51
|
Gi-DREADD Expression in Peripheral Nerves Produces Ligand-Dependent Analgesia, as well as Ligand-Independent Functional Changes in Sensory Neurons. J Neurosci 2017; 36:10769-10781. [PMID: 27798132 DOI: 10.1523/jneurosci.3480-15.2016] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 08/23/2016] [Indexed: 12/22/2022] Open
Abstract
Designer receptors exclusively activated by designer drugs (DREADDs) are an advanced experimental tool that could potentially provide a novel approach to pain management. In particular, expression of an inhibitory (Gi-coupled) DREADD in nociceptors might enable ligand-dependent analgesia. To test this possibility, TRPV1-cre mice were used to restrict expression of Gi-DREADDs to predominantly C-fibers. Whereas baseline heat thresholds in both male and female mice expressing Gi-DREADD were normal, 1 mg/kg clozapine-N-oxide (CNO) produced a significant 3 h increase in heat threshold that returned to baseline by 5 h after injection. Consistent with these behavioral results, CNO decreased action potential firing in isolated sensory neurons from Gi-DREADD mice. Unexpectedly, however, the expression of Gi-DREADD in sensory neurons caused significant changes in voltage-gated Ca2+ and Na+ currents in the absence of CNO, as well as an increase in Na+ channel (NaV1.7) expression. Furthermore, CNO-independent excitatory and inhibitory second-messenger signaling was also altered in these mice, which was associated with a decrease in the analgesic effect of endogenous inhibitory G-protein-coupled receptor activation. These results highlight the potential of this exciting technology, but also its limitations, and that it is essential to identify the underlying mechanisms for any observed behavioral phenotypes. SIGNIFICANCE STATEMENT DREADD technology is a powerful tool enabling manipulation of activity and/or transmitter release from targeted cell populations. The purpose of this study was to determine whether inhibitory DREADDs in nociceptive afferents could be used to produce analgesia, and if so, how. DREADD activation produced a ligand-dependent analgesia to heat in vivo and a decrease in neuronal firing at the single-cell level. However, we observed that expression of Gi-DREADD also causes ligand-independent changes in ion channel activity and second-messenger signaling. These findings highlight both the potential and the limitations of this exciting technology as well as the necessity to identify the mechanisms underlying any observed phenotype.
Collapse
|
52
|
François A, Scherrer G. Delta Opioid Receptor Expression and Function in Primary Afferent Somatosensory Neurons. Handb Exp Pharmacol 2017; 247:87-114. [PMID: 28993838 DOI: 10.1007/164_2017_58] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The functional diversity of primary afferent neurons of the dorsal root ganglia (DRG) generates a variety of qualitatively and quantitatively distinct somatosensory experiences, from shooting pain to pleasant touch. In recent years, the identification of dozens of genetic markers specifically expressed by subpopulations of DRG neurons has dramatically improved our understanding of this diversity and provided the tools to manipulate their activity and uncover their molecular identity and function. Opioid receptors have long been known to be expressed by discrete populations of DRG neurons, in which they regulate cell excitability and neurotransmitter release. We review recent insights into the identity of the DRG neurons that express the delta opioid receptor (DOR) and the ion channel mechanisms that DOR engages in these cells to regulate sensory input. We highlight recent findings derived from DORGFP reporter mice and from in situ hybridization and RNA sequencing studies in wild-type mice that revealed DOR presence in cutaneous mechanosensory afferents eliciting touch and implicated in tactile allodynia. Mechanistically, we describe how DOR modulates opening of voltage-gated calcium channels (VGCCs) to control glutamatergic neurotransmission between somatosensory neurons and postsynaptic neurons in the spinal cord dorsal horn. We additionally discuss other potential signaling mechanisms, including those involving potassium channels, which DOR may engage to fine tune somatosensation. We conclude by discussing how this knowledge may explain the analgesic properties of DOR agonists against mechanical pain and uncovers an unanticipated specialized function for DOR in cutaneous mechanosensation.
Collapse
Affiliation(s)
- Amaury François
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford Neurosciences Institute, Stanford University School of Medicine, Palo Alto, CA, USA.,Department of Molecular and Cellular Physiology, Stanford Neurosciences Institute, Stanford University School of Medicine, Palo Alto, CA, USA.,Department of Neurosurgery, Stanford Neurosciences Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Grégory Scherrer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford Neurosciences Institute, Stanford University School of Medicine, Palo Alto, CA, USA. .,Department of Molecular and Cellular Physiology, Stanford Neurosciences Institute, Stanford University School of Medicine, Palo Alto, CA, USA. .,Department of Neurosurgery, Stanford Neurosciences Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
53
|
Kammerer S, Jahn SW, Winter E, Eidenhammer S, Rezania S, Regitnig P, Pichler M, Schreibmayer W, Bauernhofer T. Critical evaluation of KCNJ3 gene product detection in human breast cancer: mRNA in situ hybridisation is superior to immunohistochemistry. J Clin Pathol 2016; 69:1116-1121. [PMID: 27698251 PMCID: PMC5256407 DOI: 10.1136/jclinpath-2016-203798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/02/2016] [Accepted: 06/09/2016] [Indexed: 11/17/2022]
Abstract
Increased expression levels of KCNJ3 have been correlated with lymph node metastases and poor prognosis in patients with breast cancer, suggesting a prognostic role of KCNJ3. We aimed to establish protocols for the detection of KCNJ3 in formalin-fixed, paraffin-embedded (FFPE) breast cancer tissue. Several antibodies were tested for sensitivity and specificity by western blot, followed by optimisation of the immunohistochemistry (IHC) procedure and establishment of KCNJ3 mRNA in situ hybridisation (ISH). Methods were validated by processing 15 FFPE breast cancer samples for which microarray data were available. Spearman's rank correlation analysis resulted in borderline significant correlation for IHC versus ISH (rS: 0.625; p<0.05) and IHC versus microarray (rS: 0.668; p<0.01), but in significant correlation for ISH versus microarray (rS: 0.861; p<0.001). The ISH method was superior to IHC, regarding robustness, sensitivity and specificity and will aid to further study expression levels of KCNJ3 in both malignant and physiological conditions.
Collapse
Affiliation(s)
- Sarah Kammerer
- Molecular Physiology Group, Institute of Biophysics, Medical University of Graz, Graz, Austria.,Research Unit on Ion Channels and Cancer Biology, Medical University of Graz, Graz, Austria
| | | | - Elke Winter
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | - Simin Rezania
- Molecular Physiology Group, Institute of Biophysics, Medical University of Graz, Graz, Austria.,Research Unit on Ion Channels and Cancer Biology, Medical University of Graz, Graz, Austria
| | - Peter Regitnig
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Wolfgang Schreibmayer
- Molecular Physiology Group, Institute of Biophysics, Medical University of Graz, Graz, Austria.,Research Unit on Ion Channels and Cancer Biology, Medical University of Graz, Graz, Austria
| | - Thomas Bauernhofer
- Research Unit on Ion Channels and Cancer Biology, Medical University of Graz, Graz, Austria.,Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
54
|
Mambretti EM, Kistner K, Mayer S, Massotte D, Kieffer BL, Hoffmann C, Reeh PW, Brack A, Asan E, Rittner HL. Functional and structural characterization of axonal opioid receptors as targets for analgesia. Mol Pain 2016; 12:12/0/1744806916628734. [PMID: 27030709 PMCID: PMC4994859 DOI: 10.1177/1744806916628734] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/10/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Opioids are the gold standard for the treatment of acute pain despite serious side effects in the central and enteric nervous system. µ-opioid receptors (MOPs) are expressed and functional at the terminals of sensory axons, when activated by exogenous or endogenous ligands. However, the presence and function of MOP along nociceptive axons remains controversial particularly in naïve animals. Here, we characterized axonal MOPs by immunofluorescence, ultrastructural, and functional analyses. Furthermore, we evaluated hypertonic saline as a possible enhancer of opioid receptor function. RESULTS Comparative immunolabeling showed that, among several tested antibodies, which all provided specific MOP detection in the rat central nervous system (CNS), only one monoclonal MOP-antibody yielded specificity and reproducibility for MOP detection in the rat peripheral nervous system including the sciatic nerve. Double immunolabeling documented that MOP immunoreactivity was confined to calcitonin gene-related peptide (CGRP) positive fibers and fiber bundles. Almost identical labeling and double labeling patterns were found using mcherry-immunolabeling on sciatic nerves of mice producing a MOP-mcherry fusion protein (MOP-mcherry knock-in mice). Preembedding immunogold electron microscopy on MOP-mcherry knock-in sciatic nerves indicated presence of MOP in cytoplasm and at membranes of unmyelinated axons. Application of [D-Ala(2), N-MePhe(4), Gly-ol]-enkephalin (DAMGO) or fentanyl dose-dependently inhibited depolarization-induced CGRP release from rat sciatic nerve axons ex vivo, which was blocked by naloxone. When the lipophilic opioid fentanyl was applied perisciatically in naïve Wistar rats, mechanical nociceptive thresholds increased. Subthreshold doses of fentanyl or the hydrophilic opioid DAMGO were only effective if injected together with hypertonic saline. In vitro, using β-arrestin-2/MOP double-transfected human embryonic kidney cells, DAMGO as well as fentanyl lead to a recruitment of β-arrestin-2 to the membrane followed by a β-arrestin-2 reappearance in the cytosol and MOP internalization. Pretreatment with hypertonic saline prevented MOP internalization. CONCLUSION MOPs are present and functional in the axonal membrane from naïve animals. Hypertonic saline acutely decreases ligand-induced internalization of MOP and thereby might improve MOP function. Further studies should explore potential clinical applications of opioids together with enhancers for regional analgesia.
Collapse
Affiliation(s)
- Egle M Mambretti
- Department of Anesthesiology, University Hospital of Wuerzburg, Germany Institute of Anatomy and Cell Biology, University of Wuerzburg, Germany
| | - Katrin Kistner
- Institute of Physiology and Pathophysiology, University of Erlangen-Nuremberg, Germany
| | - Stefanie Mayer
- Institute for Pharmacology and Toxicology & Bio-Imaging Center/Rudolf-Virchow Center, University of Wuerzburg, Germany
| | - Dominique Massotte
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR, Strasbourg Cedex, France
| | - Brigitte L Kieffer
- Douglas Research Center, Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch, France
| | - Carsten Hoffmann
- Institute for Pharmacology and Toxicology & Bio-Imaging Center/Rudolf-Virchow Center, University of Wuerzburg, Germany
| | - Peter W Reeh
- Institute of Physiology and Pathophysiology, University of Erlangen-Nuremberg, Germany
| | - Alexander Brack
- Department of Anesthesiology, University Hospital of Wuerzburg, Germany
| | - Esther Asan
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Germany
| | - Heike L Rittner
- Department of Anesthesiology, University Hospital of Wuerzburg, Germany
| |
Collapse
|
55
|
Abstract
PURPOSE OF REVIEW Poor management of chronic pain remains a significant cause of misery with huge socioeconomic costs. Accumulating research in potassium (K+) channel physiology has uncovered several promising leads for the development of novel analgesics. RECENT FINDINGS We now recognize that certain K+ channel subunits are directly gated to pain-relevant stimuli (Kv1.1, K2P) whereas others are specifically modulated by inflammatory processes (Kv7, BKCA, K2P). Genetic analyses illustrate that K+ channel gene variation can predict pain sensitivity (KCNS1, GIRKs), risk for persistent pain (KCNS1, GIRKs, TRESK) and analgesic effectiveness (GIRK2). Importantly, preclinical studies confirm that K+ channel dysfunction can be a pain trigger in traumatic neuropathies (Kv9.1/Kv2.1, Kv7, Kv1.2) and migraine (TRESK). Finally, emerging data suggest that even pain in diabetes, bone cancer and autoimmune neuropathies may have K+ channel dysfunction constituents. SUMMARY There is a long-sought need for superior pharmacotherapy of pain syndromes. Although universal enhancement of K+ channel function in the periphery can decrease nociceptive excitability irrespective of the underlying cause, a more refined targeting of subunits with dominant nociceptive roles could yield highly efficacious treatments with fewer side-effects. The ongoing characterization of molecular interactions linking K+ channel dysfunction to pain is instrumental for identifying candidates with the most therapeutic potential.
Collapse
|
56
|
Zamponi GW, Han C, Waxman SG. Voltage-Gated Ion Channels as Molecular Targets for Pain. Transl Neurosci 2016. [DOI: 10.1007/978-1-4899-7654-3_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
57
|
Variations in potassium channel genes are associated with distinct trajectories of persistent breast pain after breast cancer surgery. Pain 2015; 156:371-380. [PMID: 25599232 DOI: 10.1097/01.j.pain.0000460319.87643.11] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Persistent pain after breast cancer surgery is a common clinical problem. Given the role of potassium channels in modulating neuronal excitability, coupled with recently published genetic associations with preoperative breast pain, we hypothesized that variations in potassium channel genes will be associated with persistent postsurgical breast pain. In this study, associations between 10 potassium channel genes and persistent breast pain were evaluated. Using growth mixture modeling (GMM), 4 distinct latent classes of patients, who were assessed before and monthly for 6 months after breast cancer surgery, were identified previously (ie, No Pain, Mild Pain, Moderate Pain, Severe Pain). Genotyping was done using a custom array. Using logistic regression analyses, significant differences in a number of genotype or haplotype frequencies were found between: Mild Pain vs No Pain and Severe Pain vs No Pain classes. Seven single-nucleotide polymorphisms (SNPs) across 5 genes (ie, potassium voltage-gated channel, subfamily A, member 1 [KCNA1], potassium voltage-gated channel, subfamily D, member 2 [KCND2], potassium inwardly rectifying channel, subfamily J, members 3 and 6 (KCNJ3 and KCNJ6), potassium channel, subfamily K, member 9 [KCNK9]) were associated with membership in the Mild Pain class. In addition, 3 SNPs and 1 haplotype across 4 genes (ie, KCND2, KCNJ3, KCNJ6, KCNK9) were associated with membership in the Severe Pain class. These findings suggest that variations in potassium channel genes are associated with both mild and severe persistent breast pain after breast cancer surgery. Although findings from this study warrant replication, they provide intriguing preliminary information on potential therapeutic targets.
Collapse
|
58
|
Saryazdi H, Yazdani A, Sajedi P, Aghadavoudi O. Comparative evaluation of adding different opiates (morphine, meperidine, buprenorphine, or fentanyl) to lidocaine in duration and quality of axillary brachial plexus block. Adv Biomed Res 2015; 4:232. [PMID: 26645017 PMCID: PMC4647124 DOI: 10.4103/2277-9175.167901] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/27/2015] [Indexed: 11/19/2022] Open
Abstract
Background: There is no agreement about the effect of adding opioids to local anesthetics in peripheral nerve blocks. The aim of this study was to investigate the effect of adding different opioids with equipotent doses of lidocaine in axillary brachial plexus block using ultrasonography and nerve locator guidance. Materials and Methods: In a prospective, randomized, double-blind clinical trial study, 72 adult patients aged 18–65 years old scheduled for orthopedic surgery of the forearm and hand with axillary brachial plexus block were selected and randomly allocated to four groups. Meperidine (pethidine), buprenorphine, morphine, and fentanyl with equipotent doses were added in 40cc of 1% lidocaine in P, B, M, and F groups, respectively. The onset and duration of sensory and motor blocks, severity of patients’ pain, duration of analgesia, hemodynamic and respiratory parameters, and adverse events (such as nausea and pruritus) during perioperative period were recorded. Results: The onset time for the sensory block was similar in the four groups. The onset time for the motor block was significantly faster in morphine and pethidine groups (P = 0.006). The duration of sensory and motor blocks was not statistically different among the four groups. The quality of motor blockade was complete in 100% of patients receiving pethidine or morphine and 77.8% of patients receiving buprenorphine or fentanyl (P = 0.021). Conclusion: In the upper extremity surgeries performed under axillary brachial plexus block addition of morphine or pethidine to lidocaine may be superior to other opioids (i.e. fentanyl and buprenorphine) due to better quality and quantity of motor blockade and faster onset of the block.
Collapse
Affiliation(s)
- Hamid Saryazdi
- Department of Anesthesiology and Critical Care, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Yazdani
- Department of Anesthesiology and Critical Care, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvin Sajedi
- Department of Anesthesiology and Critical Care, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Aghadavoudi
- Anesthesiology and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
59
|
Abstract
Opioids are the oldest and most potent drugs for the treatment of severe pain. Their clinical application is undisputed in acute (e.g., postoperative) and cancer pain, but their long-term use in chronic pain has met increasing scrutiny. This article reviews mechanisms underlying opioid analgesia and other opioid actions. It discusses the structure, function, and plasticity of opioid receptors; the central and peripheral sites of analgesic actions and side effects; endogenous and exogenous opioid receptor ligands; and conventional and novel opioid compounds. Challenging clinical situations, such as the tension between chronic pain and addiction, are also illustrated.
Collapse
Affiliation(s)
- Christoph Stein
- Department of Anesthesiology and Critical Care Medicine, Freie Universität Berlin, Charité Campus Benjamin Franklin, 12200 Berlin, Germany; .,Helmholtz Virtual Institute, Multifunctional Biomaterials for Medicine, 14513 Teltow, Germany
| |
Collapse
|
60
|
Lyu C, Mulder J, Barde S, Sahlholm K, Zeberg H, Nilsson J, Århem P, Hökfelt T, Fried K, Shi TJS. G protein-gated inwardly rectifying potassium channel subunits 1 and 2 are down-regulated in rat dorsal root ganglion neurons and spinal cord after peripheral axotomy. Mol Pain 2015. [PMID: 26199148 PMCID: PMC4511542 DOI: 10.1186/s12990-015-0044-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background Increased nociceptive neuronal excitability underlies chronic pain conditions. Various ion channels, including sodium, calcium and potassium channels have pivotal roles in the control of neuronal excitability. The members of the family of G protein-gated inwardly rectifying potassium (GIRK) channels, GIRK1–4, have been implicated in modulating excitability. Here, we investigated the expression and distribution of GIRK1 and GIRK2 in normal and injured dorsal root ganglia (DRGs) and spinal cord of rats. Results We found that ~70% of the DRG neurons expressed GIRK1, while only <10% expressed GIRK2. The neurochemical profiles of GIRK1- and GIRK2-immunoreactive neurons were characterized using the neuronal markers calcitonin gene-related peptide, isolectin-B4 and neurofilament-200, and the calcium-binding proteins calbindin D28k, calretinin, parvalbumin and secretagogin. Both GIRK subunits were expressed in DRG neurons with nociceptive characteristics. However, while GIRK1 was widely expressed in several sensory neuronal subtypes, GIRK2 was detected mainly in a group of small C-fiber neurons. In the spinal dorsal horn, GIRK1- and -2-positive cell bodies and processes were mainly observed in lamina II, but also in superficial and deeper layers. Abundant GIRK1-, but not GIRK2-like immunoreactivity, was found in the ventral horn (laminae VI–X). Fourteen days after axotomy, GIRK1 and GIRK2 were down-regulated in DRG neurons at the mRNA and protein levels. Both after axotomy and rhizotomy there was a reduction of GIRK1- and -2-positive processes in the dorsal horn, suggesting a presynaptic localization of these potassium channels. Furthermore, nerve ligation caused accumulation of both subunits on both sides of the lesion, providing evidence for anterograde and retrograde fast axonal transport. Conclusions Our data support the hypothesis that reduced GIRK function is associated with increased neuronal excitability and causes sensory disturbances in post-injury conditions, including neuropathic pain. Electronic supplementary material The online version of this article (doi:10.1186/s12990-015-0044-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chuang Lyu
- School of Life Science and Technology, Harbin Institute of Technology, 150001, Harbin, China. .,Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Jan Mulder
- Department of Neuroscience, Science for Life Laboratory, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Kristoffer Sahlholm
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Hugo Zeberg
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Johanna Nilsson
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Peter Århem
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Kaj Fried
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Tie-Jun Sten Shi
- School of Life Science and Technology, Harbin Institute of Technology, 150001, Harbin, China. .,Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
61
|
|
62
|
Analysis of potassium and calcium imaging to assay the function of opioid receptors. Methods Mol Biol 2015; 1230:187-96. [PMID: 25293326 DOI: 10.1007/978-1-4939-1708-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
As the activation of opioid receptors leads to the modulation of potassium and calcium channels, the ion imaging represents an attractive method to analyze the function of the receptors. Here, we describe the imaging of potassium using the FluxOR™ potassium ion channel assay, and of calcium using Fura-2 acetoxymethyl ester. Specifically, we (1) characterize the activation of the G-protein-coupled inwardly rectifying potassium 2 channel by agonists of μ- and δ-opioid receptors with the aid of the FluxOR™ assay in cultured mouse dorsal root ganglion neurons, and (2) describe calcium imaging protocols to measure capsaicin-induced transient receptor potential vanilloid 1 channel activity during opioid withdrawal in transfected human embryonic kidney 293 cells.
Collapse
|
63
|
Abstract
This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
64
|
Spahn V, Nockemann D, Machelska H. Electrophysiological patch clamp assay to monitor the action of opioid receptors. Methods Mol Biol 2014; 1230:197-211. [PMID: 25293327 DOI: 10.1007/978-1-4939-1708-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The patch clamp is a valuable electrophysiological technique, which allows the study of single or multiple ion channels in cells, and it is particularly useful in testing the excitable cells such as neurons. Activation of neuronal opioid receptors results in the modulation of various ion channels, which enables to examine the receptors' action with the patch clamp. In this chapter, we analyze the activation of the G-protein-coupled inwardly rectifying potassium channel 2 by opioids, and the capsaicin-induced transient receptor potential vanilloid 1 channel currents during opioid withdrawal, using the whole cell patch clamp in transfected human embryonic kidney 293 cells as well as in mouse and rat primary dorsal root ganglion neurons.
Collapse
Affiliation(s)
- Viola Spahn
- Klinik für Anästhesiologie und Operative Intensivmedizin, Freie Universität Berlin, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin, 12203, Germany,
| | | | | |
Collapse
|
65
|
Gaillard S, Lo Re L, Mantilleri A, Hepp R, Urien L, Malapert P, Alonso S, Deage M, Kambrun C, Landry M, Low SA, Alloui A, Lambolez B, Scherrer G, Le Feuvre Y, Bourinet E, Moqrich A. GINIP, a Gαi-interacting protein, functions as a key modulator of peripheral GABAB receptor-mediated analgesia. Neuron 2014; 84:123-136. [PMID: 25242222 DOI: 10.1016/j.neuron.2014.08.056] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2014] [Indexed: 12/15/2022]
Abstract
One feature of neuropathic pain is a reduced GABAergic inhibitory function. Nociceptors have been suggested to play a key role in this process. However, the mechanisms behind nociceptor-mediated modulation of GABA signaling remain to be elucidated. Here we describe the identification of GINIP, a Gαi-interacting protein expressed in two distinct subsets of nonpeptidergic nociceptors. GINIP null mice develop a selective and prolonged mechanical hypersensitivity in models of inflammation and neuropathy. GINIP null mice show impaired responsiveness to GABAB, but not to delta or mu opioid receptor agonist-mediated analgesia specifically in the spared nerve injury (SNI) model. Consistently, GINIP-deficient dorsal root ganglia neurons had lower baclofen-evoked inhibition of high-voltage-activated calcium channels and a defective presynaptic inhibition of lamina IIi interneurons. These results further support the role of unmyelinated C fibers in injury-induced modulation of spinal GABAergic inhibition and identify GINIP as a key modulator of peripherally evoked GABAB-receptors signaling.
Collapse
Affiliation(s)
- Stéphane Gaillard
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, case 907, 13288 Marseille Cedex 09, France
| | - Laure Lo Re
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, case 907, 13288 Marseille Cedex 09, France
| | - Annabelle Mantilleri
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, case 907, 13288 Marseille Cedex 09, France
| | - Régine Hepp
- Sorbonne Universités, UPMC Univ Paris 06, UM CR 18, Neuroscience Paris Seine, 75005 Paris, France; Centre National de la Recherche Scientifique (CNRS), UMR 8246 Paris, France; Institut national de la Santé et de la Recherche Médicale (INSERM), UMR-S 1130 Paris, France
| | - Louise Urien
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, case 907, 13288 Marseille Cedex 09, France
| | - Pascale Malapert
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, case 907, 13288 Marseille Cedex 09, France
| | - Serge Alonso
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, case 907, 13288 Marseille Cedex 09, France
| | - Michael Deage
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Institut de Génomique Fonctionnelle, UMR 5203, CNRS, U661, INSERM, Universités Montpellier I&II, 141 Rue de la Cardonille, 34094 Montpellier Cedex 05, France
| | - Charline Kambrun
- University Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France; CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France
| | - Marc Landry
- University Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France; CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France
| | - Sarah A Low
- Department of Anesthesiology, Perioperative and Pain Medicine, Department of Molecular and Cellular Physiology, Stanford Neurosciences Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Abdelkrim Alloui
- Laboratoire de Pharmacologie Médicale, Faculté de Médecine et de Pharmacie, UMR 766 INSERM, 28 place Henri-Dunant, BP 38, 63001 Clermont-Ferrand Cedex 1, France
| | - Bertrand Lambolez
- Sorbonne Universités, UPMC Univ Paris 06, UM CR 18, Neuroscience Paris Seine, 75005 Paris, France; Centre National de la Recherche Scientifique (CNRS), UMR 8246 Paris, France; Institut national de la Santé et de la Recherche Médicale (INSERM), UMR-S 1130 Paris, France
| | - Grégory Scherrer
- Department of Anesthesiology, Perioperative and Pain Medicine, Department of Molecular and Cellular Physiology, Stanford Neurosciences Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Yves Le Feuvre
- University Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France; CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France
| | - Emmanuel Bourinet
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Institut de Génomique Fonctionnelle, UMR 5203, CNRS, U661, INSERM, Universités Montpellier I&II, 141 Rue de la Cardonille, 34094 Montpellier Cedex 05, France
| | - Aziz Moqrich
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, case 907, 13288 Marseille Cedex 09, France.
| |
Collapse
|
66
|
Nagi K, Pineyro G. Kir3 channel signaling complexes: focus on opioid receptor signaling. Front Cell Neurosci 2014; 8:186. [PMID: 25071446 PMCID: PMC4085882 DOI: 10.3389/fncel.2014.00186] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 06/18/2014] [Indexed: 12/03/2022] Open
Abstract
Opioids are among the most effective drugs to treat severe pain. They produce their analgesic actions by specifically activating opioid receptors located along the pain perception pathway where they inhibit the flow of nociceptive information. This inhibition is partly accomplished by activation of hyperpolarizing G protein-coupled inwardly-rectifying potassium (GIRK or Kir3) channels. Kir3 channels control cellular excitability in the central nervous system and in the heart and, because of their ubiquitous distribution, they mediate the effects of a large range of hormones and neurotransmitters which, upon activation of corresponding G protein-coupled receptors (GPCRs) lead to channel opening. Here we analyze GPCR signaling via these effectors in reference to precoupling and collision models. Existing knowledge on signaling bias is discussed in relation to these models as a means of developing strategies to produce novel opioid analgesics with an improved side effects profile.
Collapse
Affiliation(s)
- Karim Nagi
- Département de Pharmacologie, Faculté de Médecine, Université de Montréal Montreal, QC, Canada ; Centre de Recherche du CHU Sainte-Justine Montréal, QC, Canada
| | - Graciela Pineyro
- Département de Pharmacologie, Faculté de Médecine, Université de Montréal Montreal, QC, Canada ; Centre de Recherche du CHU Sainte-Justine Montréal, QC, Canada ; Département de Psychiatrie, Faculté de Médecine, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
67
|
Waxman SG, Zamponi GW. Regulating excitability of peripheral afferents: emerging ion channel targets. Nat Neurosci 2014; 17:153-63. [DOI: 10.1038/nn.3602] [Citation(s) in RCA: 285] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/08/2013] [Indexed: 12/13/2022]
|
68
|
Opening paths to novel analgesics: the role of potassium channels in chronic pain. Trends Neurosci 2014; 37:146-58. [PMID: 24461875 PMCID: PMC3945816 DOI: 10.1016/j.tins.2013.12.002] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 01/02/2023]
Abstract
Potassium (K+) channels are crucial determinants of neuronal excitability. Nerve injury or inflammation alters K+ channel activity in neurons of the pain pathway. These changes can render neurons hyperexcitable and cause chronic pain. Therapies targeting K+ channels may provide improved pain relief in these states.
Chronic pain is associated with abnormal excitability of the somatosensory system and remains poorly treated in the clinic. Potassium (K+) channels are crucial determinants of neuronal activity throughout the nervous system. Opening of these channels facilitates a hyperpolarizing K+ efflux across the plasma membrane that counteracts inward ion conductance and therefore limits neuronal excitability. Accumulating research has highlighted a prominent involvement of K+ channels in nociceptive processing, particularly in determining peripheral hyperexcitability. We review salient findings from expression, pharmacological, and genetic studies that have untangled a hitherto undervalued contribution of K+ channels in maladaptive pain signaling. These emerging data provide a framework to explain enigmatic pain syndromes and to design novel pharmacological treatments for these debilitating states.
Collapse
|
69
|
Abstract
INTRODUCTION Centrally acting opioids are well established in the treatment of acute, surgical and cancer pain. However, their use in chronic noncancer pain (CNCP) is controversial because of side effects such as tolerance, somnolence, respiratory depression, confusion, constipation and addiction. Chronic arthritis and other musculoskeletal diseases are among the leading causes of CNCP. AREAS COVERED This manuscript will discuss the role of conventional opioids in chronic arthritis. In addition, future developments and strategies exploiting peripheral effects of opioids on pain and inflammation will be outlined. EXPERT OPINION Aims in drug development include the design of peripherally restricted opioid agonists, selective targeting of endogenous opioids to sites of painful injury and the augmentation of peripheral ligand and receptor synthesis, for example, by gene therapy. Although a large number of peripherally acting opioid compounds have been developed, clinical Phase III studies have not been published so far. Another strategy is to augment the effects of endogenously released opioid peptides by the inhibition of their degrading enzymes. Technology-oriented research is needed to find novel ways of peripheral restriction of opioids. Such analgesics would be desirable for their lack of central side effects and of adverse effects typical of nonsteroidal anti-inflammatory drugs (gastrointestinal ulcers, bleeding, myocardial infarction and stroke).
Collapse
Affiliation(s)
- Christoph Stein
- Freie Universitaet Berlin, Charite Campus Benjamin Franklin, Department of Anaesthesiology and Critical Care Medicine , Berlin , Germany
| | | |
Collapse
|
70
|
|
71
|
Stein C. Targeting pain and inflammation by peripherally acting opioids. Front Pharmacol 2013; 4:123. [PMID: 24068999 PMCID: PMC3779927 DOI: 10.3389/fphar.2013.00123] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/05/2013] [Indexed: 11/13/2022] Open
Affiliation(s)
- Christoph Stein
- Department of Anesthesiology and Critical Care Medicine, Charité Campus Benjamin Franklin Freie Universitaet Berlin Berlin, Germany
| |
Collapse
|