51
|
Liu Z, Zhou Z, Ai P, Zhang C, Chen J, Wang Y. Astragaloside IV attenuates ferroptosis after subarachnoid hemorrhage via Nrf2/HO-1 signaling pathway. Front Pharmacol 2022; 13:924826. [PMID: 36059982 PMCID: PMC9437486 DOI: 10.3389/fphar.2022.924826] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a severe type of stroke featuring exceptionally high rate of morbidity and mortality due to the lack of effective management. Ferroptosis can be defined as a novel iron-dependent programmed cell death in contrast to classical apoptosis and necrosis. Astragaloside IV (AS-IV) is an active ingredient extracted from Astragalus membranaceus with established therapeutic effect on CNS diseases. However, the exact role of ferroptosis in Astragaloside IV-mediated neuroprotection after SAH is yet to be demonstrated. In the present study, the SAH model of SD male rats with endovascular perforation was used to gauge the neuroprotective effect of AS-IV on SAH-induced early brain injury (EBI) and to clarify the potential molecular mechanism. We found that the induction of SAH reduced the levels of SLC7A11 and glutathione peroxidase 4 (GPX4) in the brain, exacerbated iron accumulation, enhanced lipid reactive oxygen species (ROS) level, and stimulated neuronal ferroptosis. However, the administration of AS-IV and the ferroptosis inhibitor Ferrostatin-1 (Fer-1) enhanced the antioxidant capacity after SAH and suppressed the accumulation of lipid peroxides. Meanwhile, AS-IV triggered Nrf2/HO-1 signaling pathway and alleviated ferroptosis due to the induction of SAH. The Nrf2 inhibitor ML385 blocked the beneficial effects of neuroprotection. These results consistently suggest that ferroptosis is profoundly implicated in facilitating EBI in SAH, and that AS-IV thwarts the process of ferroptosis in SAH by activating Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuhai Wang
- *Correspondence: Junhui Chen, ; Yuhai Wang,
| |
Collapse
|
52
|
Moos WH, Faller DV, Glavas IP, Harpp DN, Kamperi N, Kanara I, Kodukula K, Mavrakis AN, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Sampani K, Steliou K, Tamvakopoulos C, Vavvas DG, Zamboni RJ, Chen X. Treatment and prevention of pathological mitochondrial dysfunction in retinal degeneration and in photoreceptor injury. Biochem Pharmacol 2022; 203:115168. [PMID: 35835206 DOI: 10.1016/j.bcp.2022.115168] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022]
Abstract
Pathological deterioration of mitochondrial function is increasingly linked with multiple degenerative illnesses as a mediator of a wide range of neurologic and age-related chronic diseases, including those of genetic origin. Several of these diseases are rare, typically defined in the United States as an illness affecting fewer than 200,000 people in the U.S. population, or about one in 1600 individuals. Vision impairment due to mitochondrial dysfunction in the eye is a prominent feature evident in numerous primary mitochondrial diseases and is common to the pathophysiology of many of the familiar ophthalmic disorders, including age-related macular degeneration, diabetic retinopathy, glaucoma and retinopathy of prematurity - a collection of syndromes, diseases and disorders with significant unmet medical needs. Focusing on metabolic mitochondrial pathway mechanisms, including the possible roles of cuproptosis and ferroptosis in retinal mitochondrial dysfunction, we shed light on the potential of α-lipoyl-L-carnitine in treating eye diseases. α-Lipoyl-L-carnitine is a bioavailable mitochondria-targeting lipoic acid prodrug that has shown potential in protecting against retinal degeneration and photoreceptor cell loss in ophthalmic indications.
Collapse
Affiliation(s)
- Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.
| | - Douglas V Faller
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Ioannis P Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, NY, USA
| | - David N Harpp
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Natalia Kamperi
- Center for Clinical, Experimental Surgery and Translational Research Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | | | | - Anastasios N Mavrakis
- Department of Medicine, Tufts University School of Medicine, St. Elizabeth's Medical Center, Boston, MA, USA
| | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Mark Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Carl A Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Whitney R Powers
- Department of Health Sciences, Boston University, Boston, MA, USA; Department of Anatomy, Boston University School of Medicine, Boston, MA, USA
| | - Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA; PhenoMatriX, Inc., Natick, MA, USA
| | - Constantin Tamvakopoulos
- Center for Clinical, Experimental Surgery and Translational Research Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Demetrios G Vavvas
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Robert J Zamboni
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Xiaohong Chen
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| |
Collapse
|
53
|
Zhao D, Yu W, Xie W, Ma Z, Hu Z, Song Z. Bone marrow-derived mesenchymal stem cells ameliorate severe acute pancreatitis by inhibiting oxidative stress in rats. Mol Cell Biochem 2022; 477:2761-2771. [PMID: 35622186 DOI: 10.1007/s11010-022-04476-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/06/2022] [Indexed: 12/17/2022]
Abstract
To investigate whether bone marrow mesenchymal stem cells (BMSCs) attenuate pancreatic injury via mediating oxidative stress in severe acute pancreatitis (SAP). The SAP model was established in rats. Phosphate buffered saline (PBS) or BMSCs were injected into the rats by tail veins. ML385 was used to down-regulate Nrf2 expression in rats. Pancreatic pathological score was used to evaluated pancreatic injury. Inflammatory-associated cytokines, serum lipase and amylase, levels of myeloperoxidase, malondialdehyde, reactive oxygen species and superoxide dismutase, as well as catalase activity were measured for injury severity evaluation. ML385 aggravates oxidative stress in SAP + ML385 group, compared with SAP + PBS group. BMSCs transplantation alleviated pancreatic injury and enhance antioxidant tolerance in SAP + BMSCs group, while ML385 administration weakened this efficacy in SAP + BMSCs + ML385 group. In addition, BMSCs promoted Nrf2 nuclear translocation via PI3K/AKT signaling pathway. Besides, BMSCs reduced inflammatory response by inhibiting NF-κB signaling pathway in SAP. BMSCs can inhibit oxidative stress and reduce pancreatic injury via inducing Nrf2 nuclear translocation in SAP.
Collapse
Affiliation(s)
- Dongbo Zhao
- Department of General Surgery, Shanghai Tenth People's Hospital, Clinical College of Nanjing Medical University, 301 Yanchang Middle Road, Shanghai, 200072, People's Republic of China
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Weidi Yu
- Department of General Surgery, Shanghai Tenth People's Hospital, Clinical College of Nanjing Medical University, 301 Yanchang Middle Road, Shanghai, 200072, People's Republic of China
| | - Wangcheng Xie
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Zhilong Ma
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Zhengyu Hu
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Zhenshun Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Clinical College of Nanjing Medical University, 301 Yanchang Middle Road, Shanghai, 200072, People's Republic of China.
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China.
| |
Collapse
|
54
|
Peng W, Ouyang Y, Wang S, Hou J, Zhu Z, Yang Y, Zhou R, Pi R. L-F001, a Multifunctional Fasudil-Lipoic Acid Dimer Prevents RSL3-Induced Ferroptosis via Maintaining Iron Homeostasis and Inhibiting JNK in HT22 Cells. Front Cell Neurosci 2022; 16:774297. [PMID: 35431808 PMCID: PMC9008309 DOI: 10.3389/fncel.2022.774297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/09/2022] [Indexed: 12/31/2022] Open
Abstract
Ferroptosis, an iron-dependent form of non-apoptotic cell death, plays important roles in cerebral ischemia. Previously we have found that L-F001, a novel fasudil-lipoic acid dimer with good pharmacokinetic characters has good neuroprotection against toxin-induced cell death in vitro and in vivo. Here, we investigated the protective effects of L-F001 against a Glutathione peroxidase 4 (GPX4) inhibitor Ras-selective lethality 3 (RSL3) -induced ferroptosis in HT22 cells. We performed MTT, Transmission Electron Microscope (TEM), Western blot, and immunofluorescence analyses to determine the protective effects of L-F001 treatment. RSL3 treatment significantly reduced HT22 cell viability and L-F001 significantly protected RSL3-induced cell death in a concentration-dependent manner and significantly attenuated Mitochondrial shrinkage observed by TEM. Meanwhile, L-F001 significantly decreased RSL3-induced ROS and lipid peroxidation levels in HT22 cells. Moreover L-F001could restore GPX4 and glutamate-cysteine ligase modifier subunit (GCLM) levels, and significantly deceased Cyclooxygenase (COX-2) levels to rescue the lipid peroxidation imbalance. In addition, FerroOrange fluorescent probe and Western blot analysis revealed that L-F001 treatment decreased the total number of intracellular Fe2+ and restore Ferritin heavy chain 1 (FTH1) level in RSL3-induced HT22 cells. Finally, L-F001 could reduce RSL3-induced c-Jun N-terminal kinase (JNK) activation, which might be a potential drug target for LF-001. Considering that L-F001 has a good anti-ferroptosis effect, our results showed that L-F001 might be a multi-target agent for the therapy of ferroptosis-related diseases, such as cerebral ischemia.
Collapse
Affiliation(s)
- Weijia Peng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ying Ouyang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Ying Ouyang
| | - Shuyi Wang
- School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiawei Hou
- School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zeyu Zhu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yang Yang
- School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ruiyu Zhou
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rongbiao Pi
- School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
55
|
Identification of co-expression hub genes for ferroptosis in kidney renal clear cell carcinoma based on weighted gene co-expression network analysis and The Cancer Genome Atlas clinical data. Sci Rep 2022; 12:4821. [PMID: 35314744 PMCID: PMC8938444 DOI: 10.1038/s41598-022-08950-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
Renal clear cell carcinoma (KIRC) is one of the most common tumors worldwide and has a high mortality rate. Ferroptosis is a major mechanism of tumor occurrence and development, as well as important for prognosis and treatment of KIRC. Here, we conducted bioinformatics analysis to identify KIRC hub genes that target ferroptosis. By Weighted gene co-expression network analysis (WGCNA), 11 co-expression-related genes were screened out. According to Kaplan Meier's survival analysis of the data from the gene expression profile interactive analysis database, it was identified that the expression levels of two genes, PROM2 and PLIN2, are respectively related to prognosis. In conclusion, our findings indicate that PROM2 and PLIN2 may be effective new targets for the treatment and prognosis of KIRC.
Collapse
|
56
|
Zhang J, Gao Y, Zhang L, Zhang C, Zhao Y, Zhang Y, Li S, Chang C, Zhang X, Yang G. Alpha-Lipoic Acid Attenuates MPTP/MPP +-Induced Neurotoxicity: Roles of SIRT1-Dependent PGC-1α Signaling Pathways. Neurotox Res 2022; 40:410-419. [PMID: 35146598 DOI: 10.1007/s12640-022-00479-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/31/2022]
Abstract
Accumulated oxidative damage plays key roles in the pathogenesis of Parkinson's disease (PD). Silent mating type information regulation 2 homolog 1 (SIRT1), a class III histone deacetylase, can directly activate peroxisome proliferator-activated receptor-c coactivator-1α (PGC-1α) and attenuate oxidative stress. Alpha-lipoic acid (ALA) is a natural antioxidant that has been demonstrated to protect PC12 cells against 1-methyl-4-phenylpyridinium (MPP+). However, the underlying mechanisms related to changes in cell signaling cascades are not fully understood. In the present study, the neuroprotective effect of ALA and the potential role of ALA in the SIRT1 pathway was investigated in vitro and in a mouse model of PD. A Cell Counting Kit-8 (CCK-8) assay was performed to detect the SY5Y-SH cell viability. Immunohistochemistry, quantitative real-time polymerase chain reaction and western blot assays were used to evaluate the expression of tyrosine hydroxylase (TH), SIRT1, and PGC-1α in vivo and in vitro. Intracellular reactive oxygen species (ROS) production and tissue SOD and MDA were detected by the corresponding assay kits. The results showed that ALA notably prevented oxidative stress and neurotoxicity in vivo and in vitro against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)/MPP+. Furthermore, ALA significantly increased the expression of SIRT1 and PGC-1α in vivo and in vitro in MPTP/MPP+-induced models, which was reversed by the SIRT1 inhibitor EX527. These results suggested that ALA prevented oxidative stress and that neurotoxicity was involved in the upregulation of SIRT1 and PGC-1α in PD mice.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 05000, People's Republic of China
| | - Ya Gao
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 05000, People's Republic of China
| | - Lan Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China.,Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Cong Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China.,Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Yuan Zhao
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 05000, People's Republic of China
| | - Yidan Zhang
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 05000, People's Republic of China
| | - Shuyue Li
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 05000, People's Republic of China
| | - Cui Chang
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 05000, People's Republic of China
| | - Xiangjian Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China. .,Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, People's Republic of China.
| | - Guofeng Yang
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 05000, People's Republic of China.
| |
Collapse
|
57
|
Yildizhan K, Çinar R, Naziroğlu M. The involvement of TRPM2 on the MPP +-induced oxidative neurotoxicity and apoptosis in hippocampal neurons from neonatal mice: protective role of resveratrol. Neurol Res 2022; 44:636-644. [PMID: 35019826 DOI: 10.1080/01616412.2022.2027644] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is an age-related chronic neurodegenerative disease. Although PD is known to be a result of damage to hippocampal neurons, its molecular mechanism has yet to be completely clarified. The neurodegeneration in hippocampal neurons has been suggested to include excessive production of reactive oxygen species (ROS). Mitochondrial dysfunction and disruption of intracellular Ca2+ homeostasis play the most important role in the increase in ROS production for the cells. Remarkably, it is stated in the literature that especially the change of Ca2+ homeostasis triggers neuronal degeneration. TRPM2 is a unique calcium-permeable nonselective cation channel, and densest in the numberless neuronal population. The current study aims to elucidate the effect of antioxidant resveratrol (Resv) on TRPM2-mediated oxidative stress (OS) induced by 1-methyl-4-phenylpyridinium (MPP) exposure in the primary mouse hippocampal neurons. The neurons were divided into four groups as Control, Resv , MPP, and MPP+ Resv. In the current results, the activation of TRPM2 was observed in primary hippocampal neurons with MPP incubation. TRPM2 channel expression levels in the MPP group increased in hippocampal neurons after MPP exposure. In addition, intracellular free Ca2+ concentration and TRPM2 channel currents were highest in MPP groups, although they were decreased by the Resv treatment. In addition, mitochondrial membrane depolarization, ROS, caspase-3, caspase-9, and apoptosis values induced by MPP decreased with resveratrol treatment. In conclusion, in our study, we observed that the dysregulation of OS-induced TRPM2 channel activation in hippocampal neurons exposed to MPP caused apoptotic cell death in neurons, while the use of resveratrol had a protective effect by reducing OS resources in the environment.
Collapse
Affiliation(s)
- Kenan Yildizhan
- Department of Biophysics, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Ramazan Çinar
- Department of Neuroscience, Health Science Institute, Suleyman Demirel University, Isparta, Turkey
| | - Mustafa Naziroğlu
- Department of Neuroscience, Health Science Institute, Suleyman Demirel University, Isparta, Turkey.,Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.,Drug Discovery Unit, BSN Health, Analysis and Innovation Ltd. Inc. Teknokent, Isparta, Turkey
| |
Collapse
|
58
|
Deng Y, Zhang X, Chen F, Huang J, Zhang D, Luo J. HO-1 mediated by PI3K/Akt/Nrf2 signaling pathway is involved in (-)-epigallocatechin-3-gallate-rescueing impaired cognitive function induced by chronic cerebral hypoperfusion in rat model. Exp Aging Res 2022; 48:428-443. [DOI: 10.1080/0361073x.2021.2011689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Yu Deng
- Department of Geratology, Chongqing Mental Health Center, Chongqing, China
| | - Xiong Zhang
- Neuroscience Research Center, Chongqing Medical University, Chongqing, China
| | - Fei Chen
- Department of Geratology, Chongqing Mental Health Center, Chongqing, China
| | - Jie Huang
- Department of Geratology, Chongqing Mental Health Center, Chongqing, China
| | - Daijiang Zhang
- Department of Geratology, Chongqing Mental Health Center, Chongqing, China
| | - Jie Luo
- Department of Geratology, Chongqing Mental Health Center, Chongqing, China
| |
Collapse
|
59
|
Wang Y, Gao L, Chen J, Li Q, Huo L, Wang Y, Wang H, Du J. Pharmacological Modulation of Nrf2/HO-1 Signaling Pathway as a Therapeutic Target of Parkinson's Disease. Front Pharmacol 2021; 12:757161. [PMID: 34887759 PMCID: PMC8650509 DOI: 10.3389/fphar.2021.757161] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022] Open
Abstract
Parkinson’s disease (PD) is a complex neurodegenerative disorder featuring both motor and nonmotor symptoms associated with a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Oxidative stress (OS) has been implicated in the pathogenesis of PD. Genetic and environmental factors can produce OS, which has been implicated as a core contributor to the initiation and progression of PD through the degeneration of dopaminergic neurons. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) orchestrates activation of multiple protective genes, including heme oxygenase-1 (HO-1), which protects cells from OS. Nrf2 has also been shown to exert anti-inflammatory effects and modulate both mitochondrial function and biogenesis. Recently, a series of studies have reported that different bioactive compounds were shown to be able to activate Nrf2/antioxidant response element (ARE) and can ameliorate PD-associated neurotoxin, both in animal models and in tissue culture. In this review, we briefly overview the sources of OS and the association between OS and the pathogenesis of PD. Then, we provided a concise overview of Nrf2/ARE pathway and delineated the role played by activation of Nrf2/HO-1 in PD. At last, we expand our discussion to the neuroprotective effects of pharmacological modulation of Nrf2/HO-1 by bioactive compounds and the potential application of Nrf2 activators for the treatment of PD. This review suggests that pharmacological modulation of Nrf2/HO-1 signaling pathway by bioactive compounds is a therapeutic target of PD.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Luyan Gao
- Department of Neurology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Qiang Li
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng, China
| | - Liang Huo
- Department of Pediatric Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanchao Wang
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng, China
| | - Hongquan Wang
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Jichen Du
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| |
Collapse
|
60
|
Soriano-Castell D, Liang Z, Maher P, Currais A. Profiling the chemical nature of anti-oxytotic/ferroptotic compounds with phenotypic screening. Free Radic Biol Med 2021; 177:313-325. [PMID: 34748909 PMCID: PMC8639737 DOI: 10.1016/j.freeradbiomed.2021.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/26/2022]
Abstract
Because old age is the greatest risk factor for Alzheimer's disease (AD), it is critical to target the pathological events that link aging to AD in order to develop an efficient treatment that acts upon the primary causes of the disease. One such event might be the activation of oxytosis/ferroptosis, a unique cell death mechanism characterized by mitochondrial dysfunction and lethal lipid peroxidation. Here, a comprehensive library of >900 natural compounds was screened for protection against oxytosis/ferroptosis in nerve cells with the goal of better understanding the chemical nature of inhibitors of oxytosis/ferroptosis. Although the compounds tested spanned structurally diverse chemical classes from animal, microbial, plant and synthetic origins, a small set of very potent anti-oxytotic/ferroptotic compounds was identified that was highly enriched in plant quinones. The ability of these compounds to protect against oxytosis/ferroptosis strongly correlated with their ability to protect against in vitro ischemia and intracellular amyloid-beta toxicity in nerve cells, indicating that aspects of oxytosis/ferroptosis also underly other toxicities that are relevant to AD. Importantly, the anti-oxytotic/ferroptotic character of the quinone compounds relied on their capacity to target and directly prevent lipid peroxidation in a manner that required the reducing activity of cellular redox enzymes, such as NAD(P)H:quinone oxidoreductase 1 (NQO1) and ferroptosis suppressor protein 1 (FSP1). Because some of the compounds increased the production of total reactive oxygen species while decreasing lipid peroxidation, it appears that the pro-oxidant character of a compound can coexist with an inhibitory effect on lipid peroxidation and, consequently, still prevent oxytosis/ferroptosis. These findings have significant implications for the understanding of oxytosis/ferroptosis and open new approaches to the development of future neurotherapies.
Collapse
Affiliation(s)
- David Soriano-Castell
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd. La Jolla, CA, 92037, USA.
| | - Zhibin Liang
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd. La Jolla, CA, 92037, USA
| | - Pamela Maher
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd. La Jolla, CA, 92037, USA
| | - Antonio Currais
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd. La Jolla, CA, 92037, USA.
| |
Collapse
|
61
|
Parga JA, Rodriguez-Perez AI, Garcia-Garrote M, Rodriguez-Pallares J, Labandeira-Garcia JL. NRF2 Activation and Downstream Effects: Focus on Parkinson's Disease and Brain Angiotensin. Antioxidants (Basel) 2021; 10:antiox10111649. [PMID: 34829520 PMCID: PMC8614768 DOI: 10.3390/antiox10111649] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS) are signalling molecules used to regulate cellular metabolism and homeostasis. However, excessive ROS production causes oxidative stress, one of the main mechanisms associated with the origin and progression of neurodegenerative disorders such as Parkinson's disease. NRF2 (Nuclear Factor-Erythroid 2 Like 2) is a transcription factor that orchestrates the cellular response to oxidative stress. The regulation of NRF2 signalling has been shown to be a promising strategy to modulate the progression of the neurodegeneration associated to Parkinson's disease. The NRF2 pathway has been shown to be affected in patients with this disease, and activation of NRF2 has neuroprotective effects in preclinical models, demonstrating the therapeutic potential of this pathway. In this review, we highlight recent advances regarding the regulation of NRF2, including the effect of Angiotensin II as an endogenous signalling molecule able to regulate ROS production and oxidative stress in dopaminergic neurons. The genes regulated and the downstream effects of activation, with special focus on Kruppel Like Factor 9 (KLF9) transcription factor, provide clues about the mechanisms involved in the neurodegenerative process as well as future therapeutic approaches.
Collapse
Affiliation(s)
- Juan A. Parga
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.I.R.-P.); (M.G.-G.); (J.R.-P.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Laboratory of Cellular and Molecular Neurobiology of Parkinson’s Disease, CIMUS, Department of Morphological Sciences, University of Santiago de Compostela, R/ San Francisco s/n, 15782 Santiago de Compostela, Spain
- Correspondence: (J.A.P.); (J.L.L.-G.)
| | - Ana I. Rodriguez-Perez
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.I.R.-P.); (M.G.-G.); (J.R.-P.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Laboratory of Cellular and Molecular Neurobiology of Parkinson’s Disease, CIMUS, Department of Morphological Sciences, University of Santiago de Compostela, R/ San Francisco s/n, 15782 Santiago de Compostela, Spain
| | - Maria Garcia-Garrote
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.I.R.-P.); (M.G.-G.); (J.R.-P.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Laboratory of Cellular and Molecular Neurobiology of Parkinson’s Disease, CIMUS, Department of Morphological Sciences, University of Santiago de Compostela, R/ San Francisco s/n, 15782 Santiago de Compostela, Spain
| | - Jannette Rodriguez-Pallares
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.I.R.-P.); (M.G.-G.); (J.R.-P.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Laboratory of Cellular and Molecular Neurobiology of Parkinson’s Disease, CIMUS, Department of Morphological Sciences, University of Santiago de Compostela, R/ San Francisco s/n, 15782 Santiago de Compostela, Spain
| | - Jose L. Labandeira-Garcia
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.I.R.-P.); (M.G.-G.); (J.R.-P.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Laboratory of Cellular and Molecular Neurobiology of Parkinson’s Disease, CIMUS, Department of Morphological Sciences, University of Santiago de Compostela, R/ San Francisco s/n, 15782 Santiago de Compostela, Spain
- Correspondence: (J.A.P.); (J.L.L.-G.)
| |
Collapse
|
62
|
Lu J, Zhao Y, Liu M, Lu J, Guan S. Toward improved human health: Nrf2 plays a critical role in regulating ferroptosis. Food Funct 2021; 12:9583-9606. [PMID: 34542140 DOI: 10.1039/d1fo01036k] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ferroptosis is a recently defined type of regulated cell death caused by an excess iron-dependent accumulation of lipid peroxides and is morphologically and biochemically distinct from other types of cell death. Notably, Nrf2 is identified to exquisitely modulate ferroptosis due to its ability to target a host of ferroptosis cascade genes, which places Nrf2 in the pivotal position of ferroptosis. This paper reviews the regulation effect of Nrf2 on ferroptosis, different activation mechanisms of Nrf2 as well as the relevance of the Nrf2-ferroptosis axis in diseases, and finally summarizes foods with beneficial effects in ferroptosis via the Nrf2 pathway and aims to serve as a reference for follow-up studies of food functions related to Nrf2, ferroptosis, and human health.
Collapse
Affiliation(s)
- Jing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China. .,Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Yanan Zhao
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China.
| | - Meitong Liu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China.
| | - Jianing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China.
| | - Shuang Guan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China. .,Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, People's Republic of China
| |
Collapse
|
63
|
Chen ZA, Tian H, Yao DM, Zhang Y, Feng ZJ, Yang CJ. Identification of a Ferroptosis-Related Signature Model Including mRNAs and lncRNAs for Predicting Prognosis and Immune Activity in Hepatocellular Carcinoma. Front Oncol 2021; 11:738477. [PMID: 34568075 PMCID: PMC8458836 DOI: 10.3389/fonc.2021.738477] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022] Open
Abstract
Background Ferroptosis is a novel form of regulated cell death involved in tumor progression. The role of ferroptosis-related lncRNAs in hepatocellular carcinoma (HCC) remains unclear. Methods RNA-seq and clinical data for HCC patients were downloaded from The Cancer Genome Atlas (TCGA) Genomic Data Commons (GDC) portal. Bioinformatics methods, including weighted gene coexpression network analysis (WGCNA), Cox regression, and least absolute shrinkage and selection operator (LASSO) analysis, were used to identify signature markers for diagnosis/prognosis. The tumor microenvironment, immune infiltration and functional enrichment were compared between the low-risk and high-risk groups. Subsequently, small molecule drugs targeting ferroptosis-related signature components were predicted via the L1000FWD and PubChem databases. Results The prognostic model consisted of 2 ferroptosis-related mRNAs (SLC1A5 and SLC7A11) and 8 ferroptosis-related lncRNAs (AC245297.3, MYLK-AS1, NRAV, SREBF2-AS1, AL031985.3, ZFPM2-AS1, AC015908.3, MSC-AS1). The areas under the curves (AUCs) were 0.830 and 0.806 in the training and test groups, respectively. Decision curve analysis (DCA) revealed that the ferroptosis-related signature performed better than all pathological characteristics. Multivariate Cox regression analysis showed that the risk score was an independent prognostic factor. The survival probability of low- and high-risk patients could be clearly distinguished by the principal component analysis (PCA) plot. The risk score divided HCC patients into two distinct groups in terms of immune status, especially checkpoint gene expression, which was further supported by the Gene Ontology (GO) biological process, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Finally, several small molecule drugs (SIB-1893, geldanamycin and PD-184352, etc) targeting ferroptosis-related signature components were identified for future reference. Conclusion We constructed a new ferroptosis-related mRNA/lncRNA signature for HCC patients. The model can be used for prognostic prediction and immune evaluation, providing a reference for immunotherapies and targeted therapies.
Collapse
Affiliation(s)
- Zi-An Chen
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hui Tian
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dong-Mei Yao
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuan Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhi-Jie Feng
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chuan-Jie Yang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
64
|
Jakaria M, Belaidi AA, Bush AI, Ayton S. Ferroptosis as a mechanism of neurodegeneration in Alzheimer's disease. J Neurochem 2021; 159:804-825. [PMID: 34553778 DOI: 10.1111/jnc.15519] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 01/19/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia, with complex pathophysiology that is not fully understood. While β-amyloid plaque and neurofibrillary tangles define the pathology of the disease, the mechanism of neurodegeneration is uncertain. Ferroptosis is an iron-mediated programmed cell death mechanism characterised by phospholipid peroxidation that has been observed in clinical AD samples. This review will outline the growing molecular and clinical evidence implicating ferroptosis in the pathogenesis of AD, with implications for disease-modifying therapies.
Collapse
Affiliation(s)
- Md Jakaria
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Abdel Ali Belaidi
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Scott Ayton
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
65
|
N2L, a novel lipoic acid-niacin dimer, attenuates ferroptosis and decreases lipid peroxidation in HT22 cells. Brain Res Bull 2021; 174:250-259. [PMID: 34171402 DOI: 10.1016/j.brainresbull.2021.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/28/2022]
Abstract
Ferroptosis, a new type of programmed cell death discovered in recent years, plays an important role in many neurodegenerative diseases. N2L is a novel lipoic acid-niacin dimer regulating lipid metabolism with multifunction, including antioxidant effect. It also exerts neuroprotective effects against glutamate- or β-amyloid (Aβ) -induced cell death. Because reactive oxygen species (ROS) play an essential role in ferroptosis, we hypothesize that N2L might protect cells from ferroptosis. Here, we investigated the protective effect of N2L and the underlying mechanism(s) under RAS-selective lethality 3 (RSL3) treatment in HT22 cells. RSL3 decreased the cell viability and induced excessive accumulation of ROS in HT22 cells. N2L pretreatment effectively protected HT22 cells against lipid peroxidation. What's more, N2L recovered glutathione peroxidase 4 (GPX4) expression and blocked the increase of Cyclooxygenase-2 (cox-2) and acyl-CoA synthetase long-chain family member 4 (ACSL4) protein expressions. Moreover, N2L also significantly prevented Ferritin Heavy Chain 1 (FTH1) from downregulation and maintained iron homeostasis. Finally, N2L pretreatment could decrease c-Jun N-terminal kinase (JNK) / extracellular regulated protein kinases (ERK) activation induced by RSL3. Taken together, our results showed that N2L could protect HT22 cells from RSL3-induced ferroptosis through decreasing lipid peroxidation and JNK/ERK activation. And N2L could be a ferroptosis inhibitor for the therapy of ferroptosis-related diseases, such as Alzheimer's disease.
Collapse
|
66
|
Huang N, Huang J, Zhang Y, Chen M, Shi J, Jin F. Resveratrol against 6-OHDA-induced damage of PC12 cells via PI3K/Akt. Transl Neurosci 2021; 12:138-144. [PMID: 33976931 PMCID: PMC8060978 DOI: 10.1515/tnsci-2020-0165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/27/2021] [Accepted: 04/02/2021] [Indexed: 12/18/2022] Open
Abstract
Objective Our previous in vivo study found that resveratrol (Res), which is a phytoalexin, attenuated 6-hydroxydopamine (6-OHDA)-induced motor dysfunction by activating the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway in rats. Therefore, we further explored the protective effect of Res on 6-OHDA-induced damage to PC12 cells in vitro with respect to the PI3K/Akt signaling pathway. Methods We incubated PC12 cells with 75 μM 6-OHDA for 24 h, and Res was then added at a final concentration of 25 μM; the protective effect was examined via MTT and lactate dehydrogenase (LDH) assays. In addition, the PI3K inhibitor LY294002 was used to investigate the potential mechanism. JC-1 staining was used to detect the mitochondrial membrane potential (MMP), and western blotting (WB) was used to detect the phosphorylation of Akt-Ser473. Results Compared with that in the control, the cell viability, total superoxide dismutase (SOD) activity, MMP, and p-Akt-Ser473 level of 6-OHDA-treated PC12 cells were significantly decreased, while the leakage rate of LDH was increased. And after treatment with 25 μM Res, the cell viability, total SOD activity, MMP, and p-Akt-Ser473 level of 6-OHDA-treated PC12 cells were significantly increased compared with those of the control cells, while the leakage rate of LDH was decreased. These effects of Res were antagonized by LY294002. Conclusions Res ameliorates 6-OHDA-induced damage to PC12 cells via activation of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Nanqu Huang
- Drug Clinical Trial Institution, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), No. 98, Fenghuang Road, Zunyi 563000, Guizhou, China
| | - Juan Huang
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, No. 280, South Chongqing Road, Shanghai 200025, China
| | - Ying Zhang
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6, Xuefu West Road, Xinpu New District, Zunyi 563000, Guizhou, China
| | - Mingji Chen
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6, Xuefu West Road, Xinpu New District, Zunyi 563000, Guizhou, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6, Xuefu West Road, Xinpu New District, Zunyi 563000, Guizhou, China
| | - Feng Jin
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6, Xuefu West Road, Xinpu New District, Zunyi 563000, Guizhou, China
| |
Collapse
|
67
|
Shaygannia E, Nasr-Esfahani MH, Sotoodehnejadnematalahi F, Parivar K. Is ferroptosis involved in ROS-induced testicular lesions in a varicocele rat model? Basic Clin Androl 2021; 31:10. [PMID: 33789564 PMCID: PMC8015065 DOI: 10.1186/s12610-021-00125-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 02/04/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Ferroptosis is an iron-dependent cell death that is distinct from apoptosis. Based on excessive amounts of iron and reactive oxygen species in varicocele (VCL) rats, we hypothesize that ferroptosis might be involved in VCL. In addition, since alpha-lipoic acid (ALA) was shown to have both antioxidant and anti-ferroptotic activity we assessed in the present work the status of ferroptosis in our varicocele model and the protective effect of ALA. To this end, 70 male Wistar rats were divided into 7 groups: control, sham and varicocele groups which were initially sacrificed 2 months after the operation to verify the induction of varicocele. A second batch of the same 3 groups were sacrificed 4 months after varicocele induction to evaluate the effect of ALA supplementation. The parameters measured were chromatin integrity (aniline blue and acridine orange staining), lipid peroxidation (BODIPY staining), testicular morphometry and iron content. In addition, redox (GSH and NADPH) and ferroptosis (Nrf2, Slc7a11, P53 and p-Jnk) markers were evaluated at 2 and 4 months post-operation. RESULT The alteration of the spermatic parameters made it possible to verify the induction of the varicocele. Iron accumulated well in the testicles during varicocele and decreased significantly following ALA treatment. Ferroptotic molecular markers at the mRNA and protein levels were not significantly altered. ALA supplementation did not alter NADPH values, but increased GSH levels. CONCLUSION Despite the increased accumulation of iron in the testes 2 and 4 months after surgical induction of varicocele, molecular evidence did not demonstrate the involvement of ferroptosis. This could be explained by the mosaic nature of the varicocele affecting some seminiferous tubules and not others which could mask variations in molecular markers. In parallel, our study confirms that ALA stimulates the NRF2 pathway.
Collapse
Affiliation(s)
- Erfaneh Shaygannia
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad H Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | | | - Kazem Parivar
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|