Vidal C, Tomás-Gamasa M, Gutiérrez-González A, Mascareñas JL. Ruthenium-Catalyzed Redox Isomerizations inside Living Cells.
J Am Chem Soc 2019;
141:5125-5129. [PMID:
30892889 PMCID:
PMC6497367 DOI:
10.1021/jacs.9b00837]
[Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Indexed: 01/22/2023]
Abstract
Tailored ruthenium(IV) complexes can catalyze the isomerization of allylic alcohols into saturated carbonyl derivatives under physiologically relevant conditions, and even inside living mammalian cells. The reaction, which involves ruthenium-hydride intermediates, is bioorthogonal and biocompatible, and can be used for the "in cellulo" generation of fluorescent and bioactive probes. Overall, our research reveals a novel metal-based tool for cellular intervention, and comes to further demonstrate the compatibility of organometallic mechanisms with the complex environment of cells.
Collapse