51
|
Nichols EL, Smith CJ. Synaptic-like Vesicles Facilitate Pioneer Axon Invasion. Curr Biol 2019; 29:2652-2664.e4. [DOI: 10.1016/j.cub.2019.06.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/24/2019] [Accepted: 06/26/2019] [Indexed: 12/19/2022]
|
52
|
Meritet DM, Spagnoli ST, Fischer KA, Löhr CV. Evaluating the Effects of Various Decalcification Protocols on Immunohistochemical Staining in Zebrafish ( Danio rerio). Zebrafish 2019; 16:280-290. [PMID: 31017539 DOI: 10.1089/zeb.2018.1697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fixation and decalcification can alter protein structure in tissues, influencing the efficacy of primary antibodies routinely used in immunohistochemical (IHC) staining. Histologic examination of zebrafish requires both processes, making staining and analysis potentially challenging. Here, we investigated the effects of common fixation and decalcification protocols on IHC staining in zebrafish. We also identified zebrafish-reactive and -specific antibodies for use in research and diagnostics. For several of the antibodies, time spent in Dietrich's fixative containing 2% glacial acetic acid or 3.4% formaldehyde followed by decalcification with ethylenediaminetetraacetic acid (EDTA) significantly impacted IHC staining quality, particularly regarding staining intensity. Protocols utilizing shorter fixation times produced higher-quality stains. In addition, individual markers were variably affected by the type of fixative. Dietrich's fixative significantly reduced staining quality for the "neural" markers: glial fibrillar acidic protein, chromogranin A, S100. A negative time-dependent effect of fixation on staining quality was found for several antibodies: muscle actin (Dietrich's only), cytokeratin AE1/AE3, chromogranin, and S100. Neither decalcification protocol had a statistically significant negative time-dependent effect on staining quality. Based on our results, we suggest shorter fixation and decalcification protocols to best preserve IHC staining quality as well as recommend deliberate selection of the fixative used depending on the protein of interest.
Collapse
Affiliation(s)
- Danielle M Meritet
- 1 Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon
| | - Sean T Spagnoli
- 1 Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon
| | - Kay A Fischer
- 2 Oregon Veterinary Diagnostic Laboratory, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon
| | - Christiane V Löhr
- 1 Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon
| |
Collapse
|
53
|
Pioneer axons employ Cajal's battering ram to enter the spinal cord. Nat Commun 2019; 10:562. [PMID: 30718484 PMCID: PMC6362287 DOI: 10.1038/s41467-019-08421-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 01/09/2019] [Indexed: 01/17/2023] Open
Abstract
Sensory axons must traverse a spinal cord glia limitans to connect the brain with the periphery. The fundamental mechanism of how these axons enter the spinal cord is still debatable; both Ramon y Cajal’s battering ram hypothesis and a boundary cap model have been proposed. To distinguish between these hypotheses, we visualized the entry of pioneer axons into the dorsal root entry zone (DREZ) with time-lapse imaging in zebrafish. Here, we identify that DRG pioneer axons enter the DREZ before the arrival of neural crest cells at the DREZ. Instead, actin-rich invadopodia in the pioneer axon are necessary and sufficient for DREZ entry. Using photoactivable Rac1, we demonstrate cell-autonomous functioning of invasive structures in pioneer axon spinal entry. Together these data support the model that actin-rich invasion structures dynamically drive pioneer axon entry into the spinal cord, indicating that distinct pioneer and secondary events occur at the DREZ. The fundamental mechanism of how sensory axons traverse a spinal cord glia limitans remains debatable, with some suggesting a role for boundary cap cells at the dorsal root entry zone (DREZ). Here, authors use time-lapse imaging of DRG axons at the DREZ to show that pioneer axons enter the DREZ before the presence of boundary cap cells, and that this entry is critically dependent on the development of actin-rich invasion structures reminiscent of invadopodia.
Collapse
|
54
|
Leme E, Silva EP, Rodrigues PS, Silva IR, Martins MFM, Bondan EF, Bernardi MM, Kirsten TB. Billings reservoir water used for human consumption presents microbiological contaminants and induces both behavior impairments and astrogliosis in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:364-373. [PMID: 29902616 DOI: 10.1016/j.ecoenv.2018.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/22/2018] [Accepted: 06/03/2018] [Indexed: 06/08/2023]
Abstract
The Billings reservoir is the largest water-storage facility in the São Paulo Metropolitan Region, with only a small part of the reservoir used for water supply. Recently, the São Paulo Metropolitan Region has experienced the greatest water collapse ever recorded. Thus, the intensification of use of the Billings reservoir should be considered. The objective of this study was to evaluate the quality of the water from different areas of the Billings reservoir related to human consumption (water supply and fishing): Rio Pequeno, Rio Grande, and Bororé rivers. We performed microbiological and physical studies on one water sample collected at each of these sites. Adult zebrafish were exposed to such water samples and their behaviors were evaluated. Finally, we studied central glial fibrillary acidic protein (GFAP) expression, which is related to neuroinflammatory processes. Water samples from Rio Pequeno, Rio Grande, and Bororé presented microbiological contamination for Escherichia coli and heterotrophic bacteria. Water from the Rio Pequeno river induced both motor/exploratory impairments and anxiogenic-like behavior in zebrafish. Water from the Bororé river induced behaviors in zebrafish related to respiratory impairments (hypoxia) as well as higher alarm reaction. Zebrafish exposed to water from the Bororé also presented astrogliosis, which seems to have happened in detrimental of the high heterotrophic bacterial contamination. Rio Grande and Bororé water increased the lethality rates. Considering the present results of microbiological contaminants and behavior impairments, lethality, as well as astrogliosis in zebrafish, the water from Rio Pequeno, Rio Grande, and Bororé rivers should be considered unacceptable for human use in their untreated state. The Basic Sanitation Company of the State of Sao Paulo should consider adopting rigorous processes of microbiological water treatment. Authorization for fishing at Bororé river should be reconsidered.
Collapse
Affiliation(s)
- Ednilse Leme
- Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Ericka P Silva
- Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Paula S Rodrigues
- Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Igor R Silva
- Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Maria F M Martins
- Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Eduardo F Bondan
- Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Maria M Bernardi
- Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Thiago B Kirsten
- Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil.
| |
Collapse
|
55
|
Generation of a human induced pluripotent stem cell-based model for tauopathies combining three microtubule-associated protein TAU mutations which displays several phenotypes linked to neurodegeneration. Alzheimers Dement 2018; 14:1261-1280. [PMID: 30036493 DOI: 10.1016/j.jalz.2018.05.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/28/2018] [Accepted: 05/13/2018] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Tauopathies are neurodegenerative diseases characterized by TAU protein-related pathology, including frontotemporal dementia and Alzheimer's disease among others. Mutant TAU animal models are available, but none of them faithfully recapitulates human pathology and are not suitable for drug screening. METHODS To create a new in vitro tauopathy model, we generated a footprint-free triple MAPT-mutant human induced pluripotent stem cell line (N279K, P301L, and E10+16 mutations) using clustered regularly interspaced short palindromic repeats-FokI and piggyBac transposase technology. RESULTS Mutant neurons expressed pathogenic 4R and phosphorylated TAU, endogenously triggered TAU aggregation, and had increased electrophysiological activity. TAU-mutant cells presented deficiencies in neurite outgrowth, aberrant sequence of differentiation to cortical neurons, and a significant activation of stress response pathways. RNA sequencing confirmed stress activation, demonstrated a shift toward GABAergic identity, and an upregulation of neurodegenerative pathways. DISCUSSION In summary, we generated a novel in vitro human induced pluripotent stem cell TAU-mutant model displaying neurodegenerative disease phenotypes that could be used for disease modeling and drug screening.
Collapse
|
56
|
Tse MK, Hung TS, Chan CM, Wong T, Dorothea M, Leclerc C, Moreau M, Miller AL, Webb SE. Identification of Ca 2+ signaling components in neural stem/progenitor cells during differentiation into neurons and glia in intact and dissociated zebrafish neurospheres. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1352-1368. [PMID: 29931586 DOI: 10.1007/s11427-018-9315-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/03/2018] [Indexed: 01/30/2023]
Abstract
The development of the CNS in vertebrate embryos involves the generation of different sub-types of neurons and glia in a complex but highly-ordered spatio-temporal manner. Zebrafish are commonly used for exploring the development, plasticity and regeneration of the CNS, and the recent development of reliable protocols for isolating and culturing neural stem/progenitor cells (NSCs/NPCs) from the brain of adult fish now enables the exploration of mechanisms underlying the induction/specification/differentiation of these cells. Here, we refined a protocol to generate proliferating and differentiating neurospheres from the entire brain of adult zebrafish. We demonstrated via RT-qPCR that some isoforms of ip3r, ryr and stim are upregulated/downregulated significantly in differentiating neurospheres, and via immunolabelling that 1,4,5-inositol trisphosphate receptor (IP3R) type-1 and ryanodine receptor (RyR) type-2 are differentially expressed in cells with neuron- or radial glial-like properties. Furthermore, ATP but not caffeine (IP3R and RyR agonists, respectively), induced the generation of Ca2+ transients in cells exhibiting neuron- or glial-like morphology. These results indicate the differential expression of components of the Ca2+-signaling toolkit in proliferating and differentiating cells. Thus, given the complexity of the intact vertebrate brain, neurospheres might be a useful system for exploring neurodegenerative disease diagnosis protocols and drug development using Ca2+ signaling as a read-out.
Collapse
Affiliation(s)
- Man Kit Tse
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Ting Shing Hung
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Ching Man Chan
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Tiffany Wong
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Mike Dorothea
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Catherine Leclerc
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, F-31062, France
| | - Marc Moreau
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, F-31062, France
| | - Andrew L Miller
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Sarah E Webb
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
57
|
Shimizu Y, Ueda Y, Ohshima T. Wnt signaling regulates proliferation and differentiation of radial glia in regenerative processes after stab injury in the optic tectum of adult zebrafish. Glia 2018; 66:1382-1394. [PMID: 29411422 DOI: 10.1002/glia.23311] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 01/03/2023]
Abstract
Zebrafish have superior abilities to generate new neurons in the adult brain and to regenerate brain tissue after brain injury compared with mammals. There exist two types of neural stem cells (NSCs): neuroepithelial-like stem cells (NE) and radial glia (RG) in the optic tectum. We established an optic tectum stab injury model to analyze the function of NSCs in the regenerative condition and confirmed that the injury induced the proliferation of RG, but not NE and that the proliferated RG differentiated into new neurons after the injury. We then analyzed the involvement of Wnt signaling after the injury, using a Wnt reporter line in which canonical Wnt signaling activation induced GFP expression and confirmed that GFP expression was induced specifically in RG after the injury. We also analyzed the expression level of genes related to Wnt signaling, and confirmed that endogenous Wnt antagonist dkk1b expression was significantly decreased after the injury. We observed that Wnt signal inhibitor IWR1 treatment suppressed the proliferation and differentiation of RG after the injury, suggesting that up-regulation of Wnt signaling in RG after the stab injury was required for optic tectum regeneration. We also confirmed that Wnt activation by treatment with GSK3β inhibitor BIO in uninjured zebrafish induced proliferation of RG in the optic tectum. This optic tectum stab injury model is useful for the study of the molecular mechanisms of brain regeneration and analysis of the RG functions in physiological and regenerative conditions.
Collapse
Affiliation(s)
- Yuki Shimizu
- Department of Life Science and Medical Bio-Science, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Yuto Ueda
- Department of Life Science and Medical Bio-Science, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bio-Science, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| |
Collapse
|
58
|
RNAi-mediated human Nestin silence inhibits proliferation and migration of malignant melanoma cells by G 1/S arrest via Akt-GSK3β-Rb pathway. Curr Med Sci 2017; 37:895-903. [PMID: 29270750 DOI: 10.1007/s11596-017-1824-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/16/2017] [Indexed: 12/18/2022]
Abstract
Human Nestin (hNestin) has been found to express in melanoma, and its expression is positively correlated with the advanced stage of melanoma. However, the precise role of hNestin in the development of melanoma has not been fully understood. The present study aimed to explore the role of hNestin in the proliferation and invasion of melanoma cells. The lentivirus vector carrying a short hairpin RNAs (shRNAs) targeting hNestin (hNestin-shRNA-LV) was stably infected into human melanoma cells UACC903, which expressed high levels of hNestin. The effects of hNestin knockdown on the proliferation, apoptosis, migration of melanoma cells and the related signaling pathways were investigated by immunofluorence, Western blotting and reverse transcription polymerase chain reaction (RT-PCR), respectively. The results showed that hNestin was expressed in most melanoma specimens and the melanoma cells studied. Knockdown of hNestin expression significantly inhibited the proliferation of melanoma cells, blocked the formation of cell colony, arrested cell cycle at G1/S stage and suppressed the activation of Akt and GSK3β. hNestin-silent cells also showed a sheet-like appearance with tight cell-cell adhesion, decreased membrane expression of N-cadherin and β-catenin, and attenuated migration. Furthermore, hNestin silence resulted in the inhibition of tumor growth in vivo. Our study indicates that hNestin knockdown suppresses the proliferation of melanoma cells, which might be through affecting Akt-GSK3β-Rb pathway-mediated G1/S arrest, and hNestin silence inhibits the migration by selectively modulating the expression of cell adhesion molecules in the process of epithelial-mesenchymal transition.
Collapse
|
59
|
Zimering JH, Stone JJ, Paulzak A, Markman JD, Johnson MD, Vates GE. Ectopic brain tissue in the trigeminal nerve presenting as rapid-onset trigeminal neuralgia: case report. J Neurosurg 2017; 129:1063-1066. [PMID: 29192861 DOI: 10.3171/2017.6.jns17811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The authors report the case of a 52-year-old man who presented with rapid-onset lancinating facial pain consistent with trigeminal neuralgia. Magnetic resonance imaging revealed a nonenhancing small lesion on the right trigeminal nerve concerning for an atypical schwannoma or neuroma. The patient underwent resection of the mass via a right retrosigmoid approach. His facial pain completely resolved immediately postoperatively and had not recurred at 6 months after surgery. The mass was consistent with normal brain tissue (neurons and glial cells) without evidence of mitoses. A final histopathological diagnosis of ectopic brain tissue with neural tissue demonstrating focal, chronic T-cell inflammation was made. The partial rhizotomy during resection was curative for the facial pain. To the authors' knowledge, this is the first report of neuroglial ectopia causing trigeminal neuralgia.
Collapse
Affiliation(s)
| | | | | | | | - Mahlon D Johnson
- 4Department of Pathology, Division of Neuropathology, University of Rochester Medical Center, Rochester, New York
| | | |
Collapse
|
60
|
Sassen WA, Lehne F, Russo G, Wargenau S, Dübel S, Köster RW. Embryonic zebrafish primary cell culture for transfection and live cellular and subcellular imaging. Dev Biol 2017; 430:18-31. [DOI: 10.1016/j.ydbio.2017.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 10/19/2022]
|
61
|
The larvicide pyriproxyfen blamed during the Zika virus outbreak does not cause microcephaly in zebrafish embryos. Sci Rep 2017; 7:40067. [PMID: 28051181 PMCID: PMC5209666 DOI: 10.1038/srep40067] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/30/2016] [Indexed: 02/04/2023] Open
Abstract
Although the zika virus (ZIKV) has now been strongly correlated with emerging cases of microcephaly in the Americas, suspicions have been raised regarding the use of pyriproxyfen, a larvicide that prevents mosquito development, in drinking water. The effects of this compound on neurodevelopment have not yet been addressed specifically in vertebrates. As a result, we aimed at addressing the effects, if any, of pyriproxyfen on neurodevelopment in the zebrafish embryo as a vertebrate model. Using zebrafish transgenic lines expressing GFP in different cell populations (elavl3 in newborn neurons, gfap and nestin in neural stem cells), we focused on the analysis of whole embryonic brain volume after confocal 3D-reconstruction and the quantification of purified neural stem cells during early neurodevelopment by FACS-cell sorting from whole in vivo embryos. Interestingly, though lethal at very high doses, pyriproxyfen did not cause brain malformation nor any significant changes in the number of observed stem cells in the developing central nervous system. Our data indicate that pyriproxyfen does not affect central nervous system development in zebrafish, suggesting that this larvicide on its own, may not be correlated with the increase in microcephaly cases reported recently.
Collapse
|