51
|
Bando Y, Hirano T, Tagawa Y. Dysfunction of KCNK potassium channels impairs neuronal migration in the developing mouse cerebral cortex. ACTA ACUST UNITED AC 2012; 24:1017-29. [PMID: 23236211 DOI: 10.1093/cercor/bhs387] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Development of the cerebral cortex depends partly on neural activity, but the identity of the ion channels that might contribute to the activity-dependent cortical development is unknown. KCNK channels are critical determinants of neuronal excitability in the mature cerebral cortex, and a member of the KCNK family, KCNK9, is responsible for a maternally transmitted mental retardation syndrome. Here, we have investigated the roles of KCNK family potassium channels in cortical development. Knockdown of KCNK2, 9, or 10 by RNAi using in utero electroporation impaired the migration of late-born cortical excitatory neurons destined to become Layer II/III neurons. The migration defect caused by KCNK9 knockdown was rescued by coexpression of RNAi-resistant functional KCNK9 mutant. Furthermore, expression of dominant-negative mutant KCNK9, responsible for the disease, and electrophysiological experiments demonstrated that ion channel function was involved in the migration defect. Calcium imaging revealed that KCNK9 knockdown or expression of dominant-negative mutant KCNK9 increased the fraction of neurons showing calcium transients and the frequency of spontaneous calcium transients. Mislocated neurons seen after KCNK9 knockdown stayed in the deep cortical layers, showing delayed morphological maturation. Taken together, our results suggest that dysfunction of KCNK9 causes a migration defect in the cortex via an activity-dependent mechanism.
Collapse
Affiliation(s)
- Yuki Bando
- Department of Biophysics, Kyoto University Graduate School of Science, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
52
|
Denis D, Girard N, Levy-Mozziconacci A, Berbis J, Matonti F. [Ocular coloboma and results of brain MRI: preliminary results]. J Fr Ophtalmol 2012. [PMID: 23177150 DOI: 10.1016/j.jfo.2012.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Congenital ocular colobomas are the result of a failure in closure of the embryonal fissure. We present a prospective study (2007-2011) in which we report brain MRI findings in children with ocular coloboma. PATIENTS AND METHODS Thirty-five children (54 eyes) were included; 15 boys, 20 girls with a median age of 24.0 months (1.0-96.0) at first presentation. Within 2 to 3 months following complete ophthalmologic examination, brain MRI was performed. RESULTS Colobomas were bilateral in 19 cases and unilateral in 16 cases. Eleven different types of coloboma were identified. Of 54 eyes, 74% demonstrated optic nerve coloboma, of which 28 were severe. Of 35 MRI's performed, abnormalities were present in 86%: gyration abnormalities (n=21), lateral ventricular dilatation (n=17), dilatation of the Virchow-Robin and subarachnoid spaces (n=14), signal abnormalities and brain stem malformations (n=14), white matter signal abnormalities (n=11), corpus callosum abnormalities (n=10). Most of these abnormalities were related. Gyration abnormalities were the most frequent. There was no significant association between the severity of the coloboma and the abnormalities found (P=1.0). Likewise, there was no significant association of gyration abnormalities with the severity of coloboma in children (P=1.0). DISCUSSION AND CONCLUSION This study shows, for the first time, the existence of frequent cerebral abnormalities on MRI in children with ocular coloboma. The most common abnormality being gyration abnormalities, in 60% of cases.
Collapse
Affiliation(s)
- D Denis
- Service d'ophtalmologie, hôpital Nord, chemin des Bourrely, 13915 Marseille cedex 20, France.
| | | | | | | | | |
Collapse
|
53
|
Santiago-Medina M, Myers JP, Gomez TM. Imaging adhesion and signaling dynamics in Xenopus laevis growth cones. Dev Neurobiol 2012; 72:585-99. [PMID: 21465668 DOI: 10.1002/dneu.20886] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Xenopus laevis provides a robust model system to study cellular signaling and downstream processes during development both in vitro and in vivo. Intracellular signals must function within highly restricted spatial and temporal domains to activate specific downstream targets and cellular processes. Combining the versatility of developing Xenopus neurons with advances in fluorescent protein biosensors and imaging technologies has allowed many dynamic cellular processes to be visualized. This review will focus on the techniques we use to visualize and measure cell signaling, motility and adhesion by quantitative fluorescence microscopy in vitro and in vivo.
Collapse
Affiliation(s)
- Miguel Santiago-Medina
- Department of Neuroscience, Neuroscience Training Program, University of Wisconsin-Madison, WI 53706, USA
| | | | | |
Collapse
|
54
|
Magnani D, Hasenpusch-Theil K, Benadiba C, Yu T, Basson MA, Price DJ, Lebrand C, Theil T. Gli3 controls corpus callosum formation by positioning midline guideposts during telencephalic patterning. ACTA ACUST UNITED AC 2012; 24:186-98. [PMID: 23042737 DOI: 10.1093/cercor/bhs303] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The corpus callosum (CC) represents the major forebrain commissure connecting the 2 cerebral hemispheres. Midline crossing of callosal axons is controlled by several glial and neuronal guideposts specifically located along the callosal path, but it remains unknown how these cells acquire their position. Here, we show that the Gli3 hypomorphic mouse mutant Polydactyly Nagoya (Pdn) displays agenesis of the CC and mislocation of the glial and neuronal guidepost cells. Using transplantation experiments, we demonstrate that agenesis of the CC is primarily caused by midline defects. These defects originate during telencephalic patterning and involve an up-regulation of Slit2 expression and altered Fgf and Wnt/β-catenin signaling. Mutations in sprouty1/2 which mimic the changes in these signaling pathways cause a disorganization of midline guideposts and CC agenesis. Moreover, a partial recovery of midline abnormalities in Pdn/Pdn;Slit2(-/-) embryos mutants confirms the functional importance of correct Slit2 expression levels for callosal development. Hence, Gli3 controlled restriction of Fgf and Wnt/β-catenin signaling and of Slit2 expression is crucial for positioning midline guideposts and callosal development.
Collapse
Affiliation(s)
- Dario Magnani
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Mulligan KA, Cheyette BNR. Wnt signaling in vertebrate neural development and function. J Neuroimmune Pharmacol 2012; 7:774-87. [PMID: 23015196 DOI: 10.1007/s11481-012-9404-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/10/2012] [Indexed: 02/03/2023]
Abstract
Members of the Wnt family of secreted signaling proteins influence many aspects of neural development and function. Wnts are required from neural induction and axis formation to axon guidance and synapse development, and even help modulate synapse activity. Wnt proteins activate a variety of downstream signaling pathways and can induce a similar variety of cellular responses, including gene transcription changes and cytoskeletal rearrangements. This review provides an introduction to Wnt signaling pathways and discusses current research on their roles in vertebrate neural development and function.
Collapse
Affiliation(s)
- Kimberly A Mulligan
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA
| | | |
Collapse
|
56
|
Cederquist GY, Luchniak A, Tischfield MA, Peeva M, Song Y, Menezes MP, Chan WM, Andrews C, Chew S, Jamieson RV, Gomes L, Flaherty M, Grant PE, Gupta ML, Engle EC. An inherited TUBB2B mutation alters a kinesin-binding site and causes polymicrogyria, CFEOM and axon dysinnervation. Hum Mol Genet 2012; 21:5484-99. [PMID: 23001566 DOI: 10.1093/hmg/dds393] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Microtubules are essential components of axon guidance machinery. Among β-tubulin mutations, only those in TUBB3 have been shown to cause primary errors in axon guidance. All identified mutations in TUBB2B result in polymicrogyria, but it remains unclear whether TUBB2B mutations can cause axon dysinnervation as a primary phenotype. We have identified a novel inherited heterozygous missense mutation in TUBB2B that results in an E421K amino acid substitution in a family who segregates congenital fibrosis of the extraocular muscles (CFEOM) with polymicrogyria. Diffusion tensor imaging of brains of affected family members reveals aberrations in the trajectories of commissural projection neurons, implying a paucity of homotopic connections. These observations led us to ask whether axon dysinnervation is a primary phenotype, and why the E421K, but not other, TUBB2B substitutions cause CFEOM. Expression of exogenous Tubb2b-E421K in developing callosal projection neurons is sufficient to perturb homotopic connectivity, without affecting neuronal production or migration. Using in vitro biochemical assays and yeast genetics, we find that TUBB2B-E421K αβ-heterodimers are incorporated into the microtubule network where they alter microtubule dynamics and can reduce kinesin localization. These data provide evidence that TUBB2B mutations can cause primary axon dysinnervation. Interestingly, by incorporating into microtubules and altering their dynamic properties, the E421K substitution behaves differently than previously identified TUBB2B substitutions, providing mechanistic insight into the divergence between resulting phenotypes. Together with previous studies, these findings highlight that β-tubulin isotypes function in both conserved and divergent ways to support proper human nervous system development.
Collapse
|
57
|
Park M, Shen K. WNTs in synapse formation and neuronal circuitry. EMBO J 2012; 31:2697-704. [PMID: 22617419 DOI: 10.1038/emboj.2012.145] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 04/20/2012] [Indexed: 11/09/2022] Open
Abstract
Wnt proteins play important roles in wiring neural circuits. Wnts regulate many aspects of neural circuit generation through their receptors and distinct signalling pathways. In this review, we discuss recent findings on the functions of Wnts in various aspects of neural circuit formation, including neuronal polarity, axon guidance, synapse formation, and synaptic plasticity in vertebrate and invertebrate nervous systems.
Collapse
Affiliation(s)
- Mikyoung Park
- Center for Functional Connectomics, Brain Science Institute, Seoul, Korea.
| | | |
Collapse
|
58
|
Varela-Nallar L, Ramirez VT, Gonzalez-Billault C, Inestrosa NC. Frizzled receptors in neurons: from growth cones to the synapse. Cytoskeleton (Hoboken) 2012; 69:528-34. [PMID: 22407911 DOI: 10.1002/cm.21022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/26/2012] [Accepted: 02/21/2012] [Indexed: 11/05/2022]
Abstract
The Wnt signaling pathway has been implicated in several different aspects of neural development and function, including dendrite morphogenesis, axonal growth and guidance, synaptogenesis and synaptic plasticity. Here, we studied several Frizzled Wnt receptors and determined their differential expression during hippocampal development. In cultured hippocampal neurons, the cellular distributions of Frizzleds vary greatly, some of them being localized at neurites, growth cones or synaptic sites. These findings suggest that the Wnt signaling pathway might be temporally and spatially fine tuned during the development of neuronal circuits through specific Frizzled receptors.
Collapse
Affiliation(s)
- Lorena Varela-Nallar
- Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
59
|
Clark CEJ, Nourse CC, Cooper HM. The tangled web of non-canonical Wnt signalling in neural migration. Neurosignals 2012; 20:202-20. [PMID: 22456117 DOI: 10.1159/000332153] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 08/23/2011] [Indexed: 12/19/2022] Open
Abstract
In all multicellular animals, successful embryogenesis is dependent on the ability of cells to detect the status of the local environment and respond appropriately. The nature of the extracellular environment is communicated to the intracellular compartment by ligand/receptor interactions at the cell surface. The Wnt canonical and non-canonical signalling pathways are found in the most primitive metazoans, and they play an essential role in the most fundamental developmental processes in all multicellular organisms. Vertebrates have expanded the number of Wnts and Frizzled receptors and have additionally evolved novel Wnt receptor families (Ryk, Ror). The multiplicity of potential interactions between Wnts, their receptors and downstream effectors has exponentially increased the complexity of the signal transduction network. Signalling through each of the Wnt pathways, as well as crosstalk between them, plays a critical role in the establishment of the complex architecture of the vertebrate central nervous system. In this review, we explore the signalling networks triggered by non-canonical Wnt/receptor interactions, focussing on the emerging roles of the non-conventional Wnt receptors Ryk and Ror. We describe the role of these pathways in neural tube formation and axon guidance where Wnt signalling controls tissue polarity, coordinated cell migration and axon guidance via remodelling of the cytoskeleton.
Collapse
Affiliation(s)
- Charlotte E J Clark
- Queensland Brain Institute, University of Queensland, Brisbane, Qld, Australia
| | | | | |
Collapse
|
60
|
Salinas PC. Wnt signaling in the vertebrate central nervous system: from axon guidance to synaptic function. Cold Spring Harb Perspect Biol 2012; 4:4/2/a008003. [PMID: 22300976 DOI: 10.1101/cshperspect.a008003] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Regulation of cell signaling by Wnt proteins is critical for the formation of neuronal circuits. Wnts modulate axon pathfinding, dendritic development, and synaptic assembly. Through different receptors, Wnts activate diverse signaling pathways that lead to local changes on the cytoskeleton or global cellular changes involving nuclear function. Recently, a link between neuronal activity, essential for the formation and refinement of neuronal connections, and Wnt signaling has been uncovered. Indeed, neuronal activity regulates the release of Wnt and the localization of their receptors. Wnts mediate synaptic structural changes induced by neuronal activity or experience. New emerging evidence suggests that dysfunction in Wnt signaling contributes to neurological disorders. In this article, the attention is focused on the function of Wnt signaling in the formation of neuronal circuits in the vertebrate central nervous system.
Collapse
Affiliation(s)
- Patricia C Salinas
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.
| |
Collapse
|
61
|
Hutchins BI, Li L, Kalil K. Wnt-induced calcium signaling mediates axon growth and guidance in the developing corpus callosum. Sci Signal 2012; 5:pt1. [PMID: 22234611 DOI: 10.1126/scisignal.2002523] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Wnt5a gradients guide callosal axons by repulsion through Ryk receptors in vivo. We recently found that Wnt5a repels cortical axons and promotes axon outgrowth through calcium signaling in vitro. Here, using cortical slices, we show that Wnt5a signals through Ryk to guide and promote outgrowth of callosal axons after they cross the midline. Calcium transient frequencies in callosal growth cones positively correlate with axon outgrowth rates in vitro. In cortical slices, calcium release through inositol 1,4,5-trisphosphate (IP(3)) receptors and calcium entry through transient receptor potential channels modulate axon growth and guidance. Knocking down Ryk inhibits calcium signaling in cortical axons, reduces rates of axon outgrowth subsequent to midline crossing, and causes axon guidance defects. Calcium- and calmodulin-dependent protein kinase II (CaMKII) is required downstream of Wnt-induced calcium signaling for postcrossing callosal axon growth and guidance. Taken together, these results suggest that growth and guidance of postcrossing callosal axons by Wnt-Ryk-calcium signaling involves axon repulsion through CaMKII.
Collapse
Affiliation(s)
- B Ian Hutchins
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | |
Collapse
|
62
|
Wilson NH, Stoeckli ET. Sonic Hedgehog regulates Wnt activity during neural circuit formation. VITAMINS AND HORMONES 2012; 88:173-209. [PMID: 22391304 DOI: 10.1016/b978-0-12-394622-5.00008-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gradients of secreted morphogens, such as Sonic hedgehog (Shh), Wnt, and TGFβ/Bmp, have classically been shown to control many aspects of early development by regulating cell proliferation and determining cell fate. However, recent studies demonstrate that these molecules also play important and evolutionarily conserved roles in later aspects of neural development. Depending on the context, these molecules can elicit gene transcription in the nucleus, or alternatively can provide instructive signals at the growth cone that induce local and rapid changes in cytoskeletal organization. Shh can activate different cellular transduction pathways via its binding to alternative coreceptor complexes or simply by adaptation of its "classical" signaling pathway. However, in most of its activities during neural development, Shh does not act alone but rather in concert with other morphogens, particularly the Wnts. This review provides an overview of the mechanisms by which Shh signaling acts in concert with Wnts to mediate a myriad of cellular processes that are required for neural circuit formation.
Collapse
Affiliation(s)
- Nicole H Wilson
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
63
|
Abstract
The Transient receptor potential (TRP) family of cation channels is a large protein family, which is mainly structurally uniform. Proteins consist typically of six transmembrane domains and mostly four subunits are necessary to form a functional channel. Apart from this, TRP channels display a wide variety of activation mechanisms (ligand binding, G-protein coupled receptor dependent, physical stimuli such as temperature, pressure, etc.) and ion selectivity profiles (from highly Ca(2+) selective to non-selective for cations). They have been described now in almost every tissue of the body, including peripheral and central neurons. Especially in the sensory nervous system the role of several TRP channels is already described on a detailed level. This review summarizes data that is currently available on their role in the central nervous system. TRP channels are involved in neurogenesis and brain development, synaptic transmission and they play a key role in the development of several neurological diseases.
Collapse
|
64
|
|
65
|
Kalil K, Li L, Hutchins BI. Signaling mechanisms in cortical axon growth, guidance, and branching. Front Neuroanat 2011; 5:62. [PMID: 22046148 PMCID: PMC3202218 DOI: 10.3389/fnana.2011.00062] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 09/08/2011] [Indexed: 11/14/2022] Open
Abstract
Precise wiring of cortical circuits during development depends upon axon extension, guidance, and branching to appropriate targets. Motile growth cones at axon tips navigate through the nervous system by responding to molecular cues, which modulate signaling pathways within axonal growth cones. Intracellular calcium signaling has emerged as a major transducer of guidance cues but exactly how calcium signaling pathways modify the actin and microtubule cytoskeleton to evoke growth cone behaviors and axon branching is still mysterious. Axons must often pause their extension in tracts while their branches extend into targets. Some evidence suggests a competition between growth of axons and branches but the mechanisms are poorly understood. Since it is difficult to study growing axons deep within the mammalian brain, much of what we know about signaling pathways and cytoskeletal dynamics of growth cones comes from tissue culture studies, in many cases, of non-mammalian species. Consequently it is not well understood how guidance cues relevant to mammalian neural development in vivo signal to the growth cone cytoskeleton during axon outgrowth and guidance. In this review we describe our recent work in dissociated cultures of developing rodent sensorimotor cortex in the context of the current literature on molecular guidance cues, calcium signaling pathways, and cytoskeletal dynamics that regulate growth cone behaviors. A major challenge is to relate findings in tissue culture to mechanisms of cortical development in vivo. Toward this goal, we describe our recent work in cortical slices, which preserve the complex cellular and molecular environment of the mammalian brain but allow direct visualization of growth cone behaviors and calcium signaling. Findings from this work suggest that mechanisms regulating axon growth and guidance in dissociated culture neurons also underlie development of cortical connectivity in vivo.
Collapse
Affiliation(s)
- Katherine Kalil
- Neuroscience Training Program, University of Wisconsin-Madison Madison, WI, USA
| | | | | |
Collapse
|