52
|
Nagashima M, Monden Y, Dan I, Dan H, Tsuzuki D, Mizutani T, Kyutoku Y, Gunji Y, Hirano D, Taniguchi T, Shimoizumi H, Momoi MY, Watanabe E, Yamagata T. Acute neuropharmacological effects of atomoxetine on inhibitory control in ADHD children: a fNIRS study. NEUROIMAGE-CLINICAL 2014; 6:192-201. [PMID: 25379431 PMCID: PMC4215398 DOI: 10.1016/j.nicl.2014.09.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 11/28/2022]
Abstract
The object of the current study is to explore the neural substrate for effects of atomoxetine (ATX) on inhibitory control in school-aged children with attention deficit hyperactivity disorder (ADHD) using functional near-infrared spectroscopy (fNIRS). We monitored the oxy-hemoglobin signal changes of sixteen ADHD children (6–14 years old) performing a go/no-go task before and 1.5 h after ATX or placebo administration, in a randomized, double-blind, placebo-controlled, crossover design. Sixteen age- and gender-matched normal controls without ATX administration were also monitored. In the control subjects, the go/no-go task recruited the right inferior and middle prefrontal gyri (IFG/MFG), and this activation was absent in pre-medicated ADHD children. The reduction of right IFG/MFG activation was acutely normalized after ATX administration but not placebo administration in ADHD children. These results are reminiscent of the neuropharmacological effects of methylphenidate to up-regulate reduced right IFG/MFG function in ADHD children during inhibitory tasks. As with methylphenidate, activation in the IFG/MFG could serve as an objective neuro-functional biomarker to indicate the effects of ATX on inhibitory control in ADHD children. This promising technique will enhance early clinical diagnosis and treatment of ADHD in children, especially in those with a hyperactivity/impulsivity phenotype. We assessed the effects of atomoxetine administration to ADHD children using fNIRS. Normal healthy control subjects recruited the right IFG/MFG during go/no-go tasks. Pre-medicated ADHD children exhibited reduced right IFG/MFG activation. The activation was acutely normalized by atomoxetine, but not by placebo. The right IFG/MFG activation may serve as an objective neuro-functional biomarker.
Collapse
Affiliation(s)
| | | | - Ippeita Dan
- Department of Neurosurgery, Shimotsuke, Japan ; Applied Cognitive Neuroscience Laboratory, Chuo University, 1-13-27 Kasuga, Bunkyo, Tokyo 112-8551, Japan
| | - Haruka Dan
- Department of Neurosurgery, Shimotsuke, Japan
| | - Daisuke Tsuzuki
- Applied Cognitive Neuroscience Laboratory, Chuo University, 1-13-27 Kasuga, Bunkyo, Tokyo 112-8551, Japan
| | - Tsutomu Mizutani
- Department of Pediatrics, Shimotsuke, Japan ; Functional Brain Science Laboratory, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Yasushi Kyutoku
- Applied Cognitive Neuroscience Laboratory, Chuo University, 1-13-27 Kasuga, Bunkyo, Tokyo 112-8551, Japan
| | - Yuji Gunji
- Department of Pediatrics, Shimotsuke, Japan ; Department of Pediatrics, International University of Health and Welfare, 537-3 Iguchi, Nasushiobara, Tochigi 329-2763, Japan
| | - Daisuke Hirano
- International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi, Japan
| | - Takamichi Taniguchi
- International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi, Japan
| | - Hideo Shimoizumi
- Rehabilitation Center, International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi 324-8501, Japan
| | - Mariko Y Momoi
- Department of Pediatrics, Shimotsuke, Japan ; International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi, Japan
| | | | | |
Collapse
|