased expression of the ribosome binding factor RbfA is responsible for the suppression of the slow growth and translational deficiency of a deltarimM mutant. Further, the RimM and RbfA proteins were found to be essential for efficient processing of 16S rRNA.
Collapse
Affiliation(s)
- G O Bylund
- Department of Microbiology, Umeå University, Sweden
| | | | | | | |
Collapse
|
52
|
Mangiarotti G, Chiaberge S, Bulfone S. rRNA maturation as a "quality" control step in ribosomal subunit assembly in Dictyostelium discoideum. J Biol Chem 1997; 272:27818-22. [PMID: 9346927 DOI: 10.1074/jbc.272.44.27818] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In Dictyostelium discoideum, newly assembled ribosomal subunits enter polyribosomes while they still contain immature rRNA. rRNA maturation requires the engagement of the subunits in protein synthesis and leads to stabilization of their structure. Maturation of pre-17 S rRNA occurs only after the newly formed 40 S ribosomal particle has entered an 80 S ribosome and participated at least in the formation of one peptide bond or in one translocation event; maturation of pre-26 S rRNA requires the presence on the 80 S particle of a peptidyl-tRNA containing at least 6 amino acids. Newly assembled particles that cannot fulfill these requirements for structural reasons are disassembled into free immature rRNA and ribosomal proteins.
Collapse
Affiliation(s)
- G Mangiarotti
- Department of Clinical and Biological Sciences, Ospedale S. Luigi, Orbassano, Torino, Italy
| | | | | |
Collapse
|
53
|
Abstract
Escherichia coli ribonucleases (RNases) HII, III, II, PH and D have been used to characterise new and known viral, bacterial, archaeal and eucaryotic sequences similar to these endo- (HII and III) and exoribonucleases (II, PH and D). Statistical models, hidden Markov models (HMMs), were created for the RNase HII, III, II and PH and D families as well as a double-stranded RNA binding domain present in RNase III. Results suggest that the RNase D family, which includes Werner syndrome protein and the 100 kDa antigenic component of the human polymyositis scleroderma (PMSCL) autoantigen, is a 3'-->5' exoribonuclease structurally and functionally related to the 3'-->5' exodeoxyribonuclease domain of DNA polymerases. Polynucleotide phosphorylases and the RNase PH family, which includes the 75 kDa PMSCL autoantigen, possess a common domain suggesting similar structures and mechanisms of action for these 3'-->5' phosphorolytic enzymes. Examination of HMM-generated multiple sequences alignments for each family suggest amino acids that may be important for their structure, substrate binding and/or catalysis.
Collapse
Affiliation(s)
- I S Mian
- Sinsheimer Laboratories, University of California Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
54
|
Armbruster DW, Daniels CJ. Splicing of intron-containing tRNATrp by the archaeon Haloferax volcanii occurs independent of mature tRNA structure. J Biol Chem 1997; 272:19758-62. [PMID: 9242634 DOI: 10.1074/jbc.272.32.19758] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have investigated the requirements for mature tRNA structure in the in vivo splicing of the Haloferax volcanii, intron-containing tRNATrp RNA. A partial tRNATrp gene, which contained only the anticodon stem-loop region of the mature tRNA, was fused to a carrier yeast tRNA gene for expression in H. volcanii. Transcripts from this hybrid gene were found to be processed by endonuclease and ligase at the tRNATrp exon-intron boundaries. These results verify that the substrate recognition properties of the halobacterial endonuclease observed in vitro reflect the properties of this enzyme in vivo, namely that mature tRNA structure is not essential for recognition by the endonuclease. The independence of these reactions on mature tRNA provides further support for a relationship between archaeal tRNA and rRNA intron-processing systems and highlight a difference in the substrate recognition properties between the archaeal and eucaryal processing systems. The significance of these differences is discussed in light of the observation that the tRNA endonucleases of these organisms are related.
Collapse
Affiliation(s)
- D W Armbruster
- Department of Microbiology, Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
55
|
Naïmi A, Beck G, Branlant C. Primary and secondary structures of rRNA spacer regions in enterococci. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 3):823-834. [PMID: 9084166 DOI: 10.1099/00221287-143-3-823] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The 16S-23S and 23S-5S rRNA spacer DNA regions (spacer regions 1 and 2, respectively) from Enterococcus faecalis, Enterococcus faecium, Enterococcus hirae, Enterococcus durans and Enterococcus mundtii were amplified by PCR. Their nucleotide sequences were established and a secondary structure model showing the interaction between the two spacer regions was built. Whereas lactococci and Streptococcus sensu stricto are characterized by a single type of spacer region 1, the enterococci show a high degree of variability in this region; thus the spacer regions 1 with and without tRNA(Ala) were characterized. However, as shown for lactococci and Streptococcus sensu stricto, the tRNA(Ala) gene does not encode the 3'-terminal CCA trinucleotide. A putative antitermination signal is found downstream from the tRNA(Ala) gene. Based on comparison with Lactococcus lactis and Streptococcus thermophilus, a double-stranded processing stem is proposed. In E, hirae, one of the three different types of spacer region 1 contains no tRNA(Ala), but displays a 107 nt insertion that forms a long stem-loop structure. A similar insertion (115 nt in length) was found in E. faecium and base compensatory mutations preserve the ability to form the long stem-loop structure. Such insertions may correspond to mobile intervening sequences, as found in the 23S rRNA coding sequences of some Gram-negative bacteria. The spacer regions 1 and 2 from the three subgroups of streptococci were compared, and except for the tRNA(Ala) gene and the double-stranded processing sites, little similarity was found, which opens large possibilities for future development of DNA-based typing methods.
Collapse
Affiliation(s)
- Afaf Naïmi
- Laboratoire d'Enzymologie et de Génie Génétiqe, URA CNRS 457, Université; de Nancy I, Bld des Aiguillettes, BP 239-54506 Vandoeuvre-Lés-Nancy Cedex, France
| | - Geneviéve Beck
- Laboratoire d'Enzymologie et de Génie Génétiqe, URA CNRS 457, Université; de Nancy I, Bld des Aiguillettes, BP 239-54506 Vandoeuvre-Lés-Nancy Cedex, France
| | - Christiane Branlant
- Laboratoire d'Enzymologie et de Génie Génétiqe, URA CNRS 457, Université; de Nancy I, Bld des Aiguillettes, BP 239-54506 Vandoeuvre-Lés-Nancy Cedex, France
| |
Collapse
|
56
|
Singh IR, Crowley RA, Brown PO. High-resolution functional mapping of a cloned gene by genetic footprinting. Proc Natl Acad Sci U S A 1997; 94:1304-9. [PMID: 9037048 PMCID: PMC19786 DOI: 10.1073/pnas.94.4.1304] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We describe an efficient method for introducing and analyzing a comprehensive set of mutations in a cloned gene to map its functional organization. The technique, genetic footprinting, uses a retroviral integrase to generate a comprehensive library of mutants, each of which bears a single insertion of a defined oligonucleotide at a random position in the gene of interest. This mutant library is selected for gene function en masse. DNA samples are isolated from the library both before and after selection, and the mutations represented in each sample are then analyzed. The analysis is designed so that a mutation at a particular location gives rise to an electrophoretic band of discrete mobility. For the whole library, this results in a ladder of bands, each band representing a specific mutation. Mutants in which the inserted sequence disrupts a feature that is required for the selected function, ipso facto, fail the selection. The corresponding bands are therefore absent from the ladder of bands obtained from the library after selection, giving rise to a footprint representing features of the gene that are essential for the selected function. Because the sequence of the inserted oligonucleotide is known, and its position can be inferred precisely from the electrophoretic mobility of the corresponding band, the precise location and sequence of mutations that disrupt gene function can be determined without isolating or sequencing individual mutants. This method should be generally applicable for saturation mutagenesis and high-resolution functional mapping of cloned DNA sequences.
Collapse
Affiliation(s)
- I R Singh
- Department of Biochemistry, Stanford University Medical Center, CA 94305-5428, USA
| | | | | |
Collapse
|
57
|
Lee B, Matera AG, Ward DC, Craft J. Association of RNase mitochondrial RNA processing enzyme with ribonuclease P in higher ordered structures in the nucleolus: a possible coordinate role in ribosome biogenesis. Proc Natl Acad Sci U S A 1996; 93:11471-6. [PMID: 8876159 PMCID: PMC38081 DOI: 10.1073/pnas.93.21.11471] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
RNase mitochondrial RNA processing enzyme (MRP) is a nucleolar ribonucleoprotein particle that participates in 5.8S ribosomal RNA maturation in eukaryotes. This enzyme shares a polypeptide and an RNA structural motif with ribonuclease P (RNase P), a nuclear endoribonuclease originally described in the nucleus that processes RNA transcripts to generate their mature 5' termini. Both enzymes are also located in mitochondria. This report further characterizes the relationship between RNase MRP and RNase P. Antisense affinity selection with biotinylated 2'-O-methyl oligoribonucleotides and glycerol gradient fractionation experiments demonstrated that small subpopulations of RNase MRP and RNase P associate with each other in vivo in macromolecular complex, possibly 60-80S preribosomes. This latter notion was supported by fluorescence in situ hybridization experiments with antisense oligonucleotides that localized that RNA components of RNase MRP and RNase P to the nucleolus and to discrete cytoplasmic structures. These findings suggest that small subpopulations of RNase MRP and RNase P are physically associated, and that both may function in ribosomal RNA maturation or ribosome assembly.
Collapse
Affiliation(s)
- B Lee
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8031, USA
| | | | | | | |
Collapse
|
58
|
Sievers M, Alonso L, Gianotti S, Boesch C, Teuber M. 16S-23S ribosomal RNA spacer regions of Acetobacter europaeus and A. xylinum, tRNA genes and antitermination sequences. FEMS Microbiol Lett 1996; 142:43-8. [PMID: 8759788 DOI: 10.1111/j.1574-6968.1996.tb08405.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The 16S-23S ribosomal RNA spacer regions of Acetobacter europaeus DSM 6160, A. xylinum NCIB 11664 and A. xylinum CL27 were amplified by PCR. Specific PCR products were obtained from each strain and their nucleotide sequences determined. The spacer region of A. europaeus comprises 768 nucleotides (nt), that of A. xylinum 778 nt and that of A. xylinum CL27 759 nt. Genes encoding tRNAIle and tRNAAla were identified. Putative antitermination sequences were found between the tRNAAla sequence and the 5'-terminus of the 23S rRNA coding sequence. The boxA element has the nucleotide sequence TGCTCTTTGATA. Based on hybridization data of digested chromosomal DNA with spacer-specific probes, the copy number of the rrn operons on the chromosome of Acetobacter strains is estimated to be four.
Collapse
MESH Headings
- Base Sequence
- DNA Primers/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Gene Amplification
- Genes, Bacterial
- Gluconacetobacter xylinus/genetics
- Molecular Sequence Data
- Nucleic Acid Conformation
- Polymerase Chain Reaction
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/genetics
- Sequence Homology, Nucleic Acid
- Terminator Regions, Genetic
Collapse
Affiliation(s)
- M Sievers
- Food Microbiology, ETH-Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
59
|
Abstract
A yeast gene homologous to bacterial RNase III (RNT1) encodes a double-strand-specific endoribonuclease essential for ribosome synthesis. Two rRNA processing events are blocked in cells temperature sensitive for RNT1: cleavage at the snoRNA-dependent AO site in the 5' ETS and cleavage in the 3' ETS. Recombinant RNT1 protein accurately cleaves a synthetic 5' ETS RNA at AO site in vitro, in the absence of snoRNA or other factors. A synthetic 3' ETS substrate is specifically cleaved at a site 21 nt downstream of the 3' end 28S rRNA. These observations show that a protein endonuclease collaborates with snoRNAs in eukaryotic rRNA processing and exclude a catalytic role for snoRNAs at certain pre-rRNA cleavage.
Collapse
Affiliation(s)
- S A Elela
- Biology Department, University of California, Santa Cruz 95064 ,USA
| | | | | |
Collapse
|
60
|
Rauhut R, Jäger A, Conrad C, Klug G. Identification and analysis of the rnc gene for RNase III in Rhodobacter capsulatus. Nucleic Acids Res 1996; 24:1246-51. [PMID: 8614626 PMCID: PMC145773 DOI: 10.1093/nar/24.7.1246] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The large subunit ribosomal RNA of the purple bacterium Rhodobacter capsulatus shows fragmentation into pieces of 14 and 16S, both fragments forming the functional equivalent of intact 23S rRNA. An RNA-processing step removes an extra stem-loop structure from the 23S rRNA [Kordes, E., Jock, S., Fritsch, J., Bosch, F. and Klug, G. (1994) J. Bacteriol., 176, 1121-1127]. Taking advantage of the fragmentation deficient mutant strain Fm65, we used genetic complementation to find the mutated gene responsible for this aberration. It was identified as the Rhodobacter homologue to mc from Escherichia coli encoding endoribonuclease III (RNase III). The predicted protein has 226 amino acids with a molecular weight of 25.5 kDa. It shares high homology with other known RNase III enzymes over the full length. In particular it shows the double-stranded RNA-binding domain (dsRBD) motif essential for binding of dsRNA substrates. The Fm65 mutant has a frame shift mutation resulting in complete loss of the dsRBD rendering the enzyme inactive. The cloned Rhodobacter enzyme can substitute RNase III activity in an RNase III deficient E. coli strain. Contrary to E. coli, the Rhodobacter mc is in one operon together with the lep gene encoding the leader peptidase.
Collapse
Affiliation(s)
- R Rauhut
- Institut für Mikrobiologie und Molekularbiologie der Justus Liebig Universität Giessen, Germany
| | | | | | | |
Collapse
|
61
|
Abstract
Mini-genes for 5S-like rRNA were constructed. These genes had a sequence which largely resembles that of the naturally occurring 5S rRNA of a bacterium, Halococcus morrhuae, which phylogenetically belongs to the Archaea. Plasmids carrying the mini-genes were transformed into Escherichia coli (Ec). Ribosomal incorporation was not a prerequisite for stable accumulation of the RNA product. However, only those constructs with a well-base-paired helix I accumulated RNA product. This result strongly implies that this aspect of the structure is likely to be an important condition for stabilizing 5S rRNA-like products. The results are consistent with our current understanding of 5S rRNA processing in Ec. When used in conjunction with rRNA probe technology, the resulting chimeric RNA may be useful as a monitoring tool for genetically engineered microorganisms or naturally occurring organisms that are released into the environment.
Collapse
MESH Headings
- Base Sequence
- Blotting, Northern
- DNA Probes/chemistry
- Electrophoresis, Polyacrylamide Gel
- Environmental Monitoring/methods
- Escherichia coli/genetics
- Gene Expression Regulation, Bacterial/genetics
- Genetic Engineering
- Genetic Vectors/genetics
- Halobacteriaceae/chemistry
- Halobacteriaceae/genetics
- Molecular Sequence Data
- Mutagenesis, Site-Directed/genetics
- Nucleic Acid Conformation
- Phylogeny
- RNA Probes/genetics
- RNA, Bacterial/biosynthesis
- RNA, Bacterial/genetics
- RNA, Ribosomal, 5S/biosynthesis
- RNA, Ribosomal, 5S/genetics
- Ribosomes/metabolism
- Transformation, Genetic/genetics
Collapse
Affiliation(s)
- Y Yang
- Department of Biomedical and Biophysical Sciences, University of Houston, TX 77204-5934, USA
| | | |
Collapse
|
62
|
Hübschmann T, Hess WR, Börner T. Impaired splicing of the rps12 transcript in ribosome-deficient plastids. PLANT MOLECULAR BIOLOGY 1996; 30:109-123. [PMID: 8616228 DOI: 10.1007/bf00017806] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Analysis of RNA maturation in ribosome-deficient plastids of four non-allelic barley mutants revealed an increased accumulation and altered processing of transcripts of the ribosomal protein gene CS12 (rps12) compared to normal chloroplasts. The three exons of rps12 are part of two different polycistronic transcription units. Generation of mature rps12-mRNA involves both cis- and trans-splicing. In ribosome-deficient plastids, the cis-intron separating exons 2 and 3 remains entirely unspliced whereas the splicing of the bipartite rps12 trans-intron between exon 1 and exon 2 occurs, but at a reduced level. A comparison of the 3' and 5' ends of the two RNAs that are generally assumed to interact during trans-splicing showed a difference in the processing pathways of 3' rps12 transcripts between mutated and normal chloroplasts. Nonetheless, the final products were identical.
Collapse
Affiliation(s)
- T Hübschmann
- Department of Biology, Humboldt-University Berlin, Germany
| | | | | |
Collapse
|
63
|
Nierlich DP, Murakawa GJ. The decay of bacterial messenger RNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 52:153-216. [PMID: 8821261 DOI: 10.1016/s0079-6603(08)60967-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- D P Nierlich
- Department of Microbiology and Molecular Genetics, University of California, Los Angeles 90024, USA
| | | |
Collapse
|
64
|
Abstract
RNase P, the enzyme response for 5'-end processing of tRNAs and 4.5S RNA, has been extensively characterized from E. coli. The RNA component of E. coli RNase P, without the protein, has the enzymatic activity and is the first true RNA enzyme to be characterized. RNase P and MRP are two distinct nuclear ribonucleoprotein (RNP) particles characterized in many eukaryotic cells including human, yeast and plant cells. There are many similarities between RNase P and MRP. These include: (1) sequence specific endonuclease activity; (2) homology at the primary and secondary structure levels; and (3) common proteins in both the RNPs. It is likely that RNase P and MRP originated from a common ancestor.
Collapse
Affiliation(s)
- R Reddy
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
65
|
Reilly TH, Schmitt ME. The yeast, Saccharomyces cerevisiae, RNase P/MRP ribonucleoprotein endoribonuclease family. Mol Biol Rep 1996; 22:87-93. [PMID: 8901493 DOI: 10.1007/bf00988711] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein responsible for the endonucleolytic cleavage of the 5'-termini of tRNAs. Ribonuclease MRP (RNase MRP) is a ribonucleoprotein that has the ability to cleave both mitochondrial RNA primers presumed to be involved in mitochondrial DNA replication and rRNA precursors for the production of mature rRNAs. Several lines of evidence suggest that these two ribonucleoproteins are related to each other, both functionally and evolutionarily. Both of these enzymes have activity in the nucleus and mitochondria. Each cleave their RNA substrates in a divalent cation dependent manner to generate 5'-phosphate and 3'-OH termini. In addition, the RNA subunits of both complexes can be folded into a similar secondary structure. Each can be immunoprecipitated from mammalian cells with Th antibodies. In yeast, both have been found to share at least one common protein. This review will discuss some of the recent advances in our understanding of the structure, function and evolutionary relationship of these two enzymes in the yeast, Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- T H Reilly
- Department of Biochemistry and Molecular Biology, SUNY Health Science Center at Syracuse, NY 13210, USA
| | | |
Collapse
|
66
|
Abstract
Post-transcriptional processing of precursor-ribosomal RNA comprises a complex pathway of endonucleolytic cleavages, exonucleolytic digestion and covalent modifications. The general order of the various processing steps is well conserved in eukaryotic cells, but the underlying mechanisms are largely unknown. Recent analysis of pre-rRNA processing, mainly in the yeast Saccharomyces cerevisiae, has significantly improved our understanding of this important cellular activity. Here we will review the data that have led to our current picture of yeast pre-rRNA processing.
Collapse
Affiliation(s)
- J Venema
- European Molecular Biology Laboratory (EMBL), Gene Expression Programme, Heidelberg, Germany
| | | |
Collapse
|
67
|
Abstract
The control of rRNA synthesis in response to both extra- and intracellular signals has been a subject of interest to microbial physiologists for nearly four decades, beginning with the observations that Salmonella typhimurium cells grown on rich medium are larger and contain more RNA than those grown on poor medium. This was followed shortly by the discovery of the stringent response in Escherichia coli, which has continued to be the organism of choice for the study of rRNA synthesis. In this review, we summarize four general areas of E. coli rRNA transcription control: stringent control, growth rate regulation, upstream activation, and anti-termination. We also cite similar mechanisms in other bacteria and eukaryotes. The separation of growth rate-dependent control of rRNA synthesis from stringent control continues to be a subject of controversy. One model holds that the nucleotide ppGpp is the key effector for both mechanisms, while another school holds that it is unlikely that ppGpp or any other single effector is solely responsible for growth rate-dependent control. Recent studies on activation of rRNA synthesis by cis-acting upstream sequences has led to the discovery of a new class of promoters that make contact with RNA polymerase at a third position, called the UP element, in addition to the well-known -10 and -35 regions. Lastly, clues as to the role of antitermination in rRNA operons have begun to appear. Transcription complexes modified at the antiterminator site appear to elongate faster and are resistant to the inhibitory effects of ppGpp during the stringent response.
Collapse
Affiliation(s)
- C Condon
- Department of Molecular Biology and Microbiology, Tufts University Health Sciences Campus, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
68
|
Taraseviciene L, Björk GR, Uhlin BE. Evidence for an RNA binding region in the Escherichia coli processing endoribonuclease RNase E. J Biol Chem 1995; 270:26391-8. [PMID: 7592853 DOI: 10.1074/jbc.270.44.26391] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The processing endoribonuclease RNase E (Rne), which is encoded by the rne gene, is involved in the maturation process of messenger RNAs and a ribosomal RNA. A number of deletions were constructed in order to assess functional domains of the rne gene product. The expression of the deletion constructs using a T7 promoter/RNA polymerase overproduction system led to the synthesis of truncated Rne polypeptides. The smallest gene fragment in this collection that was able to complement a temperature sensitive rnets mutation and to restore the processing of 9 S RNA was a 2.3-kilobase pair fragment with a 1.9-kilobase pair N-terminal coding sequence that mediated synthesis of a 70.8-kDa polypeptide. Antibodies raised against a truncated 110-kDa polypeptide cross-reacted with the intact rne gene product and with all of the shorter C-terminal truncated polypeptides, indicating that the N-terminal part of the molecule contained strong antigenic determinants. Furthermore, by analyzing the Rne protein and the truncated polypeptides for their ability to bind substrate RNAs, we were able to demonstrate that the central part of the Rne molecule encodes an RNA binding region. Binding to substrate RNAs correlated with the endonucleolytic activity. RNAs that are not substrates for RNase E did not bind to the protein. The two mutated Rne polypeptides expressed from the cloned gene containing either the rne-3071 or ams1 mutation also had the ability to bind 9 S RNA, while their enzymatic function was completely abolished. The data presented here suggest that the endonucleolytic activity is encoded by the N-terminal part of the Rne protein molecule and that the central part of it possesses RNA binding activity.
Collapse
|
69
|
Nour M, Naimi A, Beck G, Branlant C. 16S-23S and 23S-5S intergenic spacer regions of Streptococcus thermophilus and Streptococcus salivarius, primary and secondary structure. Curr Microbiol 1995; 31:270-8. [PMID: 7580797 DOI: 10.1007/bf00314579] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The 16S-23S intergenic spacer region (spacer region 1) of Streptococcus salivarius, S. thermophilus, and Lactococcus lactis subsp. cremoris and the 23S-5S intergenic spacer region (spacer region 2) of S. salivarius and L. lactis subsp. cremoris were sequenced and compared with the spacer regions 1 and 2 of other streptococci. A high degree of intraspecific conservation was observed for S. thermophilus and L. lactis, and very similar sequences were found for S. salivarius and S. thermophilus. Whereas spacer region 1 is highly conserved in the genus Streptococcus sensu-stricto, only the tRNA gene and the rRNA processing stems are highly conserved in the three genera: Streptococcus sensu-stricto, Lactococcus, and Enterococcus. The presence of a unique tRNA(Ala) gene without the 3' terminal CCA sequence seems to be a general feature of the streptococci spacer region 1. A secondary structure model was built to show the interaction between the spacer regions 1 and 2 of S. thermophilus and S. salivarius. The rapid evolution of spacer region 1 in streptococci is in part due to insertions and deletions of small RNA stem/loop structures.
Collapse
MESH Headings
- Base Sequence
- Conserved Sequence
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Lactococcus lactis/chemistry
- Lactococcus lactis/genetics
- Molecular Sequence Data
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Transfer, Ala/genetics
- Sequence Homology, Nucleic Acid
- Streptococcus/chemistry
- Streptococcus/genetics
Collapse
Affiliation(s)
- M Nour
- Laboratoire d'Enzymologie et de Génie Génétique, Université de Nancy I, URA CNRS 457, Vandoeuvre-Les-Nancy, France
| | | | | | | |
Collapse
|
70
|
Hong L, Stevenson JK, Roth WB, Hallick RB. Euglena gracilis chloroplast psbB, psbT, psbH and psbN gene cluster: regulation of psbB-psbT pre-mRNA processing. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:180-8. [PMID: 7753027 DOI: 10.1007/bf00705648] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A 2.4 kb region of the Euglena gracilis chloroplast genome containing the genes psbT, psbH and psbN was characterized. The mRNAs transcribed from psbB, psbT, psbH and psbN were analyzed by northern hybridization, S1 nuclease protection analysis and primer extension RNA sequencing. The gene pairs psbB-psbT and psbH-psbN are cotranscribed from opposite strands. The 5' end of the psbN-psbH transcript and the intercistronic cleavage sites between psbB-psbT and psbN-psbH were determined. The extent of psbB-psbT intercistronic cleavage is greater during photoautotrophic than heterotrophic growth and thus may be developmentally regulated. Processing is absent in the non-photosynthetic E. gracilis mutant Y9Z1NaL.
Collapse
Affiliation(s)
- L Hong
- Department of Biochemistry, University of Arizona, Tucson 85721, USA
| | | | | | | |
Collapse
|
71
|
KARCHER SUSANJ. RNA PURIFICATION AND NORTHERN BLOT ANALYSIS. Mol Biol 1995. [DOI: 10.1016/b978-012397720-5.50039-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
72
|
Immunoaffinity purification of the Escherichia coli rne gene product. Evidence that the rne gene encodes the processing endoribonuclease RNase E. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32696-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
73
|
Tsui HC, Winkler ME. Transcriptional patterns of the mutL-miaA superoperon of Escherichia coli K-12 suggest a model for posttranscriptional regulation. Biochimie 1994; 76:1168-77. [PMID: 7748952 DOI: 10.1016/0300-9084(94)90046-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The complex amiB-mutL-miaA-hfq-hflX-hflK-hflC superoperon of E coli contains important genes for several fundamental cellular processes, including cell-wall hydrolysis (amiB), DNA repair (mutL), tRNA modification (miaA) and proteolysis (hflX-hflK-hflC). We report here the transcriptional pattern and possible posttranscriptional regulation of mutL, miaA and hfq genes of this superoperon. RNase protection analysis of mRNA transcribed from the bacterial chromosome demonstrated that there is co-transcription of mutL and miaA. In addition, two internal promoters, PmiaA and P1hfq were identified and mapped to 201 and 837 nucleotides upstream from the respective translation start sites. PmiaA contains poor matches to the -10 and -35 regions of the sigma-70 RNA polymerase consensus sequences, but it contains multiple potential Fis-binding sites and an upstream AT-rich region with poly(A) sequences. The basic arrangement of Fis-binding sites followed by an AT rich region is shared with promoters for rRNA operons and some of the tRNA and tRNA modification genes. As part of an initial study of mutL and miaA regulation, we measured transcript amounts in isogenic rne, rnc and rne rnc double mutants which are deficient in RNase E, RNase III or both. The amounts of steady state level mutL-miaA cotranscript, PmiaA transcript and P1hfq transcript increased eight-, nine- and three-fold respectively in an rne3071 mutant when compared to the rne+ parent. In contrast, amounts of the three transcripts were the same in an rnc105 mutant and its rnc+ parent. These results indicate that mutL, miaA, and hfq expression could be regulated by multiple mechanisms, including degree of cotranscription from upstream genes, modulation of internal promoter strength, and by RNase E activity. A model is presented for RNase E-mediated posttranscriptional regulation that may coordinate mutL expression with replication and miaA with tRNA amounts under different growth conditions, especially during nutrient upshifts.
Collapse
Affiliation(s)
- H C Tsui
- Department of Microbiology and Molecular Genetics, University of Texas-Houston Medical School, 77030, USA
| | | |
Collapse
|
74
|
Munson MA, Baumann L, Baumann P. Buchnera aphidicola (a prokaryotic endosymbiont of aphids) contains a putative 16S rRNA operon unlinked to the 23S rRNA-encoding gene: sequence determination, and promoter and terminator analysis. Gene 1993; 137:171-8. [PMID: 7507875 DOI: 10.1016/0378-1119(93)90003-l] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The aphid Schizaphis graminum is dependent on an association with Buchnera aphidicola, an eubacterial endosymbiont located in specialized host cells. Past studies have indicated that Escherichia coli is the closest known relative of the endosymbiont which has many genetic attributes of free-living bacteria. In order to obtain information on the properties of highly expressed genes, we have chosen for study the single-copy rrs (gene encoding 16S rRNA) of B. aphidicola. A 4.4-kb DNA fragment was cloned into E. coli and the nucleotide (nt) sequence determined. Several ORFs were identified; the order of genes was argS-rrs-ORF1-rnh-dnaQ. ArgS, RNase H and DnaQ had 36-57% amino acid (aa) identity to the homologous proteins of E. coli. B. aphidicola rrs appears to be part of an operon consisting of a putative promoter, rrs and two inverted repeats resembling Rho-independent terminators. Comparisons of the sequences of argS-rrn DNA fragments from endosymbionts of six additional aphid species indicated conservation of sequences corresponding to a single -35 (TTGACA) and -10 (TGTAAT) promoter region, as well as boxA (sequence involved in antitermination) and boxC. The B. aphidicola argS-rrn DNA fragments from endosymbionts from seven species of aphids had promoter activities in E. coli which ranged from 6 to 135% of that observed with a comparable DNA fragment of E. coli rrnB. Similarly, the putative B. aphidicola terminator was functional in E. coli. In most eubacteria, the rRNA-encoding genes are arranged in the order, 16S, 23S, 5S, and are part of a single operon.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M A Munson
- Microbiology Section, University of California, Davis 95616-8665
| | | | | |
Collapse
|