51
|
In silico and in vitro studies of the reduction of unsaturated α,β bonds of trans-2-hexenedioic acid and 6-amino-trans-2-hexenoic acid - Important steps towards biobased production of adipic acid. PLoS One 2018; 13:e0193503. [PMID: 29474495 PMCID: PMC5825115 DOI: 10.1371/journal.pone.0193503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/12/2018] [Indexed: 01/31/2023] Open
Abstract
The biobased production of adipic acid, a precursor in the production of nylon, is of great interest in order to replace the current petrochemical production route. Glucose-rich lignocellulosic raw materials have high potential to replace the petrochemical raw material. A number of metabolic pathways have been proposed for the microbial conversion of glucose to adipic acid, but achieved yields and titers remain to be improved before industrial applications are feasible. One proposed pathway starts with lysine, an essential metabolite industrially produced from glucose by microorganisms. However, the drawback of this pathway is that several reactions are involved where there is no known efficient enzyme. By changing the order of the enzymatic reactions, we were able to identify an alternative pathway with one unknown enzyme less compared to the original pathway. One of the reactions lacking known enzymes is the reduction of the unsaturated α,β bond of 6-amino-trans-2-hexenoic acid and trans-2-hexenedioic acid. To identify the necessary enzymes, we selected N-ethylmaleimide reductase from Escherichia coli and Old Yellow Enzyme 1 from Saccharomyces pastorianus. Despite successful in silico docking studies, where both target substrates could fit in the enzyme pockets, and hydrogen bonds with catalytic residues of both enzymes were predicted, no in vitro activity was observed. We hypothesize that the lack of activity is due to a difference in electron withdrawing potential between the naturally reduced aldehyde and the carboxylate groups of our target substrates. Suggestions for protein engineering to induce the reactions are discussed, as well as the advantages and disadvantages of the two metabolic pathways from lysine. We have highlighted bottlenecks associated with the lysine pathways, and proposed ways of addressing them.
Collapse
|
52
|
Averesch NJH, Martínez VS, Nielsen LK, Krömer JO. Toward Synthetic Biology Strategies for Adipic Acid Production: An in Silico Tool for Combined Thermodynamics and Stoichiometric Analysis of Metabolic Networks. ACS Synth Biol 2018; 7:490-509. [PMID: 29237121 DOI: 10.1021/acssynbio.7b00304] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Adipic acid, a nylon-6,6 precursor, has recently gained popularity in synthetic biology. Here, 16 different production routes to adipic acid were evaluated using a novel tool for network-embedded thermodynamic analysis of elementary flux modes. The tool distinguishes between thermodynamically feasible and infeasible modes under determined metabolite concentrations, allowing the thermodynamic feasibility of theoretical yields to be assessed. Further, patterns that always caused infeasible flux distributions were identified, which will aid the development of tailored strain design. A review of cellular efflux mechanisms revealed that significant accumulation of extracellular product is only possible if coupled with ATP hydrolysis. A stoichiometric analysis demonstrated that the maximum theoretical product carbon yield heavily depends on the metabolic route, ranging from 32 to 99% on glucose and/or palmitate in Escherichia coli and Saccharomyces cerevisiae metabolic models. Equally important, metabolite concentrations appeared to be thermodynamically restricted in several pathways. Consequently, the number of thermodynamically feasible flux distributions was reduced, in some cases even rendering whole pathways infeasible, highlighting the importance of pathway choice. Only routes based on the shikimate pathway were thermodynamically favorable over a large concentration and pH range. The low pH capability of S. cerevisiae shifted the thermodynamic equilibrium of some pathways toward product formation. One identified infeasible-pattern revealed that the reversibility of the mitochondrial malate dehydrogenase contradicted the current state of knowledge, which imposes a major restriction on the metabolism of S. cerevisiae. Finally, the evaluation of industrially relevant constraints revealed that two shikimate pathway-based routes in E. coli were the most robust.
Collapse
Affiliation(s)
- Nils J. H. Averesch
- Centre
for Microbial Electrochemical Systems (CEMES), Advanced Water Management
Centre (AWMC), The University of Queensland, Brisbane 4072, Australia
- Universities Space Research Association at NASA Ames Research Center, Moffett Field, California 94035, United States
| | - Verónica S. Martínez
- Systems
and Synthetic Biology Group, Australian Institute for Bioengineering
and Nanotechnology (AIBN), The University of Queensland, Brisbane 4072, Australia
- ARC
Training Centre for Biopharmaceutical Innovation (CBI), Australian
Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane 4072, Australia
| | - Lars K. Nielsen
- Systems
and Synthetic Biology Group, Australian Institute for Bioengineering
and Nanotechnology (AIBN), The University of Queensland, Brisbane 4072, Australia
- DTU
BIOSUSTAIN, Novo Nordisk Foundation Center for Biosustainability, Danmarks Tekniske Universitet, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Jens O. Krömer
- Centre
for Microbial Electrochemical Systems (CEMES), Advanced Water Management
Centre (AWMC), The University of Queensland, Brisbane 4072, Australia
- Department
for Solar Materials, Helmholtz Centre of Environmental Research−UFZ, 04318 Leipzig, Germany
| |
Collapse
|
53
|
Raj K, Partow S, Correia K, Khusnutdinova AN, Yakunin AF, Mahadevan R. Biocatalytic production of adipic acid from glucose using engineered Saccharomyces cerevisiae. Metab Eng Commun 2018; 6:28-32. [PMID: 29487800 PMCID: PMC5814376 DOI: 10.1016/j.meteno.2018.02.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 11/27/2022] Open
Abstract
Adipic acid is an important industrial chemical used in the synthesis of nylon-6,6. The commercial synthesis of adipic acid uses petroleum-derived benzene and releases significant quantities of greenhouse gases. Biocatalytic production of adipic acid from renewable feedstocks could potentially reduce the environmental damage and eliminate the need for fossil fuel precursors. Recently, we have demonstrated the first enzymatic hydrogenation of muconic acid to adipic acid using microbial enoate reductases (ERs) - complex iron-sulfur and flavin containing enzymes. In this work, we successfully expressed the Bacillus coagulans ER in a Saccharomyces cerevisiae strain producing muconic acid and developed a three-stage fermentation process enabling the synthesis of adipic acid from glucose. The ability to express active ERs and significant acid tolerance of S. cerevisiae highlight the applicability of the developed yeast strain for the biocatalytic production of adipic acid from renewable feedstocks. An enzyme capable of reducing α pi bonds in carboxylic acids has been expressed in S. cerevisiae. The first yeast strain capable of complete adipic acid biosynthesis has been developed. A three-stage fermentation strategy has been proposed to convert glucose to adipic acid.
Collapse
Affiliation(s)
- Kaushik Raj
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, Canada M5S 3E5
| | - Siavash Partow
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, Canada M5S 3E5
| | - Kevin Correia
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, Canada M5S 3E5
| | - Anna N Khusnutdinova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, Canada M5S 3E5
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, Canada M5S 3E5
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, Canada M5S 3E5.,Institute of Biomaterials and Biomedical Engineering, University of Toronto,164 College Street, Toronto, ON, Canada M5S 3G9
| |
Collapse
|
54
|
Wang J, Yang Y, Zhang R, Shen X, Chen Z, Wang J, Yuan Q, Yan Y. Microbial production of branched-chain dicarboxylate 2-methylsuccinic acid via enoate reductase-mediated bioreduction. Metab Eng 2018; 45:1-10. [DOI: 10.1016/j.ymben.2017.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 10/27/2017] [Accepted: 11/12/2017] [Indexed: 12/23/2022]
|
55
|
Kawaguchi H, Ogino C, Kondo A. Microbial conversion of biomass into bio-based polymers. BIORESOURCE TECHNOLOGY 2017; 245:1664-1673. [PMID: 28688739 DOI: 10.1016/j.biortech.2017.06.135] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 05/19/2023]
Abstract
The worldwide market for plastics is rapidly growing, and plastics polymers are typically produced from petroleum-based chemicals. The overdependence on petroleum-based chemicals for polymer production raises economic and environmental sustainability concerns. Recent progress in metabolic engineering has expanded fermentation products from existing aliphatic acids or alcohols to include aromatic compounds. This diversity provides an opportunity to expand the development and industrial uses of high-performance bio-based polymers. However, most of the biomonomers are produced from edible sugars or starches that compete directly with food and feed uses. The present review focuses on recent progress in the microbial conversion of biomass into bio-based polymers, in which fermentative products from renewable feedstocks serve as biomonomers for the synthesis of bio-based polymers. In particular, the production of biomonomers from inedible lignocellulosic feedstocks by metabolically engineered microorganisms and the synthesis of bio-based engineered plastics from the biological resources are discussed.
Collapse
Affiliation(s)
- Hideo Kawaguchi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Biomass Engineering Research Division, RIKEN, 1-7-22 Suehiro, Turumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
56
|
Wilbanks B, Trinh CT. Comprehensive characterization of toxicity of fermentative metabolites on microbial growth. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:262. [PMID: 29213315 PMCID: PMC5707818 DOI: 10.1186/s13068-017-0952-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/02/2017] [Indexed: 05/08/2023]
Abstract
BACKGROUND Volatile carboxylic acids, alcohols, and esters are natural fermentative products, typically derived from anaerobic digestion. These metabolites have important functional roles to regulate cellular metabolisms and broad use as food supplements, flavors and fragrances, solvents, and fuels. Comprehensive characterization of toxic effects of these metabolites on microbial growth under similar conditions is very limited. RESULTS We characterized a comprehensive list of thirty-two short-chain carboxylic acids, alcohols, and esters on microbial growth of Escherichia coli MG1655 under anaerobic conditions. We analyzed toxic effects of these metabolites on E. coli health, quantified by growth rate and cell mass, as a function of metabolite types, concentrations, and physiochemical properties including carbon number, chemical functional group, chain branching feature, energy density, total surface area, and hydrophobicity. Strain characterization revealed that these metabolites exert distinct toxic effects on E. coli health. We found that higher concentrations and/or carbon numbers of metabolites cause more severe growth inhibition. For the same carbon numbers and metabolite concentrations, we discovered that branched chain metabolites are less toxic than the linear chain ones. Remarkably, shorter alkyl esters (e.g., ethyl butyrate) appear less toxic than longer alkyl esters (e.g., butyl acetate). Regardless of metabolites, hydrophobicity of a metabolite, governed by its physiochemical properties, strongly correlates with the metabolite's toxic effect on E. coli health. CONCLUSIONS Short-chain alcohols, acids, and esters exhibit distinctive toxic effects on E. coli health. Hydrophobicity is a quantitative predictor to evaluate the toxic effect of a metabolite. This study sheds light on degrees of toxicity of fermentative metabolites on microbial health and further helps in the selection of desirable metabolites and hosts for industrial fermentation to overproduce them.
Collapse
Affiliation(s)
- Brandon Wilbanks
- Department of Chemical and Biomolecular Engineering, University of Tennessee, 1512 Middle Drive, Knoxville, TN 37996 USA
| | - Cong T. Trinh
- Department of Chemical and Biomolecular Engineering, University of Tennessee, 1512 Middle Drive, Knoxville, TN 37996 USA
- Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, USA
| |
Collapse
|
57
|
Clomburg JM, Contreras SC, Chou A, Siegel JB, Gonzalez R. Combination of type II fatty acid biosynthesis enzymes and thiolases supports a functional β-oxidation reversal. Metab Eng 2017; 45:11-19. [PMID: 29146470 DOI: 10.1016/j.ymben.2017.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/13/2017] [Accepted: 11/04/2017] [Indexed: 01/05/2023]
Abstract
An engineered reversal of the β-oxidation cycle (r-BOX) and the fatty acid biosynthesis (FAB) pathway are promising biological platforms for advanced fuel and chemical production in part due to their iterative nature supporting the synthesis of various chain length products. While diverging in their carbon-carbon elongation reaction mechanism, iterative operation of each pathway relies on common chemical conversions (reduction, dehydration, and reduction) differing only in the attached moiety (acyl carrier protein (ACP) in FAB vs Coenzyme A in r-BOX). Given this similarity, we sought to determine whether FAB enzymes can be used in the context of r-BOX as a means of expanding available r-BOX components with a ubiquitous set of well characterized enzymes. Using enzymes from the type II FAB pathway (FabG, FabZ, and FabI) in conjunction with a thiolase catalyzing a non-decarboxylative condensation, we demonstrate that FAB enzymes support a functional r-BOX. Pathway operation with FAB enzymes was improved through computationally directed protein design to develop FabZ variants with amino acid substitutions designed to disrupt hydrogen bonding at the FabZ-ACP interface and introduce steric and electrostatic repulsion between the FabZ and ACP. FabZ with R126W and R121E substitutions resulted in improved carboxylic acid and alcohol production from one- and multiple-turn r-BOX compared to the wild-type enzyme. Furthermore, the ability for FAB enzymes to operate on functionalized intermediates was exploited to produce branched chain carboxylic acids through an r-BOX with functionalized priming. These results not only provide an expanded set of enzymes within the modular r-BOX pathway, but can also potentially expand the scope of products targeted through this pathway by operating with CoA intermediates containing various functional groups.
Collapse
Affiliation(s)
- James M Clomburg
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Stephanie C Contreras
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, CA 95616, USA; Genome Center, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Alexander Chou
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Justin B Siegel
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, CA 95616, USA; Biochemistry & Molecular Medicine, University of California Davis, One Shields Avenue, Davis, CA 95616, USA; Genome Center, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Ramon Gonzalez
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St, Houston, TX 77005, USA; Department of Bioengineering, Rice University, 6100 Main St, Houston, TX 77005, USA.
| |
Collapse
|
58
|
Yu JL, Xia XX, Zhong JJ, Qian ZG. Enhanced production of C5 dicarboxylic acids by aerobic-anaerobic shift in fermentation of engineered Escherichia coli. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
59
|
Engineering a synthetic pathway for maleate in Escherichia coli. Nat Commun 2017; 8:1153. [PMID: 29074856 PMCID: PMC5658364 DOI: 10.1038/s41467-017-01233-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/31/2017] [Indexed: 12/31/2022] Open
Abstract
Maleate is one of the most important dicarboxylic acids and is used to produce various polymer compounds and pharmaceuticals. Herein, microbial production of maleate is successfully achieved, to our knowledge for the first time, using genetically modified Escherichia coli. A synthetic pathway of maleate is constructed in E. coli by combining the polyketide biosynthesis pathway and benzene ring cleavage pathway. The metabolic engineering approach used to fine-tune the synthetic pathway drastically improves maleate production and demonstrates that one of the rate limiting steps exists in the conversion of chorismate to gentisate. In a batch culture of the optimised transformant, grown in a 1-L jar fermentor, the amount of produced maleate reaches 7.1 g L-1, and the yield is 0.221 mol mol-1. Our results suggest that the construction of synthetic pathways by combining a secondary metabolite pathway and the benzene ring cleavage pathway is a powerful tool for producing various valuable chemicals.
Collapse
|
60
|
Khusnutdinova AN, Flick R, Popovic A, Brown G, Tchigvintsev A, Nocek B, Correia K, Joo JC, Mahadevan R, Yakunin AF. Exploring Bacterial Carboxylate Reductases for the Reduction of Bifunctional Carboxylic Acids. Biotechnol J 2017; 12. [PMID: 28762640 DOI: 10.1002/biot.201600751] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/31/2017] [Indexed: 11/12/2022]
Abstract
Carboxylic acid reductases (CARs) selectively reduce carboxylic acids to aldehydes using ATP and NADPH as cofactors under mild conditions. Although CARs attracts significant interest, only a few enzymes have been characterized to date, whereas the vast majority of CARs have yet to be examined. Herein the authors report that 12 bacterial CARs reduces a broad range of bifunctional carboxylic acids containing oxo-, hydroxy-, amino-, or second carboxyl groups with several enzymes showing activity toward 4-hydroxybutanoic (4-HB) and adipic acids. These CARs exhibits significant reductase activity against substrates whose second functional group is separated from the carboxylate by at least three carbons with both carboxylate groups being reduced in dicarboxylic acids. Purified CARs supplemented with cofactor regenerating systems (for ATP and NADPH), an inorganic pyrophosphatase, and an aldo-keto reductase catalyzes a high conversion (50-76%) of 4-HB to 1,4-butanediol (1,4-BDO) and adipic acid to 1,6-hexanediol (1,6-HDO). Likewise, Escherichia coli strains expressing eight different CARs efficiently reduces 4-HB to 1,4-BDO with 50-95% conversion, whereas adipic acid is reduced to a mixture of 6-hydroxyhexanoic acid (6-HHA) and 1,6-HDO. Thus, our results illustrate the broad biochemical diversity of bacterial CARs and their compatibility with other enzymes for applications in biocatalysis.
Collapse
Affiliation(s)
- Anna N Khusnutdinova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, ON, M5S 3E5, Canada
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, ON, M5S 3E5, Canada
| | - Ana Popovic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, ON, M5S 3E5, Canada
| | - Greg Brown
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, ON, M5S 3E5, Canada
| | - Anatoli Tchigvintsev
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, ON, M5S 3E5, Canada
| | - Boguslaw Nocek
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Kevin Correia
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, ON, M5S 3E5, Canada
| | - Jeong C Joo
- Center for Bio-Based Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, ON, M5S 3E5, Canada
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, ON, M5S 3E5, Canada
| |
Collapse
|
61
|
|
62
|
|
63
|
Integration of heterogeneous and biochemical catalysis for production of fuels and chemicals from biomass. Curr Opin Biotechnol 2017; 45:127-135. [DOI: 10.1016/j.copbio.2017.02.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/18/2017] [Accepted: 02/03/2017] [Indexed: 11/18/2022]
|
64
|
Reversal of β-oxidative pathways for the microbial production of chemicals and polymer building blocks. Metab Eng 2017; 42:33-42. [PMID: 28550000 DOI: 10.1016/j.ymben.2017.05.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/28/2017] [Accepted: 05/22/2017] [Indexed: 12/30/2022]
Abstract
β-Oxidation is the ubiquitous metabolic strategy to break down fatty acids. In the course of this four-step process, two carbon atoms are liberated per cycle from the fatty acid chain in the form of acetyl-CoA. However, typical β-oxidative strategies are not restricted to monocarboxylic (fatty) acid degradation only, but can also be involved in the utilization of aromatic compounds, amino acids and dicarboxylic acids. Each enzymatic step of a typical β-oxidation cycle is reversible, offering the possibility to also take advantage of reversed metabolic pathways for applied purposes. In such cases, 3-oxoacyl-CoA thiolases, which catalyze the final chain-shortening step in the catabolic direction, mediate the condensation of an acyl-CoA starter molecule with acetyl-CoA in the anabolic direction. Subsequently, the carbonyl-group at C3 is stepwise reduced and dehydrated yielding a chain-elongated product. In the last years, several β-oxidation pathways have been studied in detail and reversal of these pathways already proved to be a promising strategy for the production of chemicals and polymer building blocks in several industrially relevant microorganisms. This review covers recent advancements in this field and discusses constraints and bottlenecks of this metabolic strategy in comparison to alternative production pathways.
Collapse
|
65
|
Chen X, Gao C, Guo L, Hu G, Luo Q, Liu J, Nielsen J, Chen J, Liu L. DCEO Biotechnology: Tools To Design, Construct, Evaluate, and Optimize the Metabolic Pathway for Biosynthesis of Chemicals. Chem Rev 2017; 118:4-72. [DOI: 10.1021/acs.chemrev.6b00804] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiulai Chen
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liang Guo
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qiuling Luo
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jia Liu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jens Nielsen
- Department
of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Lyngby, Denmark
| | - Jian Chen
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Department
of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
66
|
Metabolic engineering strategies to bio-adipic acid production. Curr Opin Biotechnol 2017; 45:136-143. [PMID: 28365404 DOI: 10.1016/j.copbio.2017.03.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 11/21/2022]
Abstract
Adipic acid is the most industrially important dicarboxylic acid as it is a key monomer in the synthesis of nylon. Today, adipic acid is obtained via a chemical process that relies on petrochemical precursors and releases large quantities of greenhouse gases. In the last two years, significant progress has been made in engineering microbes for the production of adipic acid and its immediate precursors, muconic acid and glucaric acid. Not only have the microbial substrates expanded beyond glucose and glycerol to include lignin monomers and hemicellulose components, but the number of microbial chassis now goes further than Escherichia coli and Saccharomyces cerevisiae to include microbes proficient in aromatic degradation, cellulose secretion and degradation of multiple carbon sources. Here, we review the metabolic engineering and nascent protein engineering strategies undertaken in each of these chassis to convert different feedstocks to adipic, muconic and glucaric acid. We also highlight near term prospects and challenges for each of the metabolic routes discussed.
Collapse
|
67
|
Haushalter RW, Phelan RM, Hoh KM, Su C, Wang G, Baidoo EEK, Keasling JD. Production of Odd-Carbon Dicarboxylic Acids in Escherichia coli Using an Engineered Biotin-Fatty Acid Biosynthetic Pathway. J Am Chem Soc 2017; 139:4615-4618. [PMID: 28291347 DOI: 10.1021/jacs.6b11895] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dicarboxylic acids are commodity chemicals used in the production of plastics, polyesters, nylons, fragrances, and medications. Bio-based routes to dicarboxylic acids are gaining attention due to environmental concerns about petroleum-based production of these compounds. Some industrial applications require dicarboxylic acids with specific carbon chain lengths, including odd-carbon species. Biosynthetic pathways involving cytochrome P450-catalyzed oxidation of fatty acids in yeast and bacteria have been reported, but these systems produce almost exclusively even-carbon species. Here we report a novel pathway to odd-carbon dicarboxylic acids directly from glucose in Escherichia coli by employing an engineered pathway combining enzymes from biotin and fatty acid synthesis. Optimization of the pathway will lead to industrial strains for the production of valuable odd-carbon diacids.
Collapse
Affiliation(s)
- Robert W Haushalter
- Joint BioEnergy Institute, U.S. Department of Energy , 5885 Hollis Street, Emeryville, California 94608, United States.,Physical Bioscience Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Ryan M Phelan
- Joint BioEnergy Institute, U.S. Department of Energy , 5885 Hollis Street, Emeryville, California 94608, United States.,Physical Bioscience Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Kristina M Hoh
- Joint BioEnergy Institute, U.S. Department of Energy , 5885 Hollis Street, Emeryville, California 94608, United States.,Physical Bioscience Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Cindy Su
- Joint BioEnergy Institute, U.S. Department of Energy , 5885 Hollis Street, Emeryville, California 94608, United States.,Physical Bioscience Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - George Wang
- Joint BioEnergy Institute, U.S. Department of Energy , 5885 Hollis Street, Emeryville, California 94608, United States.,Physical Bioscience Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Edward E K Baidoo
- Joint BioEnergy Institute, U.S. Department of Energy , 5885 Hollis Street, Emeryville, California 94608, United States.,Physical Bioscience Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Jay D Keasling
- Joint BioEnergy Institute, U.S. Department of Energy , 5885 Hollis Street, Emeryville, California 94608, United States.,Physical Bioscience Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| |
Collapse
|
68
|
Joo JC, Khusnutdinova AN, Flick R, Kim T, Bornscheuer UT, Yakunin AF, Mahadevan R. Alkene hydrogenation activity of enoate reductases for an environmentally benign biosynthesis of adipic acid. Chem Sci 2017; 8:1406-1413. [PMID: 28616142 PMCID: PMC5460604 DOI: 10.1039/c6sc02842j] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/08/2016] [Indexed: 12/26/2022] Open
Abstract
Adipic acid, a precursor for Nylon-6,6 polymer, is one of the most important commodity chemicals, which is currently produced from petroleum. The biosynthesis of adipic acid from glucose still remains challenging due to the absence of biocatalysts required for the hydrogenation of unsaturated six-carbon dicarboxylic acids to adipic acid. Here, we demonstrate the first enzymatic hydrogenation of 2-hexenedioic acid and muconic acid to adipic acid using enoate reductases (ERs). ERs can hydrogenate 2-hexenedioic acid and muconic acid producing adipic acid with a high conversion rate and yield in vivo and in vitro. Purified ERs exhibit a broad substrate spectrum including aromatic and aliphatic 2-enoates and a significant oxygen tolerance. The discovery of the hydrogenation activity of ERs contributes to an understanding of the catalytic mechanism of these poorly characterized enzymes and enables the environmentally benign biosynthesis of adipic acid and other chemicals from renewable resources.
Collapse
Affiliation(s)
- Jeong Chan Joo
- Center for Bio-based Chemistry , Division of Convergence Chemistry , Korea Research Institute of Chemical Technology , 141 Gajeong-ro, Yuseong-gu , Daejeon 34114 , Republic of Korea .
| | - Anna N Khusnutdinova
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , 200 College Street , ON M5S 3E5 , Canada . ;
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , 200 College Street , ON M5S 3E5 , Canada . ;
| | - Taeho Kim
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , 200 College Street , ON M5S 3E5 , Canada . ;
| | - Uwe T Bornscheuer
- Institute of Biochemistry , Department of Biotechnology & Enzyme Catalysis , Greifswald University , Felix-Hausdorff-Strasse 4 , 17487 Greifswald , Germany
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , 200 College Street , ON M5S 3E5 , Canada . ;
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , 200 College Street , ON M5S 3E5 , Canada . ;
| |
Collapse
|
69
|
Karlsson E, Mapelli V, Olsson L. Adipic acid tolerance screening for potential adipic acid production hosts. Microb Cell Fact 2017; 16:20. [PMID: 28143563 PMCID: PMC5286774 DOI: 10.1186/s12934-017-0636-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/21/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biobased processes for the production of adipic acid are of great interest to replace the current environmentally detrimental petrochemical production route. No efficient natural producer of adipic acid has yet been identified, but several approaches for pathway engineering have been established. Research has demonstrated that the microbial production of adipic acid is possible, but the yields and titres achieved so far are inadequate for commercialisation. A plausible explanation may be intolerance to adipic acid. Therefore, in this study, selected microorganisms, including yeasts, filamentous fungi and bacteria, typically used in microbial cell factories were considered to evaluate their tolerance to adipic acid. RESULTS Screening of yeasts and bacteria for tolerance to adipic acid was performed in microtitre plates, and in agar plates for A. niger in the presence of adipic acid over a broad range of concentration (0-684 mM). As the different dissociation state(s) of adipic acid may influence cells differently, cultivations were performed with at least two pH values. Yeasts and A. niger were found to tolerate substantially higher concentrations of adipic acid than bacteria, and were less affected by the undissociated form of adipic acid than bacteria. The yeast exhibiting the highest tolerance to adipic acid was Candida viswanathii, showing a reduction in maximum specific growth rate of no more than 10-15% at the highest concentration of adipic acid tested and the tolerance was not dependent on the dissociation state of the adipic acid. CONCLUSIONS Tolerance to adipic acid was found to be substantially higher among yeasts and A. niger than bacteria. The explanation of the differences in adipic acid tolerance between the microorganisms investigated are likely related to fundamental differences in their physiology and metabolism. Among the yeasts investigated, C. viswanathii showed the highest tolerance and could be a potential host for a future microbial cell factory for adipic acid.
Collapse
Affiliation(s)
- Emma Karlsson
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| | - Valeria Mapelli
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
- Sacco S.r.l., Cadorago, CO Italy
| | - Lisbeth Olsson
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
70
|
Harrington LB, Jha RK, Kern TL, Schmidt EN, Canales GM, Finney KB, Koppisch AT, Strauss CEM, Fox DT. Rapid Thermostabilization of Bacillus thuringiensis Serovar Konkukian 97-27 Dehydroshikimate Dehydratase through a Structure-Based Enzyme Design and Whole Cell Activity Assay. ACS Synth Biol 2017; 6:120-129. [PMID: 27548779 DOI: 10.1021/acssynbio.6b00159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thermostabilization of an enzyme with complete retention of catalytic efficiency was demonstrated on recombinant 3-dehydroshikimate dehydratase (DHSase or wtAsbF) from Bacillus thuringiensis serovar konkukian 97-27 (hereafter, B. thuringiensis 97-27). The wtAsbF is relatively unstable at 37 °C, in vitro (t1/237 = 15 min), in the absence of divalent metal. We adopted a structure-based design to identify stabilizing mutations and created a combinatorial library based upon predicted mutations at specific locations on the enzyme surface. A diversified asbF library (∼2000 variants) was expressed in E. coli harboring a green fluorescent protein (GFP) reporter system linked to the product of wtAsbF activity (3,4-dihydroxybenzoate, DHB). Mutations detrimental to DHSase function were rapidly eliminated using a high throughput fluorescence activated cell sorting (FACS) approach. After a single sorting round and heat screen at 50 °C, a triple AsbF mutant (Mut1), T61N, H135Y, and H257P, was isolated and characterized. The half-life of Mut1 at 37 °C was >10-fold higher than the wtAsbF (t1/237 = 169 min). Further, the second-order rate constants for both wtAsbF and Mut1 were approximately equal (9.9 × 105 M-1 s-1, 7.8 × 105 M-1 s-1, respectively), thus demonstrating protein thermostability did not come at the expense of enzyme thermophilicity. In addition, in vivo overexpression of Mut1 in E. coli resulted in a ∼60-fold increase in functional enzyme when compared to the wild-type enzyme under the identical expression conditions. Finally, overexpression of the thermostable AsbF resulted in an approximate 80-120% increase in DHB accumulation in the media relative to the wild-type enzyme.
Collapse
Affiliation(s)
- Lucas B. Harrington
- Bioscience
Division, Los Alamos National Laboratory, P.O. Box 1663, MS M888, Los Alamos, New Mexico 87545, United States
| | - Ramesh K. Jha
- Bioscience
Division, Los Alamos National Laboratory, P.O. Box 1663, MS M888, Los Alamos, New Mexico 87545, United States
| | - Theresa L. Kern
- Bioscience
Division, Los Alamos National Laboratory, P.O. Box 1663, MS M888, Los Alamos, New Mexico 87545, United States
| | - Emily N. Schmidt
- Bioscience
Division, Los Alamos National Laboratory, P.O. Box 1663, MS M888, Los Alamos, New Mexico 87545, United States
| | - Gustavo M. Canales
- Department
of Chemistry, Northern Arizona University, P.O. Box 5698, Flagstaff, Arizona 86001, United States
| | - Kellan B. Finney
- Department
of Chemistry, Northern Arizona University, P.O. Box 5698, Flagstaff, Arizona 86001, United States
| | - Andrew T. Koppisch
- Department
of Chemistry, Northern Arizona University, P.O. Box 5698, Flagstaff, Arizona 86001, United States
| | - Charlie E. M. Strauss
- Bioscience
Division, Los Alamos National Laboratory, P.O. Box 1663, MS M888, Los Alamos, New Mexico 87545, United States
| | - David T. Fox
- Chemistry
Division, Los Alamos National Laboratory, P.O. Box 1663, MS E554, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
71
|
Kallscheuer N, Gätgens J, Lübcke M, Pietruszka J, Bott M, Polen T. Improved production of adipate with Escherichia coli by reversal of β-oxidation. Appl Microbiol Biotechnol 2016; 101:2371-2382. [PMID: 27933454 DOI: 10.1007/s00253-016-8033-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/23/2016] [Accepted: 11/26/2016] [Indexed: 11/28/2022]
Abstract
The linear C6 dicarboxylic acid adipic acid is an important bulk chemical in the petrochemical industry as precursor of the polymer nylon-6,6-polyamide. In recent years, efforts were made towards the biotechnological production of adipate from renewable carbon sources using microbial cells. One strategy is to produce adipate via a reversed β-oxidation pathway. Hitherto, the adipate titers were very low due to limiting enzyme activities for this pathway. In most cases, the CoA intermediates are non-natural substrates for the tested enzymes and were therefore barely converted. We here tested heterologous enzymes in Escherichia coli to overcome these limitations and to improve the production of adipate via a reverse β-oxidation pathway. We tested in vitro selected enzymes for the efficient reduction of the enoyl-CoA and in the final reaction for the thioester cleavage. The genes encoding the enzymes which showed in vitro the highest activity were then used to construct an expression plasmid for a synthetic adipate pathway. Expression of paaJ, paaH, paaF, dcaA, and tesB in E. coli BL21(DE3) resulted in the production of up to 36 mg/L of adipate after 30 h of cultivation. Beside the activities of the pathway enzymes, the availability of metabolic precursors may limit the synthesis of adipate, providing another key target for further strain engineering towards high-yield production of adipate with E. coli.
Collapse
Affiliation(s)
- Nicolai Kallscheuer
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| | - Jochem Gätgens
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Marvin Lübcke
- Institute of Bioorganic Chemistry, Heinrich-Heine-Universität, Düsseldorf, 52425, Jülich, Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich-Heine-Universität, Düsseldorf, 52425, Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Tino Polen
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
72
|
Kim S, Cheong S, Chou A, Gonzalez R. Engineered fatty acid catabolism for fuel and chemical production. Curr Opin Biotechnol 2016; 42:206-215. [DOI: 10.1016/j.copbio.2016.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/07/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022]
|
73
|
Abstract
Systems metabolic engineering, which recently emerged as metabolic engineering integrated with systems biology, synthetic biology, and evolutionary engineering, allows engineering of microorganisms on a systemic level for the production of valuable chemicals far beyond its native capabilities. Here, we review the strategies for systems metabolic engineering and particularly its applications in Escherichia coli. First, we cover the various tools developed for genetic manipulation in E. coli to increase the production titers of desired chemicals. Next, we detail the strategies for systems metabolic engineering in E. coli, covering the engineering of the native metabolism, the expansion of metabolism with synthetic pathways, and the process engineering aspects undertaken to achieve higher production titers of desired chemicals. Finally, we examine a couple of notable products as case studies produced in E. coli strains developed by systems metabolic engineering. The large portfolio of chemical products successfully produced by engineered E. coli listed here demonstrates the sheer capacity of what can be envisioned and achieved with respect to microbial production of chemicals. Systems metabolic engineering is no longer in its infancy; it is now widely employed and is also positioned to further embrace next-generation interdisciplinary principles and innovation for its upgrade. Systems metabolic engineering will play increasingly important roles in developing industrial strains including E. coli that are capable of efficiently producing natural and nonnatural chemicals and materials from renewable nonfood biomass.
Collapse
Affiliation(s)
- Kyeong Rok Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
| | - Jae Ho Shin
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
| | - Jae Sung Cho
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
| | - Dongsoo Yang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- BioInformatics Research Center, KAIST, Daejeon 34141, Republic of Korea
- BioProcess Engineering Research Center, KAIST, Daejeon 34141, Republic of Korea
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
74
|
Yang YX, Qian ZG, Zhong JJ, Xia XX. Hyper-production of large proteins of spider dragline silk MaSp2 by Escherichia coli via synthetic biology approach. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
75
|
Bowen CH, Bonin J, Kogler A, Barba-Ostria C, Zhang F. Engineering Escherichia coli for Conversion of Glucose to Medium-Chain ω-Hydroxy Fatty Acids and α,ω-Dicarboxylic Acids. ACS Synth Biol 2016; 5:200-6. [PMID: 26669968 DOI: 10.1021/acssynbio.5b00201] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In search of sustainable approaches to plastics production, many efforts have been made to engineer microbial conversions of renewable feedstock to short-chain (C2-C8) bifunctional polymer precursors (e.g., succinic acid, cadaverine, 1,4-butanediol). Less attention has been given to medium-chain (C12-C14) monomers such as ω-hydroxy fatty acids (ω-OHFAs) and α,ω-dicarboxylic acids (α,ω-DCAs), which are precursors to high performance polyesters and polyamides. Here we engineer a complete microbial conversion of glucose to C12 and C14 ω-OHFAs and α,ω-DCAs, with precise control of product chain length. Using an expanded bioinformatics approach, we screen a wide range of enzymes across phyla to identify combinations that yield complete conversion of intermediates to product α,ω-DCAs. Finally, through optimization of culture conditions, we enhance production titer of C12 α,ω-DCA to nearly 600 mg/L. Our results indicate potential for this microbial factory to enable commercially relevant, renewable production of C12 α,ω-DCA-a valuable precursor to the high-performance plastic, nylon-6,12.
Collapse
Affiliation(s)
- Christopher H. Bowen
- Department of Energy, Environmental, and Chemical Engineering, ‡Division of Biological & Biomedical Sciences, §Institute of Materials Science & Engineering, Washington University in Saint Louis, St. Louis, Missouri 63130, United States
| | - Jeff Bonin
- Department of Energy, Environmental, and Chemical Engineering, ‡Division of Biological & Biomedical Sciences, §Institute of Materials Science & Engineering, Washington University in Saint Louis, St. Louis, Missouri 63130, United States
| | - Anna Kogler
- Department of Energy, Environmental, and Chemical Engineering, ‡Division of Biological & Biomedical Sciences, §Institute of Materials Science & Engineering, Washington University in Saint Louis, St. Louis, Missouri 63130, United States
| | - Carlos Barba-Ostria
- Department of Energy, Environmental, and Chemical Engineering, ‡Division of Biological & Biomedical Sciences, §Institute of Materials Science & Engineering, Washington University in Saint Louis, St. Louis, Missouri 63130, United States
| | - Fuzhong Zhang
- Department of Energy, Environmental, and Chemical Engineering, ‡Division of Biological & Biomedical Sciences, §Institute of Materials Science & Engineering, Washington University in Saint Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
76
|
Zhang H, Li X, Su X, Ang EL, Zhang Y, Zhao H. Production of Adipic Acid from Sugar Beet Residue by Combined Biological and Chemical Catalysis. ChemCatChem 2016. [DOI: 10.1002/cctc.201600069] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Hongfang Zhang
- Metabolic Engineering Research Laboratory; Science and Engineering Institutes; 31 Biopolis Way The Nanos 138669 Singapore
| | - Xiukai Li
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos 138669 Singapore
| | - Xiaoyun Su
- Metabolic Engineering Research Laboratory; Science and Engineering Institutes; 31 Biopolis Way The Nanos 138669 Singapore
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute; Chinese Academy of Agricultural Sciences; No. 12 South Zhongguancun Street Haidian District Beijing 100081 P.R. China
| | - Ee Lui Ang
- Metabolic Engineering Research Laboratory; Science and Engineering Institutes; 31 Biopolis Way The Nanos 138669 Singapore
| | - Yugen Zhang
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos 138669 Singapore
| | - Huimin Zhao
- Metabolic Engineering Research Laboratory; Science and Engineering Institutes; 31 Biopolis Way The Nanos 138669 Singapore
- Departments of Chemical and Biomolecular Engineering, Chemistry, Biochemistry and Bioengineering; Institute for Genomic Biology; University of Illinois at Urbana-Champaign; Urbana IL 61801 USA
| |
Collapse
|
77
|
Xiao H, Zhong JJ. Production of Useful Terpenoids by Higher-Fungus Cell Factory and Synthetic Biology Approaches. Trends Biotechnol 2016; 34:242-255. [DOI: 10.1016/j.tibtech.2015.12.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/01/2015] [Accepted: 12/15/2015] [Indexed: 01/11/2023]
|
78
|
Tsuge Y, Kawaguchi H, Sasaki K, Kondo A. Engineering cell factories for producing building block chemicals for bio-polymer synthesis. Microb Cell Fact 2016; 15:19. [PMID: 26794242 PMCID: PMC4722748 DOI: 10.1186/s12934-016-0411-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 01/05/2016] [Indexed: 02/03/2023] Open
Abstract
Synthetic polymers are widely used in daily life. Due to increasing environmental concerns related to global warming and the depletion of oil reserves, the development of microbial-based fermentation processes for the production of polymer building block chemicals from renewable resources is desirable to replace current petroleum-based methods. To this end, strains that efficiently produce the target chemicals at high yields and productivity are needed. Recent advances in metabolic engineering have enabled the biosynthesis of polymer compounds at high yield and productivities by governing the carbon flux towards the target chemicals. Using these methods, microbial strains have been engineered to produce monomer chemicals for replacing traditional petroleum-derived aliphatic polymers. These developments also raise the possibility of microbial production of aromatic chemicals for synthesizing high-performance polymers with desirable properties, such as ultraviolet absorbance, high thermal resistance, and mechanical strength. In the present review, we summarize recent progress in metabolic engineering approaches to optimize microbial strains for producing building blocks to synthesize aliphatic and high-performance aromatic polymers.
Collapse
Affiliation(s)
- Yota Tsuge
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| | - Hideo Kawaguchi
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| | - Kengo Sasaki
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan. .,Biomass Engineering Program, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
79
|
Hagen A, Poust S, Rond TD, Fortman JL, Katz L, Petzold CJ, Keasling JD. Engineering a Polyketide Synthase for In Vitro Production of Adipic Acid. ACS Synth Biol 2016; 5:21-7. [PMID: 26501439 DOI: 10.1021/acssynbio.5b00153] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyketides have enormous structural diversity, yet polyketide synthases (PKSs) have thus far been engineered to produce only drug candidates or derivatives thereof. Thousands of other molecules, including commodity and specialty chemicals, could be synthesized using PKSs if composing hybrid PKSs from well-characterized parts derived from natural PKSs was more efficient. Here, using modern mass spectrometry techniques as an essential part of the design-build-test cycle, we engineered a chimeric PKS to enable production one of the most widely used commodity chemicals, adipic acid. To accomplish this, we introduced heterologous reductive domains from various PKS clusters into the borrelidin PKS' first extension module, which we previously showed produces a 3-hydroxy-adipoyl intermediate when coincubated with the loading module and a succinyl-CoA starter unit. Acyl-ACP intermediate analysis revealed an unexpected bottleneck at the dehydration step, which was overcome by introduction of a carboxyacyl-processing dehydratase domain. Appending a thioesterase to the hybrid PKS enabled the production of free adipic acid. Using acyl-intermediate based techniques to "debug" PKSs as described here, it should one day be possible to engineer chimeric PKSs to produce a variety of existing commodity and specialty chemicals, as well as thousands of chemicals that are difficult to produce from petroleum feedstocks using traditional synthetic chemistry.
Collapse
Affiliation(s)
| | | | | | | | | | - Christopher J. Petzold
- Physical
Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94270, United States
| | - Jay D. Keasling
- Physical
Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94270, United States
| |
Collapse
|
80
|
Merrick C, Wardrope C, Paget J, Colloms S, Rosser S. Rapid Optimization of Engineered Metabolic Pathways with Serine Integrase Recombinational Assembly (SIRA). Methods Enzymol 2016; 575:285-317. [DOI: 10.1016/bs.mie.2016.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
81
|
Wang J, Lin M, Xu M, Yang ST. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 156:323-361. [DOI: 10.1007/10_2015_5009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
82
|
Deng Y, Ma L, Mao Y. Biological production of adipic acid from renewable substrates: Current and future methods. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.08.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
83
|
Babu T, Yun EJ, Kim S, Kim DH, Liu KH, Kim SR, Kim KH. Engineering Escherichia coli for the production of adipic acid through the reversed β-oxidation pathway. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.09.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
84
|
Chung H, Yang JE, Ha JY, Chae TU, Shin JH, Gustavsson M, Lee SY. Bio-based production of monomers and polymers by metabolically engineered microorganisms. Curr Opin Biotechnol 2015; 36:73-84. [DOI: 10.1016/j.copbio.2015.07.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/19/2015] [Accepted: 07/21/2015] [Indexed: 10/23/2022]
|
85
|
Top value platform chemicals: bio-based production of organic acids. Curr Opin Biotechnol 2015; 36:168-75. [DOI: 10.1016/j.copbio.2015.08.022] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/11/2015] [Accepted: 08/18/2015] [Indexed: 11/19/2022]
|
86
|
Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering. Biotechnol Adv 2015; 33:1455-66. [DOI: 10.1016/j.biotechadv.2014.11.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/23/2014] [Accepted: 11/09/2014] [Indexed: 11/22/2022]
|
87
|
Systems strategies for developing industrial microbial strains. Nat Biotechnol 2015; 33:1061-72. [DOI: 10.1038/nbt.3365] [Citation(s) in RCA: 357] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/23/2015] [Indexed: 12/11/2022]
|
88
|
Deng Y, Mao Y. Production of adipic acid by the native-occurring pathway in Thermobifida fusca
B6. J Appl Microbiol 2015; 119:1057-63. [DOI: 10.1111/jam.12905] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 07/02/2015] [Accepted: 07/10/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Y. Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF); Jiangnan University; Wuxi Jiangsu China
- The Key Laboratory of Industrial Biotechnology; Ministry of Education; Jiangnan University; 1800 Lihu Road Wuxi Jiangsu China
| | - Y. Mao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF); Jiangnan University; Wuxi Jiangsu China
- The Key Laboratory of Industrial Biotechnology; Ministry of Education; Jiangnan University; 1800 Lihu Road Wuxi Jiangsu China
| |
Collapse
|
89
|
Metabolic engineering of Escherichia coli for the production of 1,3-diaminopropane, a three carbon diamine. Sci Rep 2015; 5:13040. [PMID: 26260768 PMCID: PMC4531320 DOI: 10.1038/srep13040] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/16/2015] [Indexed: 12/24/2022] Open
Abstract
Bio-based production of chemicals from renewable resources is becoming increasingly important for sustainable chemical industry. In this study, Escherichia coli was metabolically engineered to produce 1,3-diaminopropane (1,3-DAP), a monomer for engineering plastics. Comparing heterologous C4 and C5 pathways for 1,3-DAP production by genome-scale in silico flux analysis revealed that the C4 pathway employing Acinetobacter baumannii dat and ddc genes, encoding 2-ketoglutarate 4-aminotransferase and L-2,4-diaminobutanoate decarboxylase, respectively, was the more efficient pathway. In a strain that has feedback resistant aspartokinases, the ppc and aspC genes were overexpressed to increase flux towards 1,3-DAP synthesis. Also, studies on 128 synthetic small RNAs applied in gene knock-down revealed that knocking out pfkA increases 1,3-DAP production. Overexpression of ppc and aspC genes in the pfkA deleted strain resulted in production titers of 1.39 and 1.35 g l−1 of 1,3-DAP, respectively. Fed-batch fermentation of the final engineered E. coli strain allowed production of 13 g l−1 of 1,3-DAP in a glucose minimal medium.
Collapse
|
90
|
Engineering biological systems toward a sustainable bioeconomy. J Ind Microbiol Biotechnol 2015; 42:813-38. [PMID: 25845304 DOI: 10.1007/s10295-015-1606-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/09/2015] [Indexed: 01/07/2023]
Abstract
The nature of our major global risks calls for sustainable innovations to decouple economic growth from greenhouse gases emission. The development of sustainable technologies has been negatively impacted by several factors including sugar production costs, production scale, economic crises, hydraulic fracking development and the market inability to capture externality costs. However, advances in engineering of biological systems allow bridging the gap between exponential growth of knowledge about biology and the creation of sustainable value chains for a broad range of economic sectors. Additionally, industrial symbiosis of different biobased technologies can increase competitiveness and sustainability, leading to the development of eco-industrial parks. Reliable policies for carbon pricing and revenue reinvestments in disruptive technologies and in the deployment of eco-industrial parks could boost the welfare while addressing our major global risks toward the transition from a fossil to a biobased economy.
Collapse
|
91
|
Liu P, Zhu X, Tan Z, Zhang X, Ma Y. Construction of Escherichia Coli Cell Factories for Production of Organic Acids and Alcohols. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 155:107-40. [PMID: 25577396 DOI: 10.1007/10_2014_294] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Production of bulk chemicals from renewable biomass has been proved to be sustainable and environmentally friendly. Escherichia coli is the most commonly used host strain for constructing cell factories for production of bulk chemicals since it has clear physiological and genetic characteristics, grows fast in minimal salts medium, uses a wide range of substrates, and can be genetically modified easily. With the development of metabolic engineering, systems biology, and synthetic biology, a technology platform has been established to construct E. coli cell factories for bulk chemicals production. In this chapter, we will introduce this technology platform, as well as E. coli cell factories successfully constructed for production of organic acids and alcohols.
Collapse
Affiliation(s)
- Pingping Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Xinna Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Zaigao Tan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Area, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Tianjin, China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Area, Tianjin, 300308, China.
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|