51
|
Zhang S. Screening and verification for proteins that interact with leucine aminopeptidase of Taenia pisiformis using a yeast two-hybrid system. Parasitol Res 2019; 118:3387-3398. [PMID: 31728719 DOI: 10.1007/s00436-019-06510-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/15/2019] [Indexed: 11/30/2022]
Abstract
Leucine aminopeptidase of Taenia pisiformis (TpLAP) belonging to the M17 peptidase family has been implicated as a stage-differentially expressed protein in the adult stage of T. pisiformis. In order to further dissect the biological functions of TpLAP in the growth and development of adult worms, TpLAP-interacting partners were investigated. In this study, a yeast two-hybrid (Y2H) cDNA library from adult T. pisiformis was constructed. Using pGBKT7-TpLAP as bait, proteins interacting with TpLAP were screened by Y2H system and positive preys were sequenced and analyzed using the Basic Local Alignment Search Tool (BLAST). Our results showed that six genuine TpLAP-interacting proteins, including LAP, dynein light chain (DLC), SUMO-conjugating enzyme (UBC9), histone-lysine n-methyltransferase, trans-acting transcriptional, and one unknown protein, were identified via Y2H assay. Furthermore, the interaction between TpLAP and UBC9 of T. pisiformis (TpUBC9), an important protein involved in SUMOylation pathway, was further validated by one-to-one Y2H assay, co-immunoprecipitation, and confocal analysis. These findings provide a deeper understanding of the biological functions of TpLAP and offer the first clue that TpLAP may act as a novel SUMOylated substrate, suggesting that the SUMO modification pathway plays an important role in regulation of adult worm growth and development.
Collapse
Affiliation(s)
- Shaohua Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xujiaping, Yanchangbu, Lanzhou, Gansu Province, 730046, People's Republic of China.
| |
Collapse
|
52
|
Jing L, Liu J, Cui D, Li Y, Liu Z, Tao L, Zhao Q, Diao A. Screening and production of an affibody inhibiting the interaction of the PD-1/PD-L1 immune checkpoint. Protein Expr Purif 2019; 166:105520. [PMID: 31644959 DOI: 10.1016/j.pep.2019.105520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 12/20/2022]
Abstract
An affibody is a 58 amino acids peptide derived from the Z domain of staphylococcal protein A and generally applied in areas such as imaging diagnosis, clinical therapeutics and biotechnology research. To screen for an affibody targeting the immune checkpoint PD-L1, a combinatorial affibody library was generated in yeast using degenerate overlap PCR primers and In-fusion technology. Z-j1 and Z-j2 affibodies targeting the Ig-like V domain of PD-L1 were screened and identified from this combinatorial library using the yeast two hybrid system. The Z-j1 and Z-j2 recombinant affibody proteins were over produced in E.coli and purified. ELISA and GST pull-down assays showed that recombinant Z-j1 and Z-j2 affibody proteins bound with high affinity to PD-L1 and inhibited the interaction of PD-1/PD-L1. Thus, novel affibodies targeting the immune checkpoint PD-1/PD-L1 were identified and produced in this study and have the potential to be used in cancer immunotherapy.
Collapse
Affiliation(s)
- Lei Jing
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin, 300457, China
| | - Juanjuan Liu
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin, 300457, China
| | - Dongxu Cui
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin, 300457, China
| | - Yuyin Li
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin, 300457, China
| | - Zhenxing Liu
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin, 300457, China
| | - Li Tao
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin, 300457, China
| | - Qing Zhao
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin, 300457, China; Tianjin Engineering Research Center of Safety Control Technology in Food Processing, 300457, Tianjin, China; Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, 300457, Tianjin, China.
| | - Aipo Diao
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin, 300457, China.
| |
Collapse
|