51
|
Marriott BA, Do AD, Zahacy R, Jackson J. Topographic gradients define the projection patterns of the claustrum core and shell in mice. J Comp Neurol 2021; 529:1607-1627. [PMID: 32975316 PMCID: PMC8048916 DOI: 10.1002/cne.25043] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 01/05/2023]
Abstract
The claustrum is densely connected to the cortex and participates in brain functions such as attention and sleep. Although some studies have reported the widely divergent organization of claustrum projections, others describe parallel claustrocortical connections to different cortical regions. Therefore, the details underlying how claustrum neurons broadcast information to cortical networks remain incompletely understood. Using multicolor retrograde tracing we determined the density, topography, and co-projection pattern of 14 claustrocortical pathways, in mice. We spatially registered these pathways to a common coordinate space and found that the claustrocortical system is topographically organized as a series of overlapping spatial modules, continuously distributed across the dorsoventral claustrum axis. The claustrum core projects predominantly to frontal-midline cortical regions, whereas the dorsal and ventral shell project to the cortical motor system and temporal lobe, respectively. Anatomically connected cortical regions receive common input from a subset of claustrum neurons shared by neighboring modules, whereas spatially separated regions of cortex are innervated by different claustrum modules. Therefore, each output module exhibits a unique position within the claustrum and overlaps substantially with other modules projecting to functionally related cortical regions. Claustrum inhibitory cells containing parvalbumin, somatostatin, and neuropeptide Y also show unique topographical distributions, suggesting different output modules are controlled by distinct inhibitory circuit motifs. The topographic organization of excitatory and inhibitory cell types may enable parallel claustrum outputs to independently coordinate distinct cortical networks.
Collapse
Affiliation(s)
- Brian A. Marriott
- Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonAlbertaCanada
| | - Alison D. Do
- Department of PhysiologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Ryan Zahacy
- Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonAlbertaCanada
| | - Jesse Jackson
- Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonAlbertaCanada
- Department of PhysiologyUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
52
|
Benarroch EE. What is the Role of the Claustrum in Cortical Function and Neurologic Disease? Neurology 2021; 96:110-113. [PMID: 33462127 DOI: 10.1212/wnl.0000000000011280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/03/2020] [Indexed: 11/15/2022] Open
|
53
|
|
54
|
The Mouse Claustrum Is Required for Optimal Behavioral Performance Under High Cognitive Demand. Biol Psychiatry 2020; 88:719-726. [PMID: 32456782 PMCID: PMC7554117 DOI: 10.1016/j.biopsych.2020.03.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/10/2020] [Accepted: 03/28/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND To achieve goals, organisms are often faced with complex tasks that require enhanced control of cognitive faculties for optimal performance. However, the neural circuit mechanisms underlying this ability are unclear. The claustrum is proposed to mediate a variety of functions ranging from sensory binding to cognitive control of action, but direct functional assessments of this telencephalic nucleus are lacking. METHODS Here, we employed the Gnb4 (guanine nucleotide-binding subunit beta-4) cre driver line in mice to selectively monitor and manipulate claustrum projection neurons during 1-choice versus 5-choice serial reaction time task performance. RESULTS Using fiber photometry, we found elevated claustrum activity prior to an expected cue during correct performance on the cognitively demanding 5-choice response assay relative to the less demanding 1-choice version of the task. Claustrum activity during reward acquisition was also enhanced when task demand was higher. Furthermore, optogenetically inhibiting the claustrum prior to the onset of the cue reduced choice accuracy on the 5-choice task but not on the 1-choice task. CONCLUSIONS These results suggest that the claustrum supports a cognitive control function necessary for optimal behavioral performance under cognitively demanding conditions.
Collapse
|
55
|
Claustral Neurons Projecting to Frontal Cortex Mediate Contextual Association of Reward. Curr Biol 2020; 30:3522-3532.e6. [PMID: 32707061 DOI: 10.1016/j.cub.2020.06.064] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/01/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022]
Abstract
The claustrum is a small nucleus, exhibiting vast reciprocal connectivity with cortical, subcortical, and midbrain regions. Recent studies, including ours, implicate the claustrum in salience detection and attention. In the current study, we develop an iterative functional investigation of the claustrum, guided by quantitative spatial transcriptional analysis. Using this approach, we identify a circuit involving dopamine-receptor expressing claustral neurons projecting to frontal cortex necessary for context association of reward. We describe the recruitment of claustral neurons by cocaine and their role in drug sensitization. In order to characterize the circuit within which these neurons are embedded, we apply chemo- and opto-genetic manipulation of increasingly specified claustral subpopulations. This strategy resolves the role of a defined network of claustrum neurons expressing dopamine D1 receptors and projecting to frontal cortex in the acquisition of cocaine conditioned-place preference and real-time optogenetic conditioned-place preference. In sum, our results suggest a role for a claustrum-to-frontal cortex circuit in the attribution of incentive salience, allocating attention to reward-related contextual cues.
Collapse
|
56
|
Hahn JD, Swanson LW, Bowman I, Foster NN, Zingg B, Bienkowski MS, Hintiryan H, Dong HW. An open access mouse brain flatmap and upgraded rat and human brain flatmaps based on current reference atlases. J Comp Neurol 2020; 529:576-594. [PMID: 32511750 DOI: 10.1002/cne.24966] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022]
Abstract
Here we present a flatmap of the mouse central nervous system (CNS) (brain) and substantially enhanced flatmaps of the rat and human brain. Also included are enhanced representations of nervous system white matter tracts, ganglia, and nerves, and an enhanced series of 10 flatmaps showing different stages of rat brain development. The adult mouse and rat brain flatmaps provide layered diagrammatic representation of CNS divisions, according to their arrangement in corresponding reference atlases: Brain Maps 4.0 (BM4, rat) (Swanson, The Journal of Comparative Neurology, 2018, 526, 935-943), and the first version of the Allen Reference Atlas (mouse) (Dong, The Allen reference atlas, (book + CD-ROM): A digital color brain atlas of the C57BL/6J male mouse, 2007). To facilitate comparative analysis, both flatmaps are scaled equally, and the divisional hierarchy of gray matter follows a topographic arrangement used in BM4. Also included with the mouse and rat brain flatmaps are cerebral cortex atlas level contours based on the reference atlases, and direct graphical and tabular comparison of regional parcellation. To encourage use of the brain flatmaps, they were designed and organized, with supporting reference tables, for ease-of-use and to be amenable to computational applications. We demonstrate how they can be adapted to represent novel parcellations resulting from experimental data, and we provide a proof-of-concept for how they could form the basis of a web-based graphical data viewer and analysis platform. The mouse, rat, and human brain flatmap vector graphics files (Adobe Reader/Acrobat viewable and Adobe Illustrator editable) and supporting tables are provided open access; they constitute a broadly applicable neuroscience toolbox resource for researchers seeking to map and perform comparative analysis of brain data.
Collapse
Affiliation(s)
- Joel D Hahn
- Department of Biological Sciences, University of Southern California, California, Los Angeles, USA.,Center for Integrated Connectomics (CIC), Keck School of Medicine of University of Southern California, University of Southern California Stevens Neuroimaging and Informatics Institute, Los Angeles, California, USA
| | - Larry W Swanson
- Department of Biological Sciences, University of Southern California, California, Los Angeles, USA
| | - Ian Bowman
- Center for Integrated Connectomics (CIC), Keck School of Medicine of University of Southern California, University of Southern California Stevens Neuroimaging and Informatics Institute, Los Angeles, California, USA
| | - Nicholas N Foster
- Center for Integrated Connectomics (CIC), Keck School of Medicine of University of Southern California, University of Southern California Stevens Neuroimaging and Informatics Institute, Los Angeles, California, USA
| | - Brian Zingg
- Center for Integrated Connectomics (CIC), Keck School of Medicine of University of Southern California, University of Southern California Stevens Neuroimaging and Informatics Institute, Los Angeles, California, USA
| | - Michael S Bienkowski
- Center for Integrated Connectomics (CIC), Keck School of Medicine of University of Southern California, University of Southern California Stevens Neuroimaging and Informatics Institute, Los Angeles, California, USA
| | - Houri Hintiryan
- Center for Integrated Connectomics (CIC), Keck School of Medicine of University of Southern California, University of Southern California Stevens Neuroimaging and Informatics Institute, Los Angeles, California, USA
| | - Hong-Wei Dong
- Center for Integrated Connectomics (CIC), Keck School of Medicine of University of Southern California, University of Southern California Stevens Neuroimaging and Informatics Institute, Los Angeles, California, USA.,Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, California, USA.,Department of Physiology and Neuroscience, and Zilkha Neurogenetic Institute, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| |
Collapse
|
57
|
Abstract
The claustrum is one of the most widely connected regions of the forebrain, yet its function has remained obscure, largely due to the experimentally challenging nature of targeting this small, thin, and elongated brain area. However, recent advances in molecular techniques have enabled the anatomy and physiology of the claustrum to be studied with the spatiotemporal and cell type–specific precision required to eventually converge on what this area does. Here we review early anatomical and electrophysiological results from cats and primates, as well as recent work in the rodent, identifying the connectivity, cell types, and physiological circuit mechanisms underlying the communication between the claustrum and the cortex. The emerging picture is one in which the rodent claustrum is closely tied to frontal/limbic regions and plays a role in processes, such as attention, that are associated with these areas.
Collapse
Affiliation(s)
- Jesse Jackson
- Department of Physiology and Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Jared B. Smith
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Albert K. Lee
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
| |
Collapse
|
58
|
Chia Z, Augustine GJ, Silberberg G. Synaptic Connectivity between the Cortex and Claustrum Is Organized into Functional Modules. Curr Biol 2020; 30:2777-2790.e4. [PMID: 32531275 DOI: 10.1016/j.cub.2020.05.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/24/2020] [Accepted: 05/07/2020] [Indexed: 12/27/2022]
Abstract
The widespread reciprocal connectivity between the claustrum and the neocortex has stimulated numerous hypotheses regarding its function; all of these suggest that the claustrum acts as a hub that connects multiple cortical regions via dense reciprocal synaptic pathways. Although the connectivity between the anterior cingulate cortex (ACC) and the claustrum has been proposed as an important pathway for top-down cognitive control, little is known about the synaptic inputs that drive claustrum cells projecting to the ACC. Here, we used multi-neuron patch clamp recordings, retrograde and anterograde viral labeling, and optogenetics in mouse claustrum to investigate cortical inputs and outputs of ACC-projecting claustrum (CLA-ACC) neurons. Both ipsilateral and contralateral cortical regions were found to provide synaptic input to CLA-ACC neurons. These cortical regions were predominantly frontal and limbic regions and not primary sensorimotor regions. We show that CLA-ACC neurons receive monosynaptic input from the insular cortex, thereby revealing a potential claustrum substrate mediating the Salience Network. In contrast, sensorimotor cortical regions preferentially targeted non CLA-ACC claustrum neurons. Using dual retrograde labeling of claustrum projection neurons, we show selectivity also in the cortical targets of CLA-ACC neurons: whereas CLA-ACC neurons co-projected mainly to other frontal regions, claustrum neurons projecting to primary sensorimotor cortices selectively targeted other sensorimotor regions. Our results show that both cortical inputs to and projections from CLA-ACC neurons are highly selective, suggesting an organization of cortico-claustral connectivity into functional modules that could be specialized for processing different types of information.
Collapse
Affiliation(s)
- Zach Chia
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - George J Augustine
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore
| | - Gilad Silberberg
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
59
|
Lanciego JL, Wouterlood FG. Neuroanatomical tract-tracing techniques that did go viral. Brain Struct Funct 2020; 225:1193-1224. [PMID: 32062721 PMCID: PMC7271020 DOI: 10.1007/s00429-020-02041-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/31/2020] [Indexed: 12/29/2022]
Abstract
Neuroanatomical tracing methods remain fundamental for elucidating the complexity of brain circuits. During the past decades, the technical arsenal at our disposal has been greatly enriched, with a steady supply of fresh arrivals. This paper provides a landscape view of classical and modern tools for tract-tracing purposes. Focus is placed on methods that have gone viral, i.e., became most widespread used and fully reliable. To keep an historical perspective, we start by reviewing one-dimensional, standalone transport-tracing tools; these including today's two most favorite anterograde neuroanatomical tracers such as Phaseolus vulgaris-leucoagglutinin and biotinylated dextran amine. Next, emphasis is placed on several classical tools widely used for retrograde neuroanatomical tracing purposes, where Fluoro-Gold in our opinion represents the best example. Furthermore, it is worth noting that multi-dimensional paradigms can be designed by combining different tracers or by applying a given tracer together with detecting one or more neurochemical substances, as illustrated here with several examples. Finally, it is without any doubt that we are currently witnessing the unstoppable and spectacular rise of modern molecular-genetic techniques based on the use of modified viruses as delivery vehicles for genetic material, therefore, pushing the tract-tracing field forward into a new era. In summary, here, we aim to provide neuroscientists with the advice and background required when facing a choice on which neuroanatomical tracer-or combination thereof-might be best suited for addressing a given experimental design.
Collapse
Affiliation(s)
- Jose L Lanciego
- Neurosciences Department, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Avenue 55, 31008, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), Pamplona, Spain.
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Floris G Wouterlood
- Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, Location VUmc, Neuroscience Campus Amsterdam, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands.
| |
Collapse
|
60
|
Jin W, Qin H, Zhang K, Chen X. Spatial Navigation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1284:63-90. [PMID: 32852741 DOI: 10.1007/978-981-15-7086-5_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hippocampus is critical for spatial navigation. In this review, we focus on the role of the hippocampus in three basic strategies used for spatial navigation: path integration, stimulus-response association, and map-based navigation. First, the hippocampus is not required for path integration unless the path of path integration is too long and complex. The hippocampus provides mnemonic support when involved in the process of path integration. Second, the hippocampus's involvement in stimulus-response association is dependent on how the strategy is conducted. The hippocampus is not required for the habit form of stimulus-response association. Third, while the hippocampus is fully engaged in map-based navigation, the shared characteristics of place cells, grid cells, head direction cells, and other spatial encoding cells, which are detected in the hippocampus and associated areas, offer a possibility that there is a stand-alone allocentric space perception (or mental representation) of the environment outside and independent of the hippocampus, and the spatially specific firing patterns of these spatial encoding cells are the unfolding of the intermediate stages of the processing of this allocentric spatial information when conveyed into the hippocampus for information storage or retrieval. Furthermore, the presence of all the spatially specific firing patterns in the hippocampus and the related neural circuits during the path integration and map-based navigation support such a notion that in essence, path integration is the same allocentric space perception provided with only idiothetic inputs. Taken together, the hippocampus plays a general mnemonic role in spatial navigation.
Collapse
Affiliation(s)
- Wenjun Jin
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China.
| | - Han Qin
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Kuan Zhang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| |
Collapse
|
61
|
Smith JB, Watson GDR, Liang Z, Liu Y, Zhang N, Alloway KD. A Role for the Claustrum in Salience Processing? Front Neuroanat 2019; 13:64. [PMID: 31275119 PMCID: PMC6594418 DOI: 10.3389/fnana.2019.00064] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 06/06/2019] [Indexed: 11/13/2022] Open
Abstract
The claustrum (CLA) is a subcortical structure, present only in mammals, whose function remains uncertain. Previously, using resting-state functional magnetic resonance imaging (rs-fMRI) in awake head-fixed rats, we found evidence that the CLA is part of the rodent homolog of the default mode network (DMN; Smith et al., 2017). This network emerged as strong functional connections between the medial prefrontal cortex (mPFC), mediodorsal (MD) thalamus, and CLA in the awake state, which was not present following administration of isoflurane anesthesia. In the present report, we review evidence indicating that the rodent CLA also has connections with structures identified in the rodent homolog of the salience network (SN), a circuit that directs attention towards the most relevant stimuli among a multitude of sensory inputs (Seeley et al., 2007; Menon and Uddin, 2010). In humans, this circuit consists of functional connections between the anterior cingulate cortex (ACC) and a region that encompasses both the CLA and insular cortex. We further go on to review the similarities and differences between the functional and anatomical connections of the CLA and insula in rodents using both rs-fMRI and neuroanatomical tracing, respectively. We analyze in detail the connectivity of the CLA with the cingulate cortex, which is a major node in the SN and has been shown to modulate attention. When considered with other recent behavior and physiology studies, the data reveal a role for the CLA in salience-guided orienting. More specifically, we hypothesize that limbic information from mPFC, MD thalamus, and the basolateral amygdala (BLA) are integrated by the CLA to guide modality-related regions of motor and sensory cortex in directing attention towards relevant (i.e., salient) sensory events.
Collapse
Affiliation(s)
- Jared B Smith
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Glenn D R Watson
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Zhifeng Liang
- Laboratory for Comparative Neuroimaging, Institute for Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Yikang Liu
- Center for Neural Engineering, Penn State University, Millennium Science Complex, University Park, PA, United States.,Department of Biomedical Engineering, Penn State University, Millennium Science Complex, University Park, PA, United States
| | - Nanyin Zhang
- Center for Neural Engineering, Penn State University, Millennium Science Complex, University Park, PA, United States.,Department of Biomedical Engineering, Penn State University, Millennium Science Complex, University Park, PA, United States.,Huck Institute of Life Sciences, Penn State University, Millennium Science Complex, University Park, PA, United States
| | - Kevin D Alloway
- Center for Neural Engineering, Penn State University, Millennium Science Complex, University Park, PA, United States.,Huck Institute of Life Sciences, Penn State University, Millennium Science Complex, University Park, PA, United States.,Neural and Behavioral Sciences, Center for Neural Engineering, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
62
|
Barbier M, Risold PY. The claustrum is a target for projections from the supramammillary nucleus in the rat. Neuroscience 2019; 409:261-275. [PMID: 30930128 DOI: 10.1016/j.neuroscience.2019.03.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 12/23/2022]
Abstract
Injection of the anterograde tracer Phaseolus vulgaris leucoagglutinin (PHAL) into the rat rostral and caudal supramammillary nucleus (SUM) provided expected patterns of projections into the hippocampus and the septal region. In addition, unexpectedly intense projections were observed into the claustrum defined by parvalbumin expression. Injections of the retrograde tracer fluorogold (FG) into the hippocampus and the region of the claustrum showed that the cells of origin of these projections distributed similarly within the borders of the SUM. The SUM is usually involved in control of hippocampal theta activity, but the observation of intense projections into the claustrum indicates that it may also influence isocortical processes. Therefore, the SUM may coordinate sensory processing in the isocortex with memory formation in the hippocampus.
Collapse
Affiliation(s)
- Marie Barbier
- EA481, Neurosciences Intégratives et Cliniques, UFR Santé, 19 rue Ambroise Paré, Université de Bourgogne Franche-Comté, 25030 Besançon cedex, France.
| | - Pierre-Yves Risold
- EA481, Neurosciences Intégratives et Cliniques, UFR Santé, 19 rue Ambroise Paré, Université de Bourgogne Franche-Comté, 25030 Besançon cedex, France
| |
Collapse
|
63
|
Dillingham CM, Mathiasen ML, Frost BE, Lambert MAC, Bubb EJ, Jankowski MM, Aggleton JP, O’Mara SM. The Anatomical Boundary of the Rat Claustrum. Front Neuroanat 2019; 13:53. [PMID: 31213993 PMCID: PMC6555083 DOI: 10.3389/fnana.2019.00053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/13/2019] [Indexed: 11/30/2022] Open
Abstract
The claustrum is a subcortical nucleus that exhibits dense connectivity across the neocortex. Considerable recent progress has been made in establishing its genetic and anatomical characteristics, however, a core, contentious issue that regularly presents in the literature pertains to the rostral extent of its anatomical boundary. The present study addresses this issue in the rat brain. Using a combination of immunohistochemistry and neuroanatomical tract tracing, we have examined the expression profiles of several genes that have previously been identified as exhibiting a differential expression profile in the claustrum relative to the surrounding cortex. The expression profiles of parvalbumin (PV), crystallin mu (Crym), and guanine nucleotide binding protein (G protein), gamma 2 (Gng2) were assessed immunohistochemically alongside, or in combination with cortical anterograde, or retrograde tracer injections. Retrograde tracer injections into various thalamic nuclei were used to further establish the rostral border of the claustrum. Expression of all three markers delineated a nuclear boundary that extended considerably (∼500 μm) beyond the anterior horn of the neostriatum. Cortical retrograde and anterograde tracer injections, respectively, revealed distributions of cortically-projecting claustral neurons and cortical efferent inputs to the claustrum that overlapped with the gene marker-derived claustrum boundary. Finally, retrograde tracer injections into the thalamus revealed insular cortico-thalamic projections encapsulating a claustral area with strongly diminished cell label, that extended rostral to the striatum.
Collapse
Affiliation(s)
- Christopher M. Dillingham
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | | | - Bethany E. Frost
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Marie A. C. Lambert
- Faculty of Basic and Applied Sciences, University of Poitiers, Poitiers, France
| | - Emma J. Bubb
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Maciej M. Jankowski
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - John P. Aggleton
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Shane M. O’Mara
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
64
|
Abstract
Barbier and colleagues confirm a projection from the supramammillary nucleus to the claustrum using immunohistochemistry to validate the structural boundaries of the claustrum. This refines earlier conclusions made by Vertes and colleagues and highlights the importance of properly anatomically characterizing the claustrum for future structural and functional studies.
Collapse
Affiliation(s)
- Houman Qadir
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Brian N Mathur
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
65
|
Riedemann S, Sutor B, Bergami M, Riedemann T. Gad1-promotor-driven GFP expression in non-GABAergic neurons of the nucleus endopiriformis in a transgenic mouse line. J Comp Neurol 2019; 527:2215-2232. [PMID: 30847931 DOI: 10.1002/cne.24673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 01/22/2023]
Abstract
Transgenic animals have become a widely used model to identify and study specific cell types in whole organs. Promotor-driven reporter gene labeling of the cells under investigation has promoted experimental efficacy to a large degree. However, rigorous assessment of transgene expression specificity in these animal models is highly recommended to validate cellular identity and to isolate potentially mislabeled cell populations. Here, we report on one such mislabeled neuron population in a widely used transgenic mouse line in which GABAergic somatostatin-expressing interneurons (SOMpos INs) are labeled by eGFP (so-called GIN mouse, FVB-Tg(GadGFP)45704Swn/J). These neurons represent a subpopulation of all SOMpos INs. However, we report here on GFP labeling of non-GABAergic neurons in the nucleus endopiriformis of this mouse line.
Collapse
Affiliation(s)
- Sophie Riedemann
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Bernd Sutor
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Matteo Bergami
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and University Hospital of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Therese Riedemann
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|