51
|
Tiwari V. In vitro Engineering of Novel Bioactivity in the Natural Enzymes. Front Chem 2016; 4:39. [PMID: 27774447 PMCID: PMC5054688 DOI: 10.3389/fchem.2016.00039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/21/2016] [Indexed: 11/23/2022] Open
Abstract
Enzymes catalyze various biochemical functions with high efficiency and specificity. In vitro design of the enzyme leads to novel bioactivity in this natural biomolecule that give answers of some vital questions like crucial residues in binding with substrate, molecular evolution, cofactor specificity etc. Enzyme engineering technology involves directed evolution, rational designing, semi-rational designing, and structure-based designing using chemical modifications. Similarly, combined computational and in vitro evolution approaches together help in artificial designing of novel bioactivity in the natural enzyme. DNA shuffling, error prone PCR and staggered extension process are used to artificially redesign active site of enzyme, which can alter its efficiency and specificity. Modifications of the enzyme can lead to the discovery of new path of molecular evolution, designing of efficient enzymes, locating active sites and crucial residues, shift in substrate, and cofactor specificity. The methods and thermodynamics of in vitro designing of the enzyme are also discussed. Similarly, engineered thermophilic and psychrophilic enzymes attain substrate specificity and activity of mesophilic enzymes that may also be beneficial for industry and therapeutics.
Collapse
Affiliation(s)
- Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan Ajmer, India
| |
Collapse
|
52
|
Solanki K, Abdallah W, Banta S. Extreme makeover: Engineering the activity of a thermostable alcohol dehydrogenase (AdhD) from Pyrococcus furiosus. Biotechnol J 2016; 11:1483-1497. [PMID: 27593979 DOI: 10.1002/biot.201600152] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/16/2016] [Accepted: 07/26/2016] [Indexed: 12/17/2022]
Abstract
Alcohol dehydrogenase D (AdhD) is a monomeric thermostable alcohol dehydrogenase from the aldo-keto reductase (AKR) superfamily of proteins. We have been exploring various strategies of engineering the activity of AdhD so that it could be employed in future biotechnology applications. Driven by insights made in other AKRs, we have made mutations in the cofactor-binding pocket of the enzyme and broadened its cofactor specificity. A pre-steady state kinetic analysis yielded new insights into the conformational behavior of this enzyme. The most active mutant enzyme concomitantly gained activity with a non-native cofactor, nicotinamide mononucleotide, NMN(H), and an enzymatic biofuel cell was demonstrated with this enzyme/cofactor pair. Substrate specificity was altered by grafting loop regions near the active site pocket from a mesostable human aldose reductase (hAR) onto the thermostable AdhD. These moves not only transferred the substrate specificity of hAR but also the cofactor specificity of hAR. We have added alpha-helical appendages to AdhD to enable it to self-assemble into a thermostable catalytic proteinaceous hydrogel. As our understanding of the structure/function relationship in AdhD and other AKRs advances, this ubiquitous protein scaffold could be engineered for a variety of catalytic activities that will be useful for many future applications.
Collapse
Affiliation(s)
- Kusum Solanki
- Department of Chemical Engineering, Columbia University in the City of New York, New York, NY, USA
| | - Walaa Abdallah
- Department of Chemical Engineering, Columbia University in the City of New York, New York, NY, USA
| | - Scott Banta
- Department of Chemical Engineering, Columbia University in the City of New York, New York, NY, USA
| |
Collapse
|
53
|
Hydrolysis and oxidation of racemic esters into prochiral ketones catalyzed by a consortium of immobilized enzymes. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
54
|
Fernandes P. Enzymes in Fish and Seafood Processing. Front Bioeng Biotechnol 2016; 4:59. [PMID: 27458583 PMCID: PMC4935696 DOI: 10.3389/fbioe.2016.00059] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/24/2016] [Indexed: 11/15/2022] Open
Abstract
Enzymes have been used for the production and processing of fish and seafood for several centuries in an empirical manner. In recent decades, a growing trend toward a rational and controlled application of enzymes for such goals has emerged. Underlying such pattern are, among others, the increasingly wider array of enzyme activities and enzyme sources, improved enzyme formulations, and enhanced requirements for cost-effective and environmentally friendly processes. The better use of enzyme action in fish- and seafood-related application has had a significant impact on fish-related industry. Thus, new products have surfaced, product quality has improved, more sustainable processes have been developed, and innovative and reliable analytical techniques have been implemented. Recent development in these fields are presented and discussed, and prospective developments are suggested.
Collapse
Affiliation(s)
- Pedro Fernandes
- Department of Bioengineering, Institute for Biotechnology and Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Faculdade de Engenharia, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
| |
Collapse
|
55
|
Yuan M, Yang X, Li Y, Liu H, Pu J, Zhan CG, Liao F. Facile Alkaline Lysis of Escherichia coli Cells in High-Throughput Mode for Screening Enzyme Mutants: Arylsulfatase as an Example. Appl Biochem Biotechnol 2016; 179:545-57. [DOI: 10.1007/s12010-016-2012-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/08/2016] [Indexed: 12/14/2022]
|
56
|
Zhang L, Gao B, Wang X, Zhang Z, Liu X, Wang J, Mo T, Liu Y, Shi S, Tu P. Identification of a new curcumin synthase from ginger and construction of a curcuminoid-producing unnatural fusion protein diketide-CoA synthase::curcumin synthase. RSC Adv 2016. [DOI: 10.1039/c5ra23401h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The new curcumin synthase and the unnatural fusion protein reported here are useful for metabolic engineering of pharmaceutically important curcuminoids.
Collapse
|
57
|
Cahn JKB, Baumschlager A, Brinkmann-Chen S, Arnold FH. Mutations in adenine-binding pockets enhance catalytic properties of NAD(P)H-dependent enzymes. Protein Eng Des Sel 2016; 29:31-8. [PMID: 26512129 PMCID: PMC4678007 DOI: 10.1093/protein/gzv057] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 11/14/2022] Open
Abstract
NAD(P)H-dependent enzymes are ubiquitous in metabolism and cellular processes and are also of great interest for pharmaceutical and industrial applications. Here, we present a structure-guided enzyme engineering strategy for improving catalytic properties of NAD(P)H-dependent enzymes toward native or native-like reactions using mutations to the enzyme's adenine-binding pocket, distal to the site of catalysis. Screening single-site saturation mutagenesis libraries identified mutations that increased catalytic efficiency up to 10-fold in 7 out of 10 enzymes. The enzymes improved in this study represent three different cofactor-binding folds (Rossmann, DHQS-like, and FAD/NAD binding) and utilize both NADH and NADPH. Structural and biochemical analyses show that the improved activities are accompanied by minimal changes in other properties (cooperativity, thermostability, pH optimum, uncoupling), and initial tests on two enzymes (ScADH6 and EcFucO) show improved functionality in Escherichia coli.
Collapse
Affiliation(s)
- J K B Cahn
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd, MC 210-41, Pasadena, CA 91125, USA
| | - A Baumschlager
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd, MC 210-41, Pasadena, CA 91125, USA
| | - S Brinkmann-Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd, MC 210-41, Pasadena, CA 91125, USA
| | - F H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd, MC 210-41, Pasadena, CA 91125, USA
| |
Collapse
|
58
|
Luo H, Ma J, Chang Y, Yu H, Shen Z. Directed Evolution and Mutant Characterization of Nitrilase from Rhodococcus rhodochrous tg1-A6. Appl Biochem Biotechnol 2015; 178:1510-21. [DOI: 10.1007/s12010-015-1964-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/21/2015] [Indexed: 11/30/2022]
|
59
|
Pottel J, Moitessier N. Single-Point Mutation with a Rotamer Library Toolkit: Toward Protein Engineering. J Chem Inf Model 2015; 55:2657-71. [PMID: 26623941 DOI: 10.1021/acs.jcim.5b00525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Protein engineers have long been hard at work to harness biocatalysts as a natural source of regio-, stereo-, and chemoselectivity in order to carry out chemistry (reactions and/or substrates) not previously achieved with these enzymes. The extreme labor demands and exponential number of mutation combinations have induced computational advances in this domain. The first step in our virtual approach is to predict the correct conformations upon mutation of residues (i.e., rebuilding side chains). For this purpose, we opted for a combination of molecular mechanics and statistical data. In this work, we have developed automated computational tools to extract protein structural information and created conformational libraries for each amino acid dependent on a variable number of parameters (e.g., resolution, flexibility, secondary structure). We have also developed the necessary tool to apply the mutation and optimize the conformation accordingly. For side-chain conformation prediction, we obtained overall average root-mean-square deviations (RMSDs) of 0.91 and 1.01 Å for the 18 flexible natural amino acids within two distinct sets of over 3000 and 1500 side-chain residues, respectively. The commonly used dihedral angle differences were also evaluated and performed worse than the state of the art. These two metrics are also compared. Furthermore, we generated a family-specific library for kinases that produced an average 2% lower RMSD upon side-chain reconstruction and a residue-specific library that yielded a 17% improvement. Ultimately, since our protein engineering outlook involves using our docking software, Fitted/Impacts, we applied our mutation protocol to a benchmarked data set for self- and cross-docking. Our side-chain reconstruction does not hinder our docking software, demonstrating differences in pose prediction accuracy of approximately 2% (RMSD cutoff metric) for a set of over 200 protein/ligand structures. Similarly, when docking to a set of over 100 kinases, side-chain reconstruction (using both general and biased conformation libraries) had minimal detriment to the docking accuracy.
Collapse
Affiliation(s)
- Joshua Pottel
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, QC, Canada H3A 0B8
| | - Nicolas Moitessier
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, QC, Canada H3A 0B8
| |
Collapse
|
60
|
Milton RD, Wu F, Lim K, Abdellaoui S, Hickey DP, Minteer SD. Promiscuous Glucose Oxidase: Electrical Energy Conversion of Multiple Polysaccharides Spanning Starch and Dairy Milk. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01777] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ross D. Milton
- Departments of Chemistry
and Materials Science and Engineering, University of Utah, 315 S 1400 E
Room 2020, Salt Lake City, Utah 84112, United States
| | - Fei Wu
- Departments of Chemistry
and Materials Science and Engineering, University of Utah, 315 S 1400 E
Room 2020, Salt Lake City, Utah 84112, United States
| | - Koun Lim
- Departments of Chemistry
and Materials Science and Engineering, University of Utah, 315 S 1400 E
Room 2020, Salt Lake City, Utah 84112, United States
| | - Sofiene Abdellaoui
- Departments of Chemistry
and Materials Science and Engineering, University of Utah, 315 S 1400 E
Room 2020, Salt Lake City, Utah 84112, United States
| | - David P. Hickey
- Departments of Chemistry
and Materials Science and Engineering, University of Utah, 315 S 1400 E
Room 2020, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Departments of Chemistry
and Materials Science and Engineering, University of Utah, 315 S 1400 E
Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
61
|
Masuch T, Kusnezowa A, Nilewski S, Bautista JT, Kourist R, Leichert LI. A combined bioinformatics and functional metagenomics approach to discovering lipolytic biocatalysts. Front Microbiol 2015; 6:1110. [PMID: 26528261 PMCID: PMC4602143 DOI: 10.3389/fmicb.2015.01110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/25/2015] [Indexed: 11/30/2022] Open
Abstract
The majority of protein sequence data published today is of metagenomic origin. However, our ability to assign functions to these sequences is often hampered by our general inability to cultivate the larger part of microbial species and the sheer amount of sequence data generated in these projects. Here we present a combination of bioinformatics, synthetic biology, and Escherichia coli genetics to discover biocatalysts in metagenomic datasets. We created a subset of the Global Ocean Sampling dataset, the largest metagenomic project published to date, by removing all proteins that matched Hidden Markov Models of known protein families from PFAM and TIGRFAM with high confidence (E-value > 10-5). This essentially left us with proteins with low or no homology to known protein families, still encompassing ~1.7 million different sequences. In this subset, we then identified protein families de novo with a Markov clustering algorithm. For each protein family, we defined a single representative based on its phylogenetic relationship to all other members in that family. This reduced the dataset to ~17,000 representatives of protein families with more than 10 members. Based on conserved regions typical for lipases and esterases, we selected a representative gene from a family of 27 members for synthesis. This protein, when expressed in E. coli, showed lipolytic activity toward para-nitrophenyl (pNP) esters. The Km-value of the enzyme was 66.68 μM for pNP-butyrate and 68.08 μM for pNP-palmitate with kcat/Km values at 3.4 × 106 and 6.6 × 105 M-1s-1, respectively. Hydrolysis of model substrates showed enantiopreference for the R-form. Reactions yielded 43 and 61% enantiomeric excess of products with ibuprofen methyl ester and 2-phenylpropanoic acid ethyl ester, respectively. The enzyme retains 50% of its maximum activity at temperatures as low as 10°C, its activity is enhanced in artificial seawater and buffers with higher salt concentrations with an optimum osmolarity of 3,890 mosmol/l.
Collapse
Affiliation(s)
- Thorsten Masuch
- Department of Microbial Biochemistry, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum Bochum, Germany
| | - Anna Kusnezowa
- Department of Microbial Biochemistry, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum Bochum, Germany
| | - Sebastian Nilewski
- Department of Microbial Biochemistry, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum Bochum, Germany
| | - José T Bautista
- Junior Research Group for Microbial Biotechnology - Department for Biology and Biotechnology, Ruhr University Bochum Bochum, Germany
| | - Robert Kourist
- Junior Research Group for Microbial Biotechnology - Department for Biology and Biotechnology, Ruhr University Bochum Bochum, Germany
| | - Lars I Leichert
- Department of Microbial Biochemistry, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum Bochum, Germany
| |
Collapse
|
62
|
Ravikumar Y, Nadarajan SP, Hyeon Yoo T, Lee CS, Yun H. Incorporating unnatural amino acids to engineer biocatalysts for industrial bioprocess applications. Biotechnol J 2015; 10:1862-76. [DOI: 10.1002/biot.201500153] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/13/2015] [Accepted: 09/02/2015] [Indexed: 12/22/2022]
|
63
|
Improvement in the thermostability of a type A feruloyl esterase, AuFaeA, from Aspergillus usamii by iterative saturation mutagenesis. Appl Microbiol Biotechnol 2015; 99:10047-56. [PMID: 26266754 DOI: 10.1007/s00253-015-6889-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/05/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
Abstract
Feruloyl or ferulic acid esterase (Fae, EC 3.1.1.73) catalyzes the hydrolysis of ester bonds between polysaccharides and phenolic acid compounds in xylan side chain. In this study, the thermostability of a type A feruloyl esterase (AuFaeA) from Aspergillus usamii was increased by iterative saturation mutagenesis (ISM). Two amino acids, Ser33 and Asn92, were selected for saturation mutagenesis according to the B-factors analyzed by B-FITTER software and ΔΔG values predicted by PoPMuSiC algorithm. After screening the saturation mutagenesis libraries constructed in Pichia pastoris, 15 promising variants were obtained. The best variant S33E/N92-4 (S33E/N92R) produced a T m value of 44.5 °C, the half-lives (t1/2) of 35 and 198 min at 55 and 50 °C, respectively, corresponding to a 4.7 °C, 2.33- and 3.96-fold improvement compared to the wild type. Additionally, the best S33 variant S33-6 (S33E) was thermostable at 50 °C with a t1/2 of 82 min, which was 32 min longer than that of the wild type. All the screened S33E/N92 variants were more thermostable than the best S33 variant S33-6 (S33E). This work would contribute to the further studies on higher thermostability modification of type A feruloyl esterases, especially those from fungi. The thermostable feruloyl esterase variants were expected to be potential candidates for industrial application in prompting the enzymic degradation of plant biomass materials at elevated temperatures.
Collapse
|
64
|
Sgambati V, Pizzo E, Mezzacapo MC, Di Giuseppe AMA, Landi N, Poerio E, Di Maro A. Cytotoxic activity of chimeric protein PD-L4UWSCI(tr) does not appear be affected by specificity of inhibition mediated by anti-protease WSCI domain. Biochimie 2015; 107 Pt B:385-90. [PMID: 25457104 DOI: 10.1016/j.biochi.2014.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/12/2014] [Indexed: 02/07/2023]
Abstract
In a previously study, a type 1 ribosome inactivating protein (PD-L4) and a wheat subtilisin/chymotrypsin inhibitor (WSCI) were engineered into a chimeric protein (PD-L4UWSCI) that presented in addition to the same properties of both domains an intriguing selective cytotoxic action on murine tumor cells. This finding supported the idea that the protection of C-terminal region of PD-L4 could amplify its cytotoxic action by virtue of a greater resistance to proteases. Several authors indeed revealed that the cytotoxicity of RIPs depends not only on the intracellular routing, but also on the intrinsic resistance to proteolysis. In this regard in the present work we have produced a variant of chimeric protein, named PD-L4UWSCI(tr), changing the inhibitory specificity of WSCI domain. The purpose of this approach was to check if the cytotoxicity of the chimeric protein was altered depending on the properties of protease inhibitor domain or by a different fold of whole protein. Data collected supposedly indicate that WSCI domain contributes to cytotoxicity of chimeric protein exclusively from a structural point of view.
Collapse
|
65
|
Lim SI, Kwon I. Bioconjugation of therapeutic proteins and enzymes using the expanded set of genetically encoded amino acids. Crit Rev Biotechnol 2015; 36:803-15. [DOI: 10.3109/07388551.2015.1048504] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sung In Lim
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, USA and
| | - Inchan Kwon
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, USA and
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| |
Collapse
|
66
|
dos Santos JCS, Rueda N, Gonçalves LRB, Fernandez-Lafuente R. Tuning the catalytic properties of lipases immobilized on divinylsulfone activated agarose by altering its nanoenvironment. Enzyme Microb Technol 2015; 77:1-7. [PMID: 26138393 DOI: 10.1016/j.enzmictec.2015.05.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/29/2015] [Accepted: 05/06/2015] [Indexed: 12/21/2022]
Abstract
Lipase from Thermomyces lanuginosus (TLL) and lipase B from Candida antarctica (CALB) have been immobilized on divinylsulfone (DVS) activated agarose beads at pH 10 for 72 h. Then, as a reaction end point, very different nucleophiles have been used to block the support and the effect of the nature of the blocking reagent has been analyzed on the features of the immobilized preparations. The blocking has generally positive effects on enzyme stability in both thermal and organic solvent inactivations. For example, CALB improved 7.5-fold the thermal stability after blocking with imidazole. The effect on enzyme activity was more variable, strongly depending on the substrate and the experimental conditions. Referring to CALB; using p-nitrophenyl butyrate (p-NPB) and methyl phenylacetate, activity always improved by the blocking step, whatever the blocking reagent, while with methyl mandelate or ethyl hexanoate not always the blocking presented a positive effect. Other example is TLL-DVS biocatalyst blocked with Cys. This was more than 8 times more active than the non-blocked preparation and become the most active versus p-NPB at pH 7, the least active versus methyl phenylacetate at pH 5 but the third one most active at pH 9, versus methyl mandelate presented lower activity than the unblocked preparation at pH 5 and versus ethyl hexanoate was the most active at all pH values. That way, enzyme specificity could be strongly altered by this blocking step.
Collapse
Affiliation(s)
- Jose C S dos Santos
- ICP-CSIC, Campus UAM-CSIC, Cantoblanco, 28049 Madrid, Spain; Departamento de Engenharia Química, Universidade Federal Do Ceará, Campus Do Pici, CEP 60455-760, Fortaleza, CE, Brazil
| | - Nazzoly Rueda
- ICP-CSIC, Campus UAM-CSIC, Cantoblanco, 28049 Madrid, Spain; Escuela de Química, Grupo de investigación en Bioquímica y Microbiología (GIBIM), Edificio Camilo Torres 210, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Luciana R B Gonçalves
- Departamento de Engenharia Química, Universidade Federal Do Ceará, Campus Do Pici, CEP 60455-760, Fortaleza, CE, Brazil
| | | |
Collapse
|
67
|
|
68
|
Ardevol A, Tribello GA, Ceriotti M, Parrinello M. Probing the Unfolded Configurations of a β-Hairpin Using Sketch-Map. J Chem Theory Comput 2015; 11:1086-93. [DOI: 10.1021/ct500950z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Albert Ardevol
- Computational
Science, Department of Chemistry and Applied Biosciences, ETH Zurich, USI-Campus, Via Giuseppe Buffi 13, C-6900 Lugano, Switzerland
| | - Gareth A. Tribello
- Atomistic
Simulation Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
| | - Michele Ceriotti
- Laboratory
of Computational Science and Modelling, EPFL, CH-1015 Lausanne, Switzerland
| | - Michele Parrinello
- Computational
Science, Department of Chemistry and Applied Biosciences, ETH Zurich, USI-Campus, Via Giuseppe Buffi 13, C-6900 Lugano, Switzerland
| |
Collapse
|
69
|
Lozano P, Bernal JM, Nieto S, Gomez C, Garcia-Verdugo E, Luis SV. Active biopolymers in green non-conventional media: a sustainable tool for developing clean chemical processes. Chem Commun (Camb) 2015; 51:17361-74. [DOI: 10.1039/c5cc07600e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
By understanding structure–function relationships of active biopolymers (e.g. enzymes and nucleic acids) in green non-conventional media, sustainable chemical processes may be developed.
Collapse
Affiliation(s)
- Pedro Lozano
- Departamento de Bioquímica y Biología Molecular “B” e Inmunología
- Facultad de Química
- Campus de Excelencia Internacional Mare Nostrum
- Universidad de Murcia
- Murcia
| | - Juana M. Bernal
- Departamento de Bioquímica y Biología Molecular “B” e Inmunología
- Facultad de Química
- Campus de Excelencia Internacional Mare Nostrum
- Universidad de Murcia
- Murcia
| | - Susana Nieto
- Departamento de Bioquímica y Biología Molecular “B” e Inmunología
- Facultad de Química
- Campus de Excelencia Internacional Mare Nostrum
- Universidad de Murcia
- Murcia
| | - Celia Gomez
- Departamento de Bioquímica y Biología Molecular “B” e Inmunología
- Facultad de Química
- Campus de Excelencia Internacional Mare Nostrum
- Universidad de Murcia
- Murcia
| | | | - Santiago V. Luis
- Departamento de Química Inorgánica y Orgánica
- Universidad Jaume I
- Castellón
- Spain
| |
Collapse
|
70
|
Breger JC, Walper SA, Oh E, Susumu K, Stewart MH, Deschamps JR, Medintz IL. Quantum dot display enhances activity of a phosphotriesterase trimer. Chem Commun (Camb) 2015; 51:6403-6. [DOI: 10.1039/c5cc00418g] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Phosphotrisomerase trimer assembled on a quantum dot. This construct displays enhanced catalytic over freely diffusing enzyme and has potential to be spun into a fiber.
Collapse
Affiliation(s)
- Joyce C. Breger
- Center for Bio/Molecular Science and Engineering
- Code 6900
- U. S. Naval Research Laboratory
- Washington
- USA
| | - Scott A. Walper
- Center for Bio/Molecular Science and Engineering
- Code 6900
- U. S. Naval Research Laboratory
- Washington
- USA
| | - Eunkeu Oh
- Optical Sciences Division
- Code 5600. U.S. Naval Research Laboratory
- Washington
- USA
- Sotera Defense Solutions
| | - Kimihiro Susumu
- Optical Sciences Division
- Code 5600. U.S. Naval Research Laboratory
- Washington
- USA
- Sotera Defense Solutions
| | - Michael H. Stewart
- Optical Sciences Division
- Code 5600. U.S. Naval Research Laboratory
- Washington
- USA
| | - Jeffrey R. Deschamps
- Center for Bio/Molecular Science and Engineering
- Code 6900
- U. S. Naval Research Laboratory
- Washington
- USA
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering
- Code 6900
- U. S. Naval Research Laboratory
- Washington
- USA
| |
Collapse
|
71
|
Dudley QM, Karim AS, Jewett MC. Cell-free metabolic engineering: biomanufacturing beyond the cell. Biotechnol J 2015; 10:69-82. [PMID: 25319678 PMCID: PMC4314355 DOI: 10.1002/biot.201400330] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/24/2014] [Accepted: 08/22/2014] [Indexed: 12/20/2022]
Abstract
Industrial biotechnology and microbial metabolic engineering are poised to help meet the growing demand for sustainable, low-cost commodity chemicals and natural products, yet the fraction of biochemicals amenable to commercial production remains limited. Common problems afflicting the current state-of-the-art include low volumetric productivities, build-up of toxic intermediates or products, and byproduct losses via competing pathways. To overcome these limitations, cell-free metabolic engineering (CFME) is expanding the scope of the traditional bioengineering model by using in vitro ensembles of catalytic proteins prepared from purified enzymes or crude lysates of cells for the production of target products. In recent years, the unprecedented level of control and freedom of design, relative to in vivo systems, has inspired the development of engineering foundations for cell-free systems. These efforts have led to activation of long enzymatic pathways (>8 enzymes), near theoretical conversion yields, productivities greater than 100 mg L(-1) h(-1) , reaction scales of >100 L, and new directions in protein purification, spatial organization, and enzyme stability. In the coming years, CFME will offer exciting opportunities to: (i) debug and optimize biosynthetic pathways; (ii) carry out design-build-test iterations without re-engineering organisms; and (iii) perform molecular transformations when bioconversion yields, productivities, or cellular toxicity limit commercial feasibility.
Collapse
Affiliation(s)
| | | | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
- Member, Institute for Bionanotechnology in Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
72
|
Luan ZJ, Li FL, Dou S, Chen Q, Kong XD, Zhou J, Yu HL, Xu JH. Substrate channel evolution of an esterase for the synthesis of cilastatin. Catal Sci Technol 2015. [DOI: 10.1039/c5cy00085h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Error-prone PCR and site-directed mutagenesis around substrate channel were employed for improving an esterase (RhEst1) activity towards Cilastatin building block. RhEst1A147I/V148F/G254A showed 20 times higher activity than the native enzyme in whole cell biotransformation.
Collapse
Affiliation(s)
- Zheng-Jiao Luan
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Centre for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Fu-Long Li
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Centre for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Shuai Dou
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Centre for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Centre for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Xu-Dong Kong
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Centre for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jiahai Zhou
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Centre for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Centre for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
73
|
de Souza SP, Bassut J, Marquez HV, Junior II, Miranda LSM, Huang Y, Mackenzie G, Boa AN, de Souza ROMA. Sporopollenin as an efficient green support for covalent immobilization of a lipase. Catal Sci Technol 2015. [DOI: 10.1039/c4cy01682c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aminoalkyl functionalised sporopollenin exine capsules have been used to immobilizeCandida antarcticalipase B using a covalent diimine-based linker.
Collapse
Affiliation(s)
- Stefânia P. de Souza
- Biocatalysis and Organic Synthesis Group
- Chemistry Institute
- Federal University of Rio de Janeiro
- Brazil
| | - Jonathan Bassut
- Biocatalysis and Organic Synthesis Group
- Chemistry Institute
- Federal University of Rio de Janeiro
- Brazil
| | - Heiddy V. Marquez
- Biocatalysis and Organic Synthesis Group
- Chemistry Institute
- Federal University of Rio de Janeiro
- Brazil
| | - Ivaldo I. Junior
- Biocatalysis and Organic Synthesis Group
- Chemistry Institute
- Federal University of Rio de Janeiro
- Brazil
| | - Leandro S. M. Miranda
- Biocatalysis and Organic Synthesis Group
- Chemistry Institute
- Federal University of Rio de Janeiro
- Brazil
| | - Youkui Huang
- Department of Chemistry
- University of Hull
- Kingston upon Hull
- UK
| | | | - Andrew N. Boa
- Department of Chemistry
- University of Hull
- Kingston upon Hull
- UK
| | - Rodrigo O. M. A. de Souza
- Biocatalysis and Organic Synthesis Group
- Chemistry Institute
- Federal University of Rio de Janeiro
- Brazil
| |
Collapse
|
74
|
Lin YW, Nagao S, Zhang M, Shomura Y, Higuchi Y, Hirota S. Rational design of heterodimeric protein using domain swapping for myoglobin. Angew Chem Int Ed Engl 2014; 54:511-5. [PMID: 25370865 DOI: 10.1002/anie.201409267] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Indexed: 11/12/2022]
Abstract
Protein design is a useful method to create novel artificial proteins. A rational approach to design a heterodimeric protein using domain swapping for horse myoglobin (Mb) was developed. As confirmed by X-ray crystallographic analysis, a heterodimeric Mb with two different active sites was produced efficiently from two surface mutants of Mb, in which the charges of two amino acids involved in the dimer salt bridges were reversed in each mutant individually, with the active site of one mutant modified. This study shows that the method of constructing heterodimeric Mb with domain swapping is useful for designing artificial multiheme proteins.
Collapse
Affiliation(s)
- Ying-Wu Lin
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192 (Japan); School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001 (China)
| | | | | | | | | | | |
Collapse
|
75
|
Lin YW, Nagao S, Zhang M, Shomura Y, Higuchi Y, Hirota S. Rational Design of Heterodimeric Protein using Domain Swapping for Myoglobin. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|