51
|
Aljuhani A, Aouad MR, Rezki N, Aljaldy OA, Al-Sodies SA, Messali M, Ali I. Novel pyridinium based ionic liquids with amide tethers: Microwave assisted synthesis, molecular docking and anticancer studies. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
52
|
Al-Blewi F, Rezki N, Naqvi A, Qutb Uddin H, Al-Sodies S, Messali M, Aouad MR, Bardaweel S. A Profile of the In Vitro Anti-Tumor Activity and In Silico ADME Predictions of Novel Benzothiazole Amide-Functionalized Imidazolium Ionic Liquids. Int J Mol Sci 2019; 20:ijms20122865. [PMID: 31212762 PMCID: PMC6627815 DOI: 10.3390/ijms20122865] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/01/2019] [Accepted: 06/01/2019] [Indexed: 12/24/2022] Open
Abstract
A focused array of green imidazolium ionic liquids (ILs) encompassing benzothiazole ring and amide linkage were designed and synthesized using quaternization and metathesis protocols. The synthesized ILs have been fully characterized by usual spectroscopic methods and screened for their anticancer activities against human cancer cell lines originating from breast and colon cancers. Collectively, our biological data demonstrate that the newly synthesized series has variable anticancer activities in the examined cancer types. The synthesized ILs 8, 10 and 21-29 comprising the methyl and methyl sulfonyl benzothiazole ring emerged as the most potent compounds with promising antiproliferative activities relative to their benzothiazole ring counterparts. Furthermore, the mechanism underlying the observed anticancer activity was investigated. The most active compound 22 appears to exert its anticancer effect through apoptosis dependent pathway in breast cancer cells. Interestingly, compound 22 has also shown good in silico absorption (81.75%) along with high gastro-intestinal absorption as per ADME predictions.
Collapse
Affiliation(s)
- Fawzia Al-Blewi
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia.
| | - Nadjet Rezki
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia.
- Department of Chemistry, Faculty of Sciences, University of Sciences and Technology Mohamed Boudiaf, Laboratoire de Chimie et Electrochimie des Complexes Metalliques (LCECM) USTO-MB, P.O. Box 1505, El M'nouar, Oran 31000, Algeria.
| | - Arshi Naqvi
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia.
| | - Husna Qutb Uddin
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia.
| | - Salsabeel Al-Sodies
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia.
| | - Mouslim Messali
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia.
| | - Mohamed Reda Aouad
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia.
| | - Sanaa Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan.
| |
Collapse
|
53
|
De Boeck M, Dehaen W, Tytgat J, Cuypers E. Microextractions in forensic toxicology: The potential role of ionic liquids. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.11.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
54
|
Egorova KS, Ananikov VP. Fundamental importance of ionic interactions in the liquid phase: A review of recent studies of ionic liquids in biomedical and pharmaceutical applications. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.09.025] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
55
|
Boldescu V, Sucman N, Hassan S, Iqbal J, Neamtu M, Lecka J, Sévigny J, Prodius D, Macaev F. Ectonucleotidase Inhibitory and Redox Activity of Imidazole‐Based Organic Salts and Ionic Liquids. ChemMedChem 2018; 13:2297-2304. [DOI: 10.1002/cmdc.201800520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Veaceslav Boldescu
- Laboratory of Organic Synthesis and BiopharmaceuticalsInstitute of Chemistry 3 Academiei str. 2028 Chisinau Moldova
| | - Natalia Sucman
- Laboratory of Organic Synthesis and BiopharmaceuticalsInstitute of Chemistry 3 Academiei str. 2028 Chisinau Moldova
| | - Sidra Hassan
- Department of Pharmaceutical SciencesCOMSATS Institute of Information Technology 22060 Abbottabad Pakistan
| | - Jamshed Iqbal
- Department of Pharmaceutical SciencesCOMSATS Institute of Information Technology 22060 Abbottabad Pakistan
| | - Mariana Neamtu
- Interdisciplinary Research Department“Alexandru Ioan Cuza” University 54 Lascar Catargi str. 700107 Iasi Romania
| | - Joanna Lecka
- Département de microbiologie-infectiologie et d'immunologieFaculté de MédecineUniversité Laval Québec QC G1V 0A6 Canada
- Centre de Recherche du CHU de QuébecUniversité Laval Québec QC G1V 4G2 Canada
| | - Jean Sévigny
- Département de microbiologie-infectiologie et d'immunologieFaculté de MédecineUniversité Laval Québec QC G1V 0A6 Canada
- Centre de Recherche du CHU de QuébecUniversité Laval Québec QC G1V 4G2 Canada
| | - Denis Prodius
- Laboratory of Bioinorganic Chemistry and NanocompositesInstitute of Chemistry 3 Academiei str. 2028 Chisinau Moldova
- Current address: US Department of Energy and Critical Materials Institute Ames IA 50011-3020 USA
| | - Fliur Macaev
- Laboratory of Organic Synthesis and BiopharmaceuticalsInstitute of Chemistry 3 Academiei str. 2028 Chisinau Moldova
| |
Collapse
|
56
|
Galluzzi M, Schulte C, Milani P, Podestà A. Imidazolium-Based Ionic Liquids Affect Morphology and Rigidity of Living Cells: An Atomic Force Microscopy Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12452-12462. [PMID: 30213187 DOI: 10.1021/acs.langmuir.8b01554] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The study of the toxicity, biocompatibility, and environmental sustainability of room-temperature ionic liquids (ILs) is still in its infancy. Understanding the impact of ILs on living organisms, especially from the aquatic ecosystem, is urgent, since large amounts of these substances are starting to be employed as solvents in industrial chemical processes, and on the other side, evidence of toxic effects of ILs on microorganisms and single cells have been observed. To date, the toxicity of ILs has been investigated by means of macroscopic assays aimed at characterizing the effective concentrations (like the EC50) that cause the death of a significant fraction of the population of microorganisms and cells. These studies allow us to identify the cell membrane as the first target of the IL interaction, whose effectiveness was correlated to the lipophilicity of the cation, i.e., to the length of the lateral alkyl chain. Our study aimed at investigating the molecular mechanisms underpinning the interaction of ILs with living cells. To this purpose, we carried out a combined topographic and mechanical analysis by atomic force microscopy of living breast metastatic cancer cells (MDA-MB-231) upon interaction with imidazolium-based ILs. We showed that ILs are able to induce modifications of the overall rigidity (effective Young's modulus) and morphology of the cells. Our results demonstrate that ILs act on the physical properties of the outer cell layer (the membrane linked to the actin cytoskeleton), already at concentrations below the EC50. These potentially toxic effects are stronger at higher IL concentrations, as well as with longer lateral chains in the cation.
Collapse
Affiliation(s)
- Massimiliano Galluzzi
- Shenzhen Key Laboratory of Nanobiomechanics , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , Guangdong , China
- C.I.Ma.I.Na and Dipartimento di Fisica "Aldo Pontremoli" , Università degli Studi di Milano , via Celoria 16 , 20133 Milano , Italy
| | - Carsten Schulte
- C.I.Ma.I.Na and Dipartimento di Fisica "Aldo Pontremoli" , Università degli Studi di Milano , via Celoria 16 , 20133 Milano , Italy
| | - Paolo Milani
- C.I.Ma.I.Na and Dipartimento di Fisica "Aldo Pontremoli" , Università degli Studi di Milano , via Celoria 16 , 20133 Milano , Italy
| | - Alessandro Podestà
- C.I.Ma.I.Na and Dipartimento di Fisica "Aldo Pontremoli" , Università degli Studi di Milano , via Celoria 16 , 20133 Milano , Italy
| |
Collapse
|
57
|
Higgins DA, Young MKM, Tremaine M, Sardi M, Fletcher JM, Agnew M, Liu L, Dickinson Q, Peris D, Wrobel RL, Hittinger CT, Gasch AP, Singer SW, Simmons BA, Landick R, Thelen MP, Sato TK. Natural Variation in the Multidrug Efflux Pump SGE1 Underlies Ionic Liquid Tolerance in Yeast. Genetics 2018; 210:219-234. [PMID: 30045857 PMCID: PMC6116967 DOI: 10.1534/genetics.118.301161] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/23/2018] [Indexed: 01/20/2023] Open
Abstract
Imidazolium ionic liquids (IILs) have a range of biotechnological applications, including as pretreatment solvents that extract cellulose from plant biomass for microbial fermentation into sustainable bioenergy. However, residual levels of IILs, such as 1-ethyl-3-methylimidazolium chloride ([C2C1im]Cl), are toxic to biofuel-producing microbes, including the yeast Saccharomyces cerevisiae. S. cerevisiae strains isolated from diverse ecological niches differ in genomic sequence and in phenotypes potentially beneficial for industrial applications, including tolerance to inhibitory compounds present in hydrolyzed plant feedstocks. We evaluated >100 genome-sequenced S. cerevisiae strains for tolerance to [C2C1im]Cl and identified one strain with exceptional tolerance. By screening a library of genomic DNA fragments from the [C2C1im]Cl-tolerant strain for improved IIL tolerance, we identified SGE1, which encodes a plasma membrane multidrug efflux pump, and a previously uncharacterized gene that we named ionic liquid tolerance 1 (ILT1), which encodes a predicted membrane protein. Analyses of SGE1 sequences from our panel of S. cerevisiae strains together with growth phenotypes implicated two single nucleotide polymorphisms (SNPs) that associated with IIL tolerance and sensitivity. We confirmed these phenotypic effects by transferring the SGE1 SNPs into a [C2C1im]Cl-sensitive yeast strain using CRISPR/Cas9 genome editing. Further studies indicated that these SNPs affect Sge1 protein stability and cell surface localization, influencing the amount of toxic IILs that cells can pump out of the cytoplasm. Our results highlight the general potential for discovering useful biotechnological functions from untapped natural sequence variation and provide functional insight into emergent SGE1 alleles with reduced capacities to protect against IIL toxicity.
Collapse
Affiliation(s)
- Douglas A Higgins
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, California 94608
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, California 94550
| | - Megan K M Young
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726
| | - Mary Tremaine
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726
| | - Maria Sardi
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53726
| | - Jenna M Fletcher
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726
| | - Margaret Agnew
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726
| | - Lisa Liu
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726
| | - Quinn Dickinson
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726
| | - David Peris
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53726
| | - Russell L Wrobel
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53726
| | - Chris Todd Hittinger
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53726
| | - Audrey P Gasch
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53726
| | - Steven W Singer
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, California 94608
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, California 94720
| | - Blake A Simmons
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, California 94608
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, California 94550
| | - Robert Landick
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin 53726
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin 53726
| | - Michael P Thelen
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, California 94608
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, California 94550
| | - Trey K Sato
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726
| |
Collapse
|
58
|
Farahani SR, Sohrabi MR, Ghasemi JB. A detailed structural study of cytotoxicity effect of ionic liquids on the leukemia rat cell line IPC-81 by three dimensional quantitative structure toxicity relationship. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 158:256-265. [PMID: 29709763 DOI: 10.1016/j.ecoenv.2018.04.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
In the present study, a very thorough and in-depth three-dimensional quantitative structure-toxicity relationship (3D-QSTR) analysis has been implemented to make a correlation between the structural information of the ionic liquids (ILs) and their cytotoxicity towards Leukemia rat cell line IPC-81, as one of the ILs' toxicological consequences. To do this, alignment free GRid-INdependent Descriptors (GRINDs), which were derived from molecular interaction fields (MIFs), were correlated to the cytotoxicity values by partial least squares (PLS) and support vector regression (SVR). Genetic algorithm (GA), as a powerful linear tool, was used to select the best and interpretative subset of variables for the predictive model building. The selected variables with the capability to screen the effective structural features, showed direct and inverse contribution to the cytotoxicity. In silico modeling can reduce the amount of cellular testing necessary by predicting the toxicological functions of the chemical structures. Acceptable predictions of both internal and external validation sets made it possible to develop the predictive models for a large set of 269 diverse ILs containing 9 cationic cores and 44 types of anions. The constructed 3D-QSTR models use simple and interpretable descriptors to provide an in-depth and mechanistic interpretation of structural characteristics. This helps provide a clear understanding of the cytotoxicity effects of the understudy ILs. The effects of the nature of the cations, anions, and substituents on the cytotoxicities were evaluated and discussed.
Collapse
Affiliation(s)
- Saeedeh Rahimi Farahani
- Department of Chemistry, Faculty of Chemistry, Azad University, North Tehran Branch, Tehran, Iran
| | - Mahmoud Reza Sohrabi
- Department of Chemistry, Faculty of Chemistry, Azad University, North Tehran Branch, Tehran, Iran
| | - Jahan B Ghasemi
- College of Sciences, Faculty of Chemistry, University of Tehran, Tehran, Iran.
| |
Collapse
|
59
|
1-Benzyl-3-cetyl-2-methylimidazolium Iodide (NH125) Is a Broad-Spectrum Inhibitor of Virus Entry with Lysosomotropic Features. Viruses 2018; 10:v10060306. [PMID: 29874821 PMCID: PMC6024324 DOI: 10.3390/v10060306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/28/2018] [Indexed: 12/13/2022] Open
Abstract
Cellular kinases are crucial for the transcription/replication of many negative-strand RNA viruses and might serve as targets for antiviral therapy. In this study, a library comprising 80 kinase inhibitors was screened for antiviral activity against vesicular stomatitis virus (VSV), a prototype member of the family Rhabdoviridae. 1-Benzyl-3-cetyl-2-methylimidazolium iodide (NH125), an inhibitor of eukaryotic elongation factor 2 (eEF2) kinase, significantly inhibited entry of single-cycle VSV encoding a luciferase reporter. Treatment of virus particles had only minimal effect on virus entry, indicating that the compound primarily acts on the host cell rather than on the virus. Accordingly, resistant mutant viruses were not detected when the virus was passaged in the presence of the drug. Unexpectedly, NH125 led to enhanced, rather than reduced, phosphorylation of eEF2, however, it did not significantly affect cellular protein synthesis. In contrast, NH125 revealed lysosomotropic features and showed structural similarity with N-dodecylimidazole, a known lysosomotropic agent. Related alkylated imidazolium compounds also exhibited antiviral activity, which was critically dependent on the length of the alkyl group. Apart from VSV, NH125 inhibited infection by VSV pseudotypes containing the envelope glycoproteins of viruses that are known to enter cells in a pH-dependent manner, i.e. avian influenza virus (H5N1), Ebola virus, and Lassa virus. In conclusion, we identified an alkylated imidazolium compound which inhibited entry of several viruses not because of the previously postulated inhibition of eEF2 kinase but most likely because of its lysosomotropic properties.
Collapse
|
60
|
Prodius D, Wilk-Kozubek M, Mudring AV. Synthesis, structural characterization and luminescence properties of 1-carboxymethyl-3-ethylimidazolium chloride. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2018; 74:653-658. [PMID: 29869999 DOI: 10.1107/s2053229618005272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 04/03/2018] [Indexed: 11/10/2022]
Abstract
A microcrystalline carboxyl-functionalized imidazolium chloride, namely 1-carboxymethyl-3-ethylimidazolium chloride, C7H11N2O2+·Cl-, has been synthesized and characterized by elemental analysis, attenuated total reflectance Fourier transform IR spectroscopy (ATR-FT-IR), single-crystal X-ray diffraction, thermal analysis (TGA/DSC), and photoluminescence spectroscopy. In the crystal structure, cations and anions are linked by C-H...Cl and C-H...O hydrogen bonds to create a helix along the [010] direction. Adjacent helical chains are further interconnected through O-H...Cl and C-H...O hydrogen bonds to form a (10-1) layer. Finally, neighboring layers are joined together via C-H...Cl contacts to generate a three-dimensional supramolecular architecture. Thermal analyses reveal that the compound melts at 449.7 K and is stable up to 560.0 K under a dynamic air atmosphere. Photoluminescence measurements show that the compound exhibits a blue fluorescence and a green phosphorescence associated with spin-allowed (1π←1π*) and spin-forbidden (1π←3π*) transitions, respectively. The average luminescence lifetime was determined to be 1.40 ns for the short-lived (1π←1π*) transition and 105 ms for the long-lived (1π←3π*) transition.
Collapse
Affiliation(s)
- Denis Prodius
- Ames Laboratory, US Department of Energy and Critical Materials Institute, Ames, Iowa 50011-3020, USA
| | - Magdalena Wilk-Kozubek
- Ames Laboratory, US Department of Energy and Critical Materials Institute, Ames, Iowa 50011-3020, USA
| | - Anja Verena Mudring
- Ames Laboratory, US Department of Energy and Critical Materials Institute, Ames, Iowa 50011-3020, USA
| |
Collapse
|
61
|
Egorova KS, Gordeev EG, Ananikov VP. Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine. Chem Rev 2017; 117:7132-7189. [PMID: 28125212 DOI: 10.1021/acs.chemrev.6b00562] [Citation(s) in RCA: 911] [Impact Index Per Article: 130.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ionic liquids are remarkable chemical compounds, which find applications in many areas of modern science. Because of their highly tunable nature and exceptional properties, ionic liquids have become essential players in the fields of synthesis and catalysis, extraction, electrochemistry, analytics, biotechnology, etc. Apart from physical and chemical features of ionic liquids, their high biological activity has been attracting significant attention from biochemists, ecologists, and medical scientists. This Review is dedicated to biological activities of ionic liquids, with a special emphasis on their potential employment in pharmaceutics and medicine. The accumulated data on the biological activity of ionic liquids, including their antimicrobial and cytotoxic properties, are discussed in view of possible applications in drug synthesis and drug delivery systems. Dedicated attention is given to a novel active pharmaceutical ingredient-ionic liquid (API-IL) concept, which suggests using traditional drugs in the form of ionic liquid species. The main aim of this Review is to attract a broad audience of chemical, biological, and medical scientists to study advantages of ionic liquid pharmaceutics. Overall, the discussed data highlight the importance of the research direction defined as "Ioliomics", studies of ions in liquids in modern chemistry, biology, and medicine.
Collapse
Affiliation(s)
- Ksenia S Egorova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky prospect 47, Moscow 119991, Russia
| | - Evgeniy G Gordeev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky prospect 47, Moscow 119991, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky prospect 47, Moscow 119991, Russia.,Department of Chemistry, Saint Petersburg State University , Stary Petergof 198504, Russia
| |
Collapse
|
62
|
Yarie M, Ali Zolfigol M, Baghery S, Alonso DA, Khoshnood A, Kalhor M, Bayat Y, Asgari A. Design and preparation of [4,4′-bipyridine]-1,1′-diium trinitromethanide (BPDTNM) as a novel nanosized ionic liquid catalyst: application to the synthesis of 1-(benzoimidazolylamino)methyl-2-naphthols. NEW J CHEM 2017. [DOI: 10.1039/c6nj04074h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A novel bifunctional nanosized molten salt catalyst promoted the synthesis of 1-(benzoimidazolylamino)methyl-2-naphthols.
Collapse
Affiliation(s)
- Meysam Yarie
- Department of Organic Chemistry
- Faculty of Chemistry
- Bu-Ali Sina University
- Hamedan 6517838683
- Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry
- Faculty of Chemistry
- Bu-Ali Sina University
- Hamedan 6517838683
- Iran
| | - Saeed Baghery
- Department of Organic Chemistry
- Faculty of Chemistry
- Bu-Ali Sina University
- Hamedan 6517838683
- Iran
| | - Diego A. Alonso
- Organic Synthesis Institute and Organic Chemistry Department
- Alicante University
- 03080 Alicante
- Spain
| | - Abbas Khoshnood
- Organic Synthesis Institute and Organic Chemistry Department
- Alicante University
- 03080 Alicante
- Spain
| | - Mehdi Kalhor
- Department of Chemistry
- Payame Noor University
- Tehran 19395-4697
- Iran
| | - Yadollah Bayat
- Faculty of Chemistry and Chemical Engineering
- Malek Ashtar University of Technology
- Tehran
- Iran
| | - Asiye Asgari
- Faculty of Chemistry and Chemical Engineering
- Malek Ashtar University of Technology
- Tehran
- Iran
| |
Collapse
|