51
|
Rizk VT, Walko CM, Brohl AS. Precision medicine approaches for the management of Ewing sarcoma: current perspectives. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2019; 12:9-14. [PMID: 30697061 PMCID: PMC6340366 DOI: 10.2147/pgpm.s170612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Advancements in molecular and genetic techniques have significantly furthered our biological understanding of Ewing sarcoma (ES). ES is typified by a driving TET-ETS fusion with an otherwise relatively quiet genome. Detection of one of several characteristic fusions, most commonly EWSR1-FLI1, is the gold standard for diagnosis. We discuss the current role of precision medicine in the diagnosis, treatment, and monitoring of ES. Continued efforts toward molecularly guided approaches are actively being pursued in ES to better refine prognosis, identify germline markers of disease susceptibility, influence therapeutic selection, effectively monitor disease activity in real time, and identify genetic and immunotherapeutic targets for therapeutic development.
Collapse
Affiliation(s)
| | | | - Andrew S Brohl
- Sarcoma Department, .,Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA,
| |
Collapse
|
52
|
Liao H, Xie X, Xu Y, Huang G. Identification of driver genes associated with chemotherapy resistance of Ewing's sarcoma. Onco Targets Ther 2018; 11:6947-6956. [PMID: 30410352 PMCID: PMC6199211 DOI: 10.2147/ott.s172190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background The aim of this study was to identify the driver genes associated with chemotherapy resistance of Ewing’s sarcoma and potential targets for Ewing’s sarcoma treatment. Methods Two mRNA microarray datasets, GSE12102 and GSE17679, were downloaded from the Gene Expression Omnibus database, which contain 94 human Ewing’s sarcoma samples, including 65 from those who experienced a relapse and 29 from those with no evidence of disease. The differen tially expressed genes (DEGs) were identified using LIMMA package R. Subsequently, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed for DEGs using Database for Annotation, Visualization and Integrated Analysis. The protein–protein interaction network was constructed using Cytoscape software, and module analysis was performed using Molecular Complex Detection. Results A total of 206 upregulated DEGs and 141 downregulated DEGs were identified. Upregulated DEGs were primarily enriched in DNA replication, nucleoplasm and protein kinase binding for biological processes, cellular component and molecular functions, respectively. Downregulated DEGs were predominantly involved in receptor clustering, membrane raft, and ligand-dependent nuclear receptor binding. The protein–protein interaction network of DEGs consisted of 150 nodes and 304 interactions. Thirteen hub genes were identified, and biological analysis revealed that these genes were primarily enriched in cell division, cell cycle, and mitosis. Furthermore, based on closeness centrality, betweenness centrality, and degree centrality, the three most significant genes were identified as GAPDH, AURKA, and EHMT2. Furthermore, the significant network module was composed of nine genes. These genes were primarily enriched in mitotic nuclear division, mitotic chromosome condensation, and nucleoplasm. Conclusion These hub genes, especially GAPDH, AURKA, and EHMT2, may be closely associated with the progression of Ewing’s sarcoma chemotherapy resistance, and further experiments are needed for confirmation.
Collapse
Affiliation(s)
- Hongyi Liao
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Xianbiao Xie
- Department of Orthopedic Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China,
| | - Yuanyuan Xu
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Gang Huang
- Department of Orthopedic Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China,
| |
Collapse
|
53
|
Li X, Seebacher NA, Hornicek FJ, Xiao T, Duan Z. Application of liquid biopsy in bone and soft tissue sarcomas: Present and future. Cancer Lett 2018; 439:66-77. [PMID: 30223067 DOI: 10.1016/j.canlet.2018.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 08/13/2018] [Accepted: 09/06/2018] [Indexed: 02/06/2023]
Abstract
Bone and soft tissue sarcomas account for approximately 1% of adult solid malignancies and 20% of pediatric solid malignancies. Sarcomas are divided into more than 50 subtypes. Each subtype is highly heterogeneous and characterized by significant morphological and phenotypic variability. Currently, sarcoma characterization is based on tissue biopsies. However, primary and invasive tissue biopsies may not accurately reflect the current disease condition following treatment as is may cause marked changes to the tumor cells. Liquid biopsy offers an alternative minimally invasive approach to provide dynamic tumor information, allowing for the application of precision medicine in the treatment of sarcomas. Recently, there have been numerous blood-based tumor components identified by liquid biopsy in sarcomas, including circulating tumor cells, circulating cell-free nucleic acids, tumor-derived exosomes and metabolites in circulation. Here, we summarize the current evolving technologies and then elaborate on emerging novel concepts that may further propel the field of liquid biopsy in sarcomas. We address the applications in the context of our current knowledge about liquid biopsy in sarcomas and highlight the potential of translating these recent advances into the clinic for more effective management strategies for sarcoma patients.
Collapse
Affiliation(s)
- Xiaoyang Li
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China; Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, 90095, USA.
| | - Nicole A Seebacher
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, 90095, USA.
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, 90095, USA.
| | - Tao Xiao
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China.
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
54
|
Endometrial Stromal Sarcomas: A Revision of Their Potential as Targets for Immunotherapy. Vaccines (Basel) 2018; 6:vaccines6030056. [PMID: 30149610 PMCID: PMC6161160 DOI: 10.3390/vaccines6030056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 12/20/2022] Open
Abstract
Endometrial stromal sarcomas are a subtype of uterine sarcomas that are characterized by recurrent chromosomal translocations, resulting in the expression of tumor-specific fusion proteins that contribute to their tumorigenicity. These characteristics make the translocation breakpoints promising targets for immunotherapeutic approaches. In this review, we first describe the current knowledge about the classification of endometrial stromal sarcomas, and their molecular and genetic characteristics. Next, we summarize the available data on the use of translocation breakpoints as immunotherapeutic targets. Finally, we propose a roadmap to evaluate the feasibility of immunologic targeting of the endometrial stromal sarcoma-specific translocations in patients with recurrent disease.
Collapse
|
55
|
Detection of circulating tumour DNA is associated with inferior outcomes in Ewing sarcoma and osteosarcoma: a report from the Children's Oncology Group. Br J Cancer 2018; 119:615-621. [PMID: 30131550 PMCID: PMC6162271 DOI: 10.1038/s41416-018-0212-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND New prognostic markers are needed to identify patients with Ewing sarcoma (EWS) and osteosarcoma unlikely to benefit from standard therapy. We describe the incidence and association with outcome of circulating tumour DNA (ctDNA) using next-generation sequencing (NGS) assays. METHODS A NGS hybrid capture assay and an ultra-low-pass whole-genome sequencing assay were used to detect ctDNA in banked plasma from patients with EWS and osteosarcoma, respectively. Patients were coded as positive or negative for ctDNA and tested for association with clinical features and outcome. RESULTS The analytic cohort included 94 patients with EWS (82% from initial diagnosis) and 72 patients with primary localised osteosarcoma (100% from initial diagnosis). ctDNA was detectable in 53% and 57% of newly diagnosed patients with EWS and osteosarcoma, respectively. Among patients with newly diagnosed localised EWS, detectable ctDNA was associated with inferior 3-year event-free survival (48.6% vs. 82.1%; p = 0.006) and overall survival (79.8% vs. 92.6%; p = 0.01). In both EWS and osteosarcoma, risk of event and death increased with ctDNA levels. CONCLUSIONS NGS assays agnostic of primary tumour sequencing results detect ctDNA in half of the plasma samples from patients with newly diagnosed EWS and osteosarcoma. Detectable ctDNA is associated with inferior outcomes.
Collapse
|
56
|
Klega K, Imamovic-Tuco A, Ha G, Clapp AN, Meyer S, Ward A, Clinton C, Nag A, Van Allen E, Mullen E, DuBois SG, Janeway K, Meyerson M, Thorner AR, Crompton BD. Detection of Somatic Structural Variants Enables Quantification and Characterization of Circulating Tumor DNA in Children With Solid Tumors. JCO Precis Oncol 2018; 2018. [PMID: 30027144 DOI: 10.1200/po.17.00285] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Objective Liquid biopsies are being rapidly used in adult cancers as new biomarkers of disease. Circulating tumor DNA (ctDNA) levels have been reported to be proportional to disease burden, correlate with treatment response, and predict relapse. However, little is known about how frequently ctDNA is detectable in pediatric patients with solid tumors. Therefore, we developed a next-generation sequencing approach to detect and quantify ctDNA in the blood of patients with the most common pediatric solid tumors. Methods Detection of ctDNA requires assays sensitive to somatic events typically observed in the cancer type being studied. In pediatric solid tumors, structural variants are more common than recurrent point mutations. We adapted an ultralow passage whole-genome sequencing approach to capture copy number variants and a hybrid capture sequencing assay to detect translocations in liquid biopsy samples from pediatric patients. Results Copy number changes seen by ultralow passage whole-genome sequencing enabled detection of ctDNA in patients with osteosarcoma, neuroblastoma, alveolar rhabdomyosarcoma, and Wilms tumor. In Ewing sarcoma, detection of the EWSR1 translocation was a more sensitive approach. For patients with samples collected at multiple time points, changes in ctDNA levels corresponded to treatment response. We also found that disease-specific genomic biomarkers of prognosis were detectable in ctDNA. Conclusion This study demonstrates that liquid biopsy approaches that detect somatic structural variants are well suited to pediatric solid tumors. We show that children with the most common solid tumor malignancies have detectable levels of ctDNA, which may be used to track disease response and identify genomic subclassifiers of disease. Efforts to profile larger collections of clinically annotated specimens are under way to validate the clinical use of these assays.
Collapse
Affiliation(s)
| | | | - Gavin Ha
- Dana-Farber Cancer Institute, Boston
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Allegretti M, Casini B, Mandoj C, Benini S, Alberti L, Novello M, Melucci E, Conti L, Covello R, Pescarmona E, Milano GM, Annovazzi A, Anelli V, Ferraresi V, Biagini R, Giacomini P. Precision diagnostics of Ewing's sarcoma by liquid biopsy: circulating EWS-FLI1 fusion transcripts. Ther Adv Med Oncol 2018; 10:1758835918774337. [PMID: 29899761 PMCID: PMC5985603 DOI: 10.1177/1758835918774337] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/26/2018] [Indexed: 12/25/2022] Open
Abstract
Background: Limited information is available on the applicative value of liquid biopsy (LB) in rare tumors, including Ewing’s sarcoma (ES). The accepted precision diagnostics standards would greatly benefit from a non-invasive LB test monitoring pathognomonic gene rearrangements in the bloodstream. Methods: Tissue and blood samples were collected from six and four ES patients, respectively. Plasma was cleared by two successive rounds of centrifugation and stored frozen until RNA extraction by the QIAmp CNA kit. RNA was retro-transcribed and subjected to real-time quantitative polymerase chain reaction (RT-qPCR) and digital polymerase chain reaction (dPCR). Reactions were set up using two custom primer sets identifying types 1 and 2 EWS-FLI1 fusion transcripts. Results: The two prevalent types of EWS-FLI1 rearrangements could be identified using only two sets of polymerase chain reaction primers, regardless of patient-specific EWS-FLI1 DNA breakpoints. RT-qPCR and dPCR discriminated the two variants in five tumor tissue RNAs and in four circulating tumor RNAs (ctRNAs). Of note, EWS-FLI1 molecular diagnosis was possible using blood samples even when tumor tissue was not available. ctRNA levels correlated (p < 0.05) with volume-based positron emission tomography (PET) parameters (metabolic tumor volume and total lesion glycolysis), and allowed the fine tracking of disease course after surgery, during adjuvant as well as neoadjuvant chemotherapy, and at follow up in one patient. Conclusions: To our knowledge, this is one of the few single-marker LB assays in solid tumors specifically designed to detect rearranged RNAs in blood, and the first study describing EWS circulating tumor RNAs in ES patients. Altogether, our results support the idea that LB may have a considerable impact on ES patient monitoring and management.
Collapse
Affiliation(s)
- Matteo Allegretti
- Oncogenomics and Epigenetics, IRCCS Regina Elena National Cancer Institute, Via E Chianesi 53, Rome, 00144, Italy
| | - Beatrice Casini
- Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Mandoj
- Body Fluids Biobank, Clinical Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Stefania Benini
- Department of Pathology, The Rizzoli Institute, Bologna, Italy
| | | | - Mariangela Novello
- Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy (Present address): Department of Pathology, San Bortolo Hospital, Vicenza, Italy
| | - Elisa Melucci
- Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Conti
- Body Fluids Biobank, Clinical Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Renato Covello
- Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Giuseppe Maria Milano
- Department of Hematology/Oncology, Bambino Gesù Children's Hospital IRCSS, Rome, Italy
| | - Alessio Annovazzi
- Nuclear Medicine, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Vincenzo Anelli
- Radiology and Diagnostic Imaging, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Virginia Ferraresi
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Roberto Biagini
- Orthopedics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Patrizio Giacomini
- Oncogenomics and Epigenetics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
58
|
Ogino S, Konishi H, Ichikawa D, Hamada J, Shoda K, Arita T, Komatsu S, Shiozaki A, Okamoto K, Yamazaki S, Yasukawa S, Konishi E, Otsuji E. Detection of fusion gene in cell-free DNA of a gastric synovial sarcoma. World J Gastroenterol 2018; 24:949-956. [PMID: 29491688 PMCID: PMC5829158 DOI: 10.3748/wjg.v24.i8.949] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/11/2018] [Accepted: 01/19/2018] [Indexed: 02/06/2023] Open
Abstract
Synovial sarcoma (SS) is genetically characterized by chromosomal translocation, which generates SYT-SSX fusion transcripts. Although SS can occur in any body part, primary gastric SS is substantially rare. Here we describe a detection of the fusion gene sequence of gastric SS in plasma cell-free DNA (cfDNA). A gastric submucosal tumor was detected in the stomach of a 27-year-old woman and diagnosed as SS. Candidate intronic primers were designed to detect the intronic fusion breakpoint and this fusion sequence was confirmed in intron 10 of SYT and intron 5 of SSX2 by genomic polymerase chain reaction (PCR) and direct sequencing. A locked nucleic acid (LNA) probe specific to the fusion sequence was designed for detecting the fusion sequence in plasma and the fusion sequence was detected in preoperative plasma cfDNA, while not detected in postoperative plasma cfDNA. This technique will be useful for monitoring translocation-derived diseases such as SS.
Collapse
Affiliation(s)
- Shinpei Ogino
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Daisuke Ichikawa
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Junichi Hamada
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Katsutoshi Shoda
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Sanae Yamazaki
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Satoru Yasukawa
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Eiichi Konishi
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
59
|
Wollison BM, Thai E, Mckinney A, Ward A, Clapp A, Clinton C, Nag A, Thorner AR, Gastier-Foster JM, Crompton BD. Blood collection in cell-stabilizing tubes does not impact germline DNA quality for pediatric patients. PLoS One 2017; 12:e0188835. [PMID: 29206863 PMCID: PMC5716571 DOI: 10.1371/journal.pone.0188835] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/14/2017] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Liquid biopsy technologies allow non-invasive tumor profiling for patients with solid tumor malignancies by sequencing circulating tumor DNA. These studies may be useful in risk-stratification, monitoring for relapse, and understanding tumor evolution. The quality of DNA obtained for these studies is improved when blood samples are collected in tubes that stabilizing white blood cells (WBC). However, ongoing germline research in pediatric oncology generally requires obtaining blood samples in EDTA tubes, which do not contain a WBC-stabilizing preservative. In this study, we explored whether blood samples collected in WBC-stabilizing tubes could be used for both liquid biopsy and germline studies simultaneously, minimizing blood collection volumes for pediatric patients. METHODS Blood was simultaneously collected from three patients in both EDTA and Streck Cell-Free DNA BCT® tubes. Germline DNA was extracted from all blood samples and subjected to whole-exome sequencing and microarray profiling. RESULTS Quality control metrics of DNA quality, sequencing library preperation and whole-exome sequencing alignment were virtually identical regardless of the sample collection method. There was no discernable difference in patterns of variant calling for paired samples by either whole-exome sequencing or microarray analysis. CONCLUSION Our study demonstrates that high-quality genomic studies may be performed from germline DNA obtained in Streck tubes. Therefore, these tubes may be used to simultaneously obtain samples for both liquid biopsy and germline studies in pediatric patients when the volume of blood available for research studies may be limited.
Collapse
Affiliation(s)
- Bruce M. Wollison
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Edwin Thai
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Aimee Mckinney
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Abigail Ward
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, United States of America
| | - Andrea Clapp
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Catherine Clinton
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, United States of America
| | - Anwesha Nag
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Aaron R. Thorner
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Julie M. Gastier-Foster
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, United States of America
- The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Brian D. Crompton
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, United States of America
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
60
|
Llosa NJ, Cooke KR, Chen AR, Gamper CJ, Klein OR, Zambidis ET, Luber B, Rosner G, Siegel N, Holuba MJ, Robey N, Hayashi M, Jones RJ, Fuchs E, Holdhoff M, Loeb DM, Symons HJ. Reduced-Intensity Haploidentical Bone Marrow Transplantation with Post-Transplant Cyclophosphamide for Solid Tumors in Pediatric and Young Adult Patients. Biol Blood Marrow Transplant 2017; 23:2127-2136. [PMID: 28807769 PMCID: PMC5986177 DOI: 10.1016/j.bbmt.2017.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/09/2017] [Indexed: 11/21/2022]
Abstract
High-risk, recurrent, or refractory solid tumors in pediatric, adolescent, and young adult (AYA) patients have an extremely poor prognosis despite current intensive treatment regimens. We piloted an allogeneic bone marrow transplant platform using reduced-intensity conditioning (RIC) and partially HLA-mismatched (haploidentical) related donors for this population of pediatric and AYA solid tumor patients. Sixteen patients received fludarabine, cyclophosphamide, melphalan, and low-dose total body irradiation RIC haploidentical BMT (haploBMT) followed by post-transplantation cyclophosphamide (PTCy), mycophenolate mofetil, and sirolimus. All assessable patients were full donor chimeras on day 30 with a median neutrophil recovery of 19 days and platelet recovery of 21 days. One patient (7%) exhibited secondary graft failure associated with concomitant infection. The median follow-up time was 15 months. Overall survival was 88%, 56%, and 21% at 6, 12, and 24 months, respectively. Median survival from transplant date was 14 months with a median progression-free survival 7 months. We observed limited graft-versus-host disease in 3 patients and nonrelapse mortality in 1 patient. We demonstrated that RIC haploBMT with PTCy is feasible and has acceptable toxicities in patients with incurable pediatric and AYA solid tumors; thus, this approach serves as a platform for post-transplant strategies to prevent relapse and optimize progression-free survival.
Collapse
Affiliation(s)
- Nicolas J Llosa
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland.
| | - Kenneth R Cooke
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Allen R Chen
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Christopher J Gamper
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Orly R Klein
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Elias T Zambidis
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Brandon Luber
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Gary Rosner
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Nicholas Siegel
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Mary Jo Holuba
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Nancy Robey
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Masanori Hayashi
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Richard J Jones
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Ephraim Fuchs
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Matthias Holdhoff
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - David M Loeb
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Heather J Symons
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| |
Collapse
|
61
|
Abstract
A 16-year-old male was diagnosed with Ewing sarcoma of the ribcage with pulmonary metastases. Six months after completion of scheduled therapy, he was found to have a new intracardiac mass, presumed recurrent Ewing sarcoma. EWSR1 fusion was not detected by droplet digital polymerase chain reaction from blood plasma. After no improvement with salvage chemotherapy, he underwent surgical resection that identified a low-grade spindle cell sarcoma. Despite the near-synchronous presentation of 2 unrelated sarcomas, extensive genomic analyses did not reveal any unifying somatic or germline mutations nor any apparent cancer predisposition. This case also highlights the potential role of utilizing plasma cell-free DNA for diagnosing tumors in locations where biopsy confers high morbidity.
Collapse
|
62
|
Wong YK, Tsang HF, Xue VW, Chan CM, Au TC, Cho WC, Chan LW, Wong SC. Applications of digital PCR in precision medicine. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017. [DOI: 10.1080/23808993.2017.1347482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Y. K. Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - H. F. Tsang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - V. W. Xue
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - C. M. Chan
- Department of Clinical Oncology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - T. C. Au
- Department of Clinical Oncology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - W. C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region, China
| | - L. W. Chan
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - S. C. Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| |
Collapse
|
63
|
Calapre L, Warburton L, Millward M, Ziman M, Gray ES. Circulating tumour DNA (ctDNA) as a liquid biopsy for melanoma. Cancer Lett 2017; 404:62-69. [PMID: 28687355 DOI: 10.1016/j.canlet.2017.06.030] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/16/2017] [Accepted: 06/16/2017] [Indexed: 01/10/2023]
Abstract
Circulating tumour DNA (ctDNA) has emerged as a promising blood-based biomarker for monitoring disease status of patients with advanced cancers. In melanoma, ctDNA has been shown to have clinical value as an alternative tumour source for the detection clinically targetable mutations for the assessment of response to therapy. This review provides a critical summary of the evidence that gives credence to the utility of ctDNA as a biomarker for monitoring of disease status in advanced melanoma and the steps required for its implementation into clinical settings.
Collapse
Affiliation(s)
- Leslie Calapre
- School of Medical Science, Edith Cowan University, Joondalup, WA, Australia.
| | - Lydia Warburton
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Michael Millward
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia; School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Mel Ziman
- School of Medical Science, Edith Cowan University, Joondalup, WA, Australia; School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, WA, Australia
| | - Elin S Gray
- School of Medical Science, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
64
|
Tran TH, Shah AT, Loh ML. Precision Medicine in Pediatric Oncology: Translating Genomic Discoveries into Optimized Therapies. Clin Cancer Res 2017; 23:5329-5338. [PMID: 28600472 DOI: 10.1158/1078-0432.ccr-16-0115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/15/2017] [Accepted: 06/06/2017] [Indexed: 11/16/2022]
Abstract
Survival of children with cancers has dramatically improved over the past several decades. This success has been achieved through improvement of combined modalities in treatment approaches, intensification of cytotoxic chemotherapy for those with high-risk disease, and refinement of risk stratification incorporating novel biologic markers in addition to traditional clinical and histologic features. Advances in cancer genomics have shed important mechanistic insights on disease biology and have identified "driver" genomic alterations, aberrant activation of signaling pathways, and epigenetic modifiers that can be targeted by novel agents. Thus, the recently described genomic and epigenetic landscapes of many childhood cancers have expanded the paradigm of precision medicine in the hopes of improving outcomes while minimizing toxicities. In this review, we will discuss the biologic rationale for molecularly targeted therapies in genomically defined subsets of pediatric leukemias, solid tumors, and brain tumors. Clin Cancer Res; 23(18); 5329-38. ©2017 AACR.
Collapse
Affiliation(s)
- Thai Hoa Tran
- Department of Pediatrics, Centre Mère-Enfant, Centre Hospitalier de l'Université Laval, Québec, Canada.,Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Canada
| | - Avanthi Tayi Shah
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, California.,Helen Diller Family Cancer Research Center, University of California, San Francisco, San Francisco, California
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, California. .,Helen Diller Family Cancer Research Center, University of California, San Francisco, San Francisco, California
| |
Collapse
|
65
|
Wang S, Tsui ST, Liu C, Song Y, Liu D. EGFR C797S mutation mediates resistance to third-generation inhibitors in T790M-positive non-small cell lung cancer. J Hematol Oncol 2016; 9:59. [PMID: 27448564 PMCID: PMC4957905 DOI: 10.1186/s13045-016-0290-1] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/16/2016] [Indexed: 01/09/2023] Open
Abstract
T790M mutation is the most common mechanism for resistance to first- and second-generation tyrosine kinase inhibitors (TKI) for epidermal growth factor receptor (EGFR). Several third-generation EGFR mutant selective TKIs are being explored to conquer this resistance. AZD9291 (osimertinib, tagrisso) has been approved for treatment of the metastatic EGFR T790M mutation-positive non-small cell lung cancer. Resistance to AZD9291 has been described. C797S mutation was reported to be a major mechanism for resistance to T790M-targeting EGFR inhibitors. This review summarizes the latest development in identifying the C797S mutation and EAI045, the novel selective inhibitor overcoming the C797S mutant.
Collapse
Affiliation(s)
- Shuhang Wang
- The Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing, China
| | - Stella T Tsui
- SUNY Stony Brook University, Stony Brook, NY, 11794, USA
| | - Christina Liu
- Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, 60208, USA
| | - Yongping Song
- Henan Cancer Hospital and the affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Delong Liu
- Henan Cancer Hospital and the affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|