51
|
Loss of stat3 function leads to spine malformation and immune disorder in zebrafish. Sci Bull (Beijing) 2017; 62:185-196. [PMID: 36659403 DOI: 10.1016/j.scib.2017.01.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 11/22/2016] [Accepted: 12/08/2016] [Indexed: 01/21/2023]
Abstract
STAT (Signal Transducers and Activators of Transcription) gene family members have been revealed to be involved in cell growth and differentiation in vertebrates. Despite their physiological importance, their functions are poorly studied at organ and systemic levels. In this study, we performed a genome-wide analysis using data from invertebrates to vertebrates to identify STAT genes and analyze their evolutionary history. Interestingly, the STAT gene family undergoes genome duplications during the evolutionary history with STAT3 homologues firstly appearing in the basal extant vertebrate, sea lamprey, suggesting its possible roles in spine formation. To investigate the functions of stat3 in fish species, TALEN technology was performed to generate mutant zebrafish lines. Stat3 mutant zebrafish showed no obvious defects at early developmental stage but displayed severe lateral and vertical curvature of the spine (scoliosis), spine fracture and the incomplete bone joints with narrower junction between vertebrae at early juvenile stage, as indicated by Alizarin red and Alcian blue staining, radiography and micro-computed tomography (MicroCT) analysis. Transcriptome analysis reveals dramatic alterations in a number of genes involved in immune and infection response, skeletal development and somatic growth, especially downregulated expression of collagen gene family, in the juvenile stat3 mutant zebrafish. Moreover, most of the collagen genes were detected to have abnormal expression pattern during the formation of spine deformities in stat3 mutants. Our data reveal that stat3 is specially expressed in vertebrates and required for normal spine development and immune function in zebrafish.
Collapse
|
52
|
Grimes DT, Boswell CW, Morante NFC, Henkelman RM, Burdine RD, Ciruna B. Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature. Science 2016; 352:1341-4. [PMID: 27284198 DOI: 10.1126/science.aaf6419] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/16/2016] [Indexed: 12/11/2022]
Abstract
Idiopathic scoliosis (IS) affects 3% of children worldwide, yet the mechanisms underlying this spinal deformity remain unknown. Here we show that ptk7 mutant zebrafish, a faithful developmental model of IS, exhibit defects in ependymal cell cilia development and cerebrospinal fluid (CSF) flow. Transgenic reintroduction of Ptk7 in motile ciliated lineages prevents scoliosis in ptk7 mutants, and mutation of multiple independent cilia motility genes yields IS phenotypes. We define a finite developmental window for motile cilia in zebrafish spine morphogenesis. Notably, restoration of cilia motility after the onset of scoliosis blocks spinal curve progression. Together, our results indicate a critical role for cilia-driven CSF flow in spine development, implicate irregularities in CSF flow as an underlying biological cause of IS, and suggest that noninvasive therapeutic intervention may prevent severe scoliosis.
Collapse
Affiliation(s)
- D T Grimes
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - C W Boswell
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada. Department of Molecular Genetics, The University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - N F C Morante
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - R M Henkelman
- Mouse Imaging Centre, The Hospital for Sick Children, 25 Orde Street, Toronto, Ontario M5T 3H7, Canada. Department of Medical Biophysics, The University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - R D Burdine
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - B Ciruna
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada. Department of Molecular Genetics, The University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
53
|
Guo L, Yamashita H, Kou I, Takimoto A, Meguro-Horike M, Horike SI, Sakuma T, Miura S, Adachi T, Yamamoto T, Ikegawa S, Hiraki Y, Shukunami C. Functional Investigation of a Non-coding Variant Associated with Adolescent Idiopathic Scoliosis in Zebrafish: Elevated Expression of the Ladybird Homeobox Gene Causes Body Axis Deformation. PLoS Genet 2016; 12:e1005802. [PMID: 26820155 PMCID: PMC4731154 DOI: 10.1371/journal.pgen.1005802] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 12/21/2015] [Indexed: 11/23/2022] Open
Abstract
Previously, we identified an adolescent idiopathic scoliosis susceptibility locus near human ladybird homeobox 1 (LBX1) and FLJ41350 by a genome-wide association study. Here, we characterized the associated non-coding variant and investigated the function of these genes. A chromosome conformation capture assay revealed that the genome region with the most significantly associated single nucleotide polymorphism (rs11190870) physically interacted with the promoter region of LBX1-FLJ41350. The promoter in the direction of LBX1, combined with a 590-bp region including rs11190870, had higher transcriptional activity with the risk allele than that with the non-risk allele in HEK 293T cells. The ubiquitous overexpression of human LBX1 or either of the zebrafish lbx genes (lbx1a, lbx1b, and lbx2), but not FLJ41350, in zebrafish embryos caused body curvature followed by death prior to vertebral column formation. Such body axis deformation was not observed in transcription activator-like effector nucleases mediated knockout zebrafish of lbx1b or lbx2. Mosaic expression of lbx1b driven by the GATA2 minimal promoter and the lbx1b enhancer in zebrafish significantly alleviated the embryonic lethal phenotype to allow observation of the later onset of the spinal curvature with or without vertebral malformation. Deformation of the embryonic body axis by lbx1b overexpression was associated with defects in convergent extension, which is a component of the main axis-elongation machinery in gastrulating embryos. In embryos overexpressing lbx1b, wnt5b, a ligand of the non-canonical Wnt/planar cell polarity (PCP) pathway, was significantly downregulated. Injection of mRNA for wnt5b or RhoA, a key downstream effector of Wnt/PCP signaling, rescued the defective convergent extension phenotype and attenuated the lbx1b-induced curvature of the body axis. Thus, our study presents a novel pathological feature of LBX1 and its zebrafish homologs in body axis deformation at various stages of embryonic and subsequent growth in zebrafish. Scoliosis is the most common type of spinal deformity with a lateral spinal curvature of at least 10 degrees, affecting 2–4% of the population. Scoliosis caused by a primary problem related to the spine itself is classified into congenital scoliosis (CS) and idiopathic scoliosis (IS). Among these, adolescent idiopathic scoliosis (AIS), the most common form of scoliosis, is known as a common polygenic disease. Severe curving of the spine in scoliosis leads to profound psychological and social impacts, but etiology-based therapies have not been established since the precise pathological mechanisms of both IS and CS remain undefined. Previously, we identified an AIS susceptibility locus near human ladybird homeobox 1 (LBX1) by a genome-wide association study. Here, we report the functional characterization of the most significantly associated single nucleotide polymorphism (SNP), rs11190870 and LBX1 as well as its zebrafish homologues. Overexpression of LBX1 and zebrafish lbx genes caused lateral body curvature in association with the impairment of non-canonical Wnt/planar cell polarity signaling. Thus, our study presents a novel pathological feature of LBX1 in body axis deformation.
Collapse
Affiliation(s)
- Long Guo
- Department of Cellular Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroshi Yamashita
- Department of Molecular Biology and Biochemistry, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ikuyo Kou
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Aki Takimoto
- Department of Cellular Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Makiko Meguro-Horike
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Shin-ichi Horike
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Shigenori Miura
- Department of Cellular Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Taiji Adachi
- Department of Biomechanics, Research Center for Nano Medical Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Yuji Hiraki
- Department of Cellular Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Chisa Shukunami
- Department of Cellular Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Molecular Biology and Biochemistry, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
54
|
Ogura Y, Kou I, Miura S, Takahashi A, Xu L, Takeda K, Takahashi Y, Kono K, Kawakami N, Uno K, Ito M, Minami S, Yonezawa I, Yanagida H, Taneichi H, Zhu Z, Tsuji T, Suzuki T, Sudo H, Kotani T, Watanabe K, Hosogane N, Okada E, Iida A, Nakajima M, Sudo A, Chiba K, Hiraki Y, Toyama Y, Qiu Y, Shukunami C, Kamatani Y, Kubo M, Matsumoto M, Ikegawa S. A Functional SNP in BNC2 Is Associated with Adolescent Idiopathic Scoliosis. Am J Hum Genet 2015. [PMID: 26211971 DOI: 10.1016/j.ajhg.2015.06.012] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is the most common spinal deformity. We previously conducted a genome-wide association study (GWAS) and detected two loci associated with AIS. To identify additional loci, we extended our GWAS by increasing the number of cohorts (2,109 affected subjects and 11,140 control subjects in total) and conducting a whole-genome imputation. Through the extended GWAS and replication studies using independent Japanese and Chinese populations, we identified a susceptibility locus on chromosome 9p22.2 (p = 2.46 × 10(-13); odds ratio = 1.21). The most significantly associated SNPs were in intron 3 of BNC2, which encodes a zinc finger transcription factor, basonuclin-2. Expression quantitative trait loci data suggested that the associated SNPs have the potential to regulate the BNC2 transcriptional activity and that the susceptibility alleles increase BNC2 expression. We identified a functional SNP, rs10738445 in BNC2, whose susceptibility allele showed both higher binding to a transcription factor, YY1 (yin and yang 1), and higher BNC2 enhancer activity than the non-susceptibility allele. BNC2 overexpression produced body curvature in developing zebrafish in a gene-dosage-dependent manner. Our results suggest that increased BNC2 expression is implicated in the etiology of AIS.
Collapse
Affiliation(s)
- Yoji Ogura
- Laboratory of Bone and Joint Diseases, Center for Integrative Sciences, RIKEN, Tokyo 108-8639, Japan; Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Ikuyo Kou
- Laboratory of Bone and Joint Diseases, Center for Integrative Sciences, RIKEN, Tokyo 108-8639, Japan
| | - Shigenori Miura
- Department of Cellular Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, Center for Integrative Medical Sciences, RIKEN, Yokohama 230-0045, Japan
| | - Leilei Xu
- Department of Spine Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Kazuki Takeda
- Laboratory of Bone and Joint Diseases, Center for Integrative Sciences, RIKEN, Tokyo 108-8639, Japan; Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Yohei Takahashi
- Laboratory of Bone and Joint Diseases, Center for Integrative Sciences, RIKEN, Tokyo 108-8639, Japan; Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Katsuki Kono
- Department of Orthopaedic Surgery, Eiju General Hospital, Tokyo 110-8645, Japan
| | - Noriaki Kawakami
- Department of Orthopaedic Surgery, Meijo Hospital, Nagoya 460-0001, Japan
| | - Koki Uno
- Department of Orthopaedic Surgery, Kobe Medical Center, National Hospital Organization, Kobe 654-0155, Japan
| | - Manabu Ito
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Graduate School of Medicine, Hokkaido University, Sapporo 060-8648, Japan
| | - Shohei Minami
- Department of Orthopaedic Surgery, Seirei Sakura Citizen Hospital, Sakura 285-8765, Japan
| | - Ikuho Yonezawa
- Department of Orthopaedic Surgery, School of Medicine, Juntendo University Tokyo 113-8431, Japan
| | - Haruhisa Yanagida
- Department of Orthopaedic Surgery, Fukuoka Children's Hospital, Fukuoka 810-0063, Japan
| | - Hiroshi Taneichi
- Department of Orthopaedic Surgery, School of Medicine, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Zezhang Zhu
- Department of Spine Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Taichi Tsuji
- Department of Orthopaedic Surgery, Meijo Hospital, Nagoya 460-0001, Japan
| | - Teppei Suzuki
- Department of Orthopaedic Surgery, Kobe Medical Center, National Hospital Organization, Kobe 654-0155, Japan
| | - Hideki Sudo
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Graduate School of Medicine, Hokkaido University, Sapporo 060-8648, Japan
| | - Toshiaki Kotani
- Department of Orthopaedic Surgery, Seirei Sakura Citizen Hospital, Sakura 285-8765, Japan
| | - Kota Watanabe
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Naobumi Hosogane
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Eijiro Okada
- Department of Orthopaedic Surgery, Saiseikai Central Hospital, Tokyo 108-0073, Japan
| | - Aritoshi Iida
- Laboratory of Bone and Joint Diseases, Center for Integrative Sciences, RIKEN, Tokyo 108-8639, Japan
| | - Masahiro Nakajima
- Laboratory of Bone and Joint Diseases, Center for Integrative Sciences, RIKEN, Tokyo 108-8639, Japan
| | - Akihiro Sudo
- Department of Orthopaedic Surgery, School of Medicine, Mie University, Tsu 514-8507, Japan
| | - Kazuhiro Chiba
- Department of Orthopaedic Surgery, Kitasato University Kitasato Institute Hospital, Tokyo 108-8642, Japan
| | - Yuji Hiraki
- Department of Cellular Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Yoshiaki Toyama
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Yong Qiu
- Department of Spine Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Division of Basic Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, Center for Integrative Medical Sciences, RIKEN, Yokohama 230-0045, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Yokohama 230-0045, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, Center for Integrative Sciences, RIKEN, Tokyo 108-8639, Japan.
| |
Collapse
|
55
|
Sharma S, Londono D, Eckalbar WL, Gao X, Zhang D, Mauldin K, Kou I, Takahashi A, Matsumoto M, Kamiya N, Murphy KK, Cornelia R, Herring JA, Burns D, Ahituv N, Ikegawa S, Gordon D, Wise CA. A PAX1 enhancer locus is associated with susceptibility to idiopathic scoliosis in females. Nat Commun 2015; 6:6452. [PMID: 25784220 PMCID: PMC4365504 DOI: 10.1038/ncomms7452] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/30/2015] [Indexed: 12/12/2022] Open
Abstract
Idiopathic scoliosis (IS) is a common paediatric musculoskeletal disease that displays a strong female bias. By performing a genome-wide association study (GWAS) of 3,102 individuals, we identify significant associations with 20p11.22 SNPs for females (P=6.89 × 10−9) but not males (P=0.71). This association with IS is also found in independent female cohorts from the United States of America and Japan (overall P=2.15 × 10−10, OR=1.30 (rs6137473)). Unexpectedly, the 20p11.22 IS risk alleles were previously associated with protection from early-onset alopecia, another sexually dimorphic condition. The 174-kb associated locus is distal to PAX1, which encodes paired box 1, a transcription factor involved in spine development. We identify a sequence in the associated locus with enhancer activity in zebrafish somitic muscle and spinal cord, an activity that is abolished by IS-associated SNPs. We thus identify a sexually dimorphic IS susceptibility locus, and propose the first functionally defined candidate mutations in an enhancer that may regulate expression in specific spinal cells. Girls are tenfold more likely than boys to require surgical treatment for idiopathic scoliosis, a common paediatric skeletal disorder. Here, Sharma et al. identify the first sexually dimorphic idiopathic scoliosis risk locus, and demonstrate that it may play a role in the regulation of spinal cells.
Collapse
Affiliation(s)
- Swarkar Sharma
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Research Department, Texas Scottish Rite Hospital for Children, Dallas, Texas 75219, USA
| | - Douglas Londono
- Department of Genetics and Human Genetics Institute, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Walter L Eckalbar
- Department of Bioengineering and Therapeutic Sciences, Institute for Human Genetics, University of California San Francisco, San Francisco, California 94143, USA
| | - Xiaochong Gao
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Research Department, Texas Scottish Rite Hospital for Children, Dallas, Texas 75219, USA
| | - Dongping Zhang
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Research Department, Texas Scottish Rite Hospital for Children, Dallas, Texas 75219, USA
| | - Kristen Mauldin
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Research Department, Texas Scottish Rite Hospital for Children, Dallas, Texas 75219, USA
| | - Ikuyo Kou
- Laboratory of Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo 108-8639, Japan
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, Center for Integrative Medical Sciences, RIKEN, Yokohama 230-0045, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo 108-8345, Japan
| | - Nobuhiro Kamiya
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Research Department, Texas Scottish Rite Hospital for Children, Dallas, Texas 75219, USA
| | - Karl K Murphy
- Department of Bioengineering and Therapeutic Sciences, Institute for Human Genetics, University of California San Francisco, San Francisco, California 94143, USA
| | - Reuel Cornelia
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Research Department, Texas Scottish Rite Hospital for Children, Dallas, Texas 75219, USA
| | | | | | - John A Herring
- 1] Department of Orthopaedics, Texas Scottish Rite Hospital for Children, Dallas, Texas 75219, USA [2] Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Dennis Burns
- Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, Institute for Human Genetics, University of California San Francisco, San Francisco, California 94143, USA
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo 108-8639, Japan
| | - Derek Gordon
- Department of Genetics and Human Genetics Institute, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Carol A Wise
- 1] Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Research Department, Texas Scottish Rite Hospital for Children, Dallas, Texas 75219, USA [2] Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA [3] McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA [4] McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| |
Collapse
|
56
|
|