51
|
Milne M, Lewis M, McVicar N, Suchy M, Bartha R, Hudson RHE. MRI ParaCEST agents that improve amide based pH measurements by limiting inner sphere water T2exchange. RSC Adv 2014. [DOI: 10.1039/c3ra43537g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
52
|
Nie L, Chen X. Structural and functional photoacoustic molecular tomography aided by emerging contrast agents. Chem Soc Rev 2014; 43:7132-70. [PMID: 24967718 PMCID: PMC4569000 DOI: 10.1039/c4cs00086b] [Citation(s) in RCA: 269] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Photoacoustic tomography (PAT) can offer structural, functional and molecular contrasts at scalable observation level. By ultrasonically overcoming the strong optical scattering, this imaging technology can reach centimeters penetration depth while retaining high spatial resolution in biological tissue. Recent extensive research has been focused on developing new contrast agents to improve the imaging sensitivity, specificity and efficiency. These emerging materials have substantially accelerated PAT applications in signal sensing, functional imaging, biomarker labeling and therapy monitoring etc. Here, the potentials of different optical probes as PAT contrast agents were elucidated. We first describe the instrumental embodiments and the measured functional parameters, then focus on emerging contrast agent-based PAT applications, and finally discuss the challenges and prospects.
Collapse
Affiliation(s)
- Liming Nie
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
53
|
Xi L, Satpathy M, Zhao Q, Qian W, Yang L, Jiang H. HER-2/neu targeted delivery of a nanoprobe enables dual photoacoustic and fluorescence tomography of ovarian cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 10:669-77. [PMID: 24269306 DOI: 10.1016/j.nano.2013.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 10/22/2013] [Accepted: 11/09/2013] [Indexed: 11/19/2022]
Abstract
UNLABELLED Development of sensitive and specific imaging approaches for the detection of ovarian cancer holds great promise for improving survival of ovarian cancer patients. Here we describe a dual-modality photoacoustic and fluorescence molecular tomography (PAT/FMT) approach in combination with a targeted imaging probe for three-dimensional imaging of ovarian tumors in mice. We found that the selective accumulation of the HER-2/neu targeted magnetic iron oxide nanoparticles (IONPs) led to about 5-fold contrast enhancements in the tumor for PAT, while near-infrared (NIR) dye labeled nanoparticles emitted strong optical signals for FMT. Both PAT and FMT were demonstrated to be able to detect ovarian tumors located deep in the peritoneal cavity in mice. The targeted nanoprobes allowed mapping tumors in high resolution via PAT, and high sensitivity and specificity via FMT. This study demonstrated the potential of the application of HER-2/neu-targeted PAT/FMT approach for non-invasive or intraoperative imaging of ovarian cancer. FROM THE CLINICAL EDITOR This paper details the development of a dual-modality photoacoustic and fluorescence molecular tomography approach in combination with a targeted imaging probe for three-dimensional imaging of ovarian tumors in a mouse model, demonstrating the application of the HER-2/neu-targeted approach for non-invasive or intraoperative imaging of ovarian cancer.
Collapse
Affiliation(s)
- Lei Xi
- Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Minati Satpathy
- Department of Surgery, Emory University School of Medicine, Atlanta, GA
| | - Qing Zhao
- Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Weiping Qian
- Department of Surgery, Emory University School of Medicine, Atlanta, GA
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Atlanta, GA.
| | - Huabei Jiang
- Department of Biomedical Engineering, University of Florida, Gainesville, FL.
| |
Collapse
|
54
|
Jeon M, Jenkins S, Oh J, Kim J, Peterson T, Chen J, Kim C. Nonionizing photoacoustic cystography with near-infrared absorbing gold nanostructures as optical-opaque tracers. Nanomedicine (Lond) 2013; 9:1377-88. [PMID: 24151863 DOI: 10.2217/nnm.13.103] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AIM The objectives of this study were to demonstrate nonionizing photoacoustic tomography (PAT) of bladders with near-infrared absorbing gold nanocages (GNCs) as an optical-turbid tracer and to investigate the fate of GNCs after photoacoustic imaging. MATERIALS & METHODS The rats' bladders were visualized using PAT after transurethral injection of 2-nM GNCs. The fate of GNCs in the bladders was investigated. Spectroscopic PAT was applied to identify GNC-filled bladders in vivo and study biodistribution ex vivo. RESULTS Rats' bladders filled with GNCs were successfully imaged using a PAT system. The photoacoustic amplitude was enhanced by approximately 2240%. Both in vivo and ex vivo PAT results reveal that no accumulation of GNCs in the bladder and kidney was observed, and were validated with inductively coupled plasma mass spectrometry. CONCLUSION The PAT with transurethral injection of GNCs provides two crucial safety features for clinical translation: no radiation exposure and no long-term heavy metal accumulation.
Collapse
Affiliation(s)
- Mansik Jeon
- Department of Creative IT Engineering, Pohang University of Science & Technology, Pohang, 790-784, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
55
|
Akiyama Y, Niidome Y, Mori T, Katayama Y, Niidome T. PEG-silica-modified gold nanorods that retain their optical properties in tumor tissues. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2013; 24:2071-80. [PMID: 23909685 DOI: 10.1080/09205063.2013.823073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Gold nanorods modified with polyethylene glycol (PEG) chains via Au-S bonds form aggregates, and their absorption spectra broaden in tumor tissues. In contrast, the gold nanorods modified here via the crosslinking of PEG chains on the silica shell on gold nanorods showed enhanced permeability and retention effects and retained the optical properties of the original gold nanorods in tumor tissues.
Collapse
Affiliation(s)
- Yasuyuki Akiyama
- a Department of Applied Chemistry , Faculty of Engineering Kyushu University , 744 Motooka, Nishi-ku, Fukuoka , 819-0395 , Japan
| | | | | | | | | |
Collapse
|
56
|
Proceedings for OctoberCEST, the third international workshop on CEST imaging, 15-17 October 2012. CONTRAST MEDIA & MOLECULAR IMAGING 2013. [DOI: 10.1002/cmmi.1522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
57
|
Grootendorst DJ, Jose J, Fratila RM, Visscher M, Velders AH, Ten Haken B, Van Leeuwen TG, Steenbergen W, Manohar S, Ruers TJM. Evaluation of superparamagnetic iron oxide nanoparticles (Endorem®) as a photoacoustic contrast agent for intra-operative nodal staging. CONTRAST MEDIA & MOLECULAR IMAGING 2013; 8:83-91. [PMID: 23109396 DOI: 10.1002/cmmi.1498] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Detection of tumor metastases in the lymphatic system is essential for accurate staging of malignancies. Commercially available superparagmagnetic nanoparticles (SPIOs) accumulate in normal lymph tissue after injection at a tumor site, whereas less or no accumulation takes place in metastatic nodes, thus enabling lymphatic staging using MRI. We verify for the first time the potential of SPIOs, such as Endorem(®) as a novel photoacoustic (PA) contrast agent in biological tissue. We injected five Wistar rats subcutaneously with variable amounts of Endorem(®) and scanned the resected lymph nodes using a tomographic PA setup. Findings were compared using histology, vibrating sample magnetometry (VSM) and 14 T MR-imaging. Our PA setup was able to detect the iron oxide accumulations in all the nodes containing the nanoparticles. The distribution inside the nodes corresponded with both MRI and histological findings. VSM revealed that iron quantities inside the nodes varied between 51 ± 4 and 11 ± 1 µg. Nodes without SPIO enhancement did not show up in any of the PA scans. Iron oxide nanoparticles (Endorem(®)) can be used as a PA contrast agent for lymph node analysis and a distinction can be made between nodes with and nodes without the agent. This opens up possibilities for intra-operative nodal staging for patients undergoing nodal resections for metastatic malignancies.
Collapse
Affiliation(s)
- Diederik J Grootendorst
- Biomedical Photonic Imaging Group, MIRA Institute, University of Twente, AE, Enschede, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Suffredini G, East JE, Levy LM. New applications of nanotechnology for neuroimaging. AJNR Am J Neuroradiol 2013; 35:1246-53. [PMID: 23538408 DOI: 10.3174/ajnr.a3543] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
SUMMARY Advances in nanotechnology have the potential to dramatically enhance the detection of neurologic diseases with targeted contrast agents and to facilitate the delivery of focused therapies to the central nervous system. We present the physicochemical rationale for their use, applications in animal models, and ongoing clinical trials using these approaches. We highlight advances in the use of nanoparticles applied to brain tumor imaging, tumor angiogenesis, neurodegeneration, grafted stem cells, and neuroprogenitor cells.
Collapse
Affiliation(s)
- G Suffredini
- From the George Washington University School of Medicine and Health Sciences (G.S.), Washington, DC
| | - J E East
- Howard University School of Medicine (J.E.E.), Washington, DC
| | - L M Levy
- Department of Radiology (L.M.L.), George Washington University Medical Center, Washington, DC.
| |
Collapse
|
59
|
Levi J, Kothapalli SR, Bohndiek S, Yoon JK, Dragulescu-Andrasi A, Nielsen C, Tisma A, Bodapati S, Gowrishankar G, Yan X, Chan C, Starcevic D, Gambhir SS. Molecular photoacoustic imaging of follicular thyroid carcinoma. Clin Cancer Res 2013; 19:1494-502. [PMID: 23349314 DOI: 10.1158/1078-0432.ccr-12-3061] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE To evaluate the potential of targeted photoacoustic imaging as a noninvasive method for detection of follicular thyroid carcinoma. EXPERIMENTAL DESIGN We determined the presence and activity of two members of matrix metalloproteinase family (MMP), MMP-2 and MMP-9, suggested as biomarkers for malignant thyroid lesions, in FTC133 thyroid tumors subcutaneously implanted in nude mice. The imaging agent used to visualize tumors was MMP-activatable photoacoustic probe, Alexa750-CXeeeeXPLGLAGrrrrrXK-BHQ3. Cleavage of the MMP-activatable agent was imaged after intratumoral and intravenous injections in living mice optically, observing the increase in Alexa750 fluorescence, and photoacoustically, using a dual-wavelength imaging method. RESULTS Active forms of both MMP-2 and MMP-9 enzymes were found in FTC133 tumor homogenates, with MMP-9 detected in greater amounts. The molecular imaging agent was determined to be activated by both enzymes in vitro, with MMP-9 being more efficient in this regard. Both optical and photoacoustic imaging showed significantly higher signal in tumors of mice injected with the active agent than in tumors injected with the control, nonactivatable, agent. CONCLUSIONS With the combination of high spatial resolution and signal specificity, targeted photoacoustic imaging holds great promise as a noninvasive method for early diagnosis of follicular thyroid carcinomas.
Collapse
Affiliation(s)
- Jelena Levi
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, California 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
The reactivity of macrocyclic Fe(II) paraCEST MRI contrast agents towards biologically relevant anions, cations, oxygen or peroxide. J Inorg Biochem 2012; 117:212-9. [DOI: 10.1016/j.jinorgbio.2012.06.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/08/2012] [Accepted: 06/10/2012] [Indexed: 01/10/2023]
|
61
|
Su R, Ermilov SA, Liopo AV, Oraevsky AA. Three-dimensional optoacoustic imaging as a new noninvasive technique to study long-term biodistribution of optical contrast agents in small animal models. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:101506. [PMID: 23223982 PMCID: PMC3380408 DOI: 10.1117/1.jbo.17.10.101506] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We used a 3-D optoacoustic (OA) tomography system to create maps of optical absorbance of mice tissues contrasted with gold nanorods (GNRs). Nude mice were scanned before and after injection of GNRs at time periods varying from 1 to 192 h. Synthesized GNRs were purified from hexadecyltrimethylammonium bromide and coated with polyethylene glycol (PEG) to obtain GNR-PEG complexes suitable for in vivo applications. Intravenous administration of purified GNR-PEG complexes resulted in enhanced OA contrast of internal organs and blood vessels compared to the same mouse before injection of the contrast agent. Maximum enhancement of the OA images was observed 24 to 48 h postinjection, followed by a slow clearance trend for the remaining part of the studied period (eight days). We demonstrate that OA imaging with two laser wavelengths can be used for noninvasive, long-term studies of biological distribution of contrast agents.
Collapse
Affiliation(s)
- Richard Su
- TomoWave Laboratories, 6550 Mapleridge Street, Suite 124, Houston, Texas 77081, USA.
| | | | | | | |
Collapse
|
62
|
Su R, Ermilov SA, Liopo AV, Oraevsky AA. Three-dimensional optoacoustic imaging as a new noninvasive technique to study long-term biodistribution of optical contrast agents in small animal models. JOURNAL OF BIOMEDICAL OPTICS 2012. [PMID: 23223982 DOI: 10.1117/1jbo.17.10.101506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We used a 3-D optoacoustic (OA) tomography system to create maps of optical absorbance of mice tissues contrasted with gold nanorods (GNRs). Nude mice were scanned before and after injection of GNRs at time periods varying from 1 to 192 h. Synthesized GNRs were purified from hexadecyltrimethylammonium bromide and coated with polyethylene glycol (PEG) to obtain GNR-PEG complexes suitable for in vivo applications. Intravenous administration of purified GNR-PEG complexes resulted in enhanced OA contrast of internal organs and blood vessels compared to the same mouse before injection of the contrast agent. Maximum enhancement of the OA images was observed 24 to 48 h postinjection, followed by a slow clearance trend for the remaining part of the studied period (eight days). We demonstrate that OA imaging with two laser wavelengths can be used for noninvasive, long-term studies of biological distribution of contrast agents.
Collapse
Affiliation(s)
- Richard Su
- TomoWave Laboratories, 6550 Mapleridge Street, Suite 124, Houston, Texas 77081, USA.
| | | | | | | |
Collapse
|
63
|
Wang PH, Liu HL, Hsu PH, Lin CY, Wang CRC, Chen PY, Wei KC, Yen TC, Li ML. Gold-nanorod contrast-enhanced photoacoustic micro-imaging of focused-ultrasound induced blood-brain-barrier opening in a rat model. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:061222. [PMID: 22734752 DOI: 10.1117/1.jbo.17.6.061222] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this study, we develop a novel photoacoustic imaging technique based on gold nanorods (AuNRs) for quantitatively monitoring focused-ultrasound (FUS) induced blood-brain barrier (BBB) opening in a rat model in vivo. This study takes advantage of the strong near-infrared absorption (peak at ≈ 800 nm) of AuNRs and the extravasation tendency from BBB opening foci due to their nano-scale size to passively label the BBB disruption area. Experimental results show that AuNR contrast-enhanced photoacoustic microscopy (PAM) successfully reveals the spatial distribution and temporal response of BBB disruption area in the rat brains. The quantitative measurement of contrast enhancement has potential to estimate the local concentration of AuNRs and even the dosage of therapeutic molecules when AuNRs are further used as nano-carrier for drug delivery or photothermal therapy. The photoacoustic results also provide complementary information to MRI, being helpful to discover more details about FUS induced BBB opening in small animal models.
Collapse
Affiliation(s)
- Po-Hsun Wang
- National Tsing Hua University, Department of Electrical Engineering, Hsinchu 30013, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Que EL, New EJ, Chang CJ. A cell-permeable gadolinium contrast agent for magnetic resonance imaging of copper in a Menkes disease model. Chem Sci 2012; 3:1829-1834. [PMID: 25431649 DOI: 10.1039/c2sc20273e] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We present the synthesis and characterization of octaarginine-conjugated Copper-Gad-2 (Arg8CG2), a new copper-responsive magnetic resonance imaging (MRI) contrast agent that combines a Gd3+-DO3A scaffold with a thioether-rich receptor for copper recognition. The inclusion of a polyarginine appendage leads to a marked increase in cellular uptake compared to previously reported MRI-based copper sensors of the CG family. Arg8CG2 exhibits a 220% increase in relaxivity (r1 = 3.9 to 12.5 mM-1 s-1) upon 1 : 1 binding with Cu+, with a highly selective response to Cu+ over other biologically relevant metal ions. Moreover, Arg8CG2 accumulates in cells at nine-fold greater concentrations than the parent CG2 lacking the polyarginine functionality and is retained well in the cell after washing. In cellulo relaxivity measurements and T1-weighted phantom images using a Menkes disease model cell line demonstrate the utility of Arg8CG2 to report on biological perturbations of exchangeable copper pools.
Collapse
Affiliation(s)
- Emily L Que
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Elizabeth J New
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, California 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
| |
Collapse
|