54
|
Kellmeyer P, Grosse-Wentrup M, Schulze-Bonhage A, Ziemann U, Ball T. Electrophysiological correlates of neurodegeneration in motor and non-motor brain regions in amyotrophic lateral sclerosis-implications for brain-computer interfacing. J Neural Eng 2018; 15:041003. [PMID: 29676287 DOI: 10.1088/1741-2552/aabfa5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE For patients with amyotrophic lateral sclerosis (ALS) who are suffering from severe communication or motor problems, brain-computer interfaces (BCIs) can improve the quality of life and patient autonomy. However, current BCI systems are not as widely used as their potential and patient demand would let assume. This underutilization is a result of technological as well as user-based limitations but also of the comparatively poor performance of currently existing BCIs in patients with late-stage ALS, particularly in the locked-in state. APPROACH Here we review a broad range of electrophysiological studies in ALS patients with the aim to identify electrophysiological correlates of ALS-related neurodegeneration in motor and non-motor brain regions in to better understand potential neurophysiological limitations of current BCI systems for ALS patients. To this end we analyze studies in ALS patients that investigated basic sensory evoked potentials, resting-state and task-based paradigms using electroencephalography or electrocorticography for basic research purposes as well as for brain-computer interfacing. Main results and significance. Our review underscores that, similarly to mounting evidence from neuroimaging and neuropathology, electrophysiological measures too indicate neurodegeneration in non-motor areas in ALS. Furthermore, we identify an unexpected gap of basic and advanced electrophysiological studies in late-stage ALS patients, particularly in the locked-in state. We propose a research strategy on how to fill this gap in order to improve the design and performance of future BCI systems for this patient group.
Collapse
Affiliation(s)
- Philipp Kellmeyer
- Translational Neurotechnology Lab, Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg im Breisgau, Germany. Cluster of Excellence BrainLinks-BrainTools, University of Freiburg, Freiburg im Breisgau, Germany
| | | | | | | | | |
Collapse
|
55
|
Proudfoot M, Colclough GL, Quinn A, Wuu J, Talbot K, Benatar M, Nobre AC, Woolrich MW, Turner MR. Increased cerebral functional connectivity in ALS: A resting-state magnetoencephalography study. Neurology 2018; 90:e1418-e1424. [PMID: 29661904 PMCID: PMC5902786 DOI: 10.1212/wnl.0000000000005333] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 01/11/2018] [Indexed: 12/11/2022] Open
Abstract
Objective We sought to assess cortical function in amyotrophic lateral sclerosis (ALS) using noninvasive neural signal recording. Methods Resting-state magnetoencephalography was used to measure power fluctuations in neuronal oscillations from distributed cortical parcels in 24 patients with ALS and 24 healthy controls. A further 9 patients with primary lateral sclerosis and a group of 15 asymptomatic carriers of genetic mutations associated with ALS were also studied. Results Increased functional connectivity, particularly from the posterior cingulate cortex, was demonstrated in both patient groups compared to healthy controls. Directionally similar patterns were also evident in the asymptomatic genetic mutation carrier group. Conclusion Increased cortical functional connectivity elevation is a quantitative marker that reflects ALS pathology across its clinical spectrum, and may develop during the presymptomatic period. The amelioration of pathologic magnetoencephalography signals might be a marker sensitive enough to provide proof-of-principle in the development of future neuroprotective therapeutics.
Collapse
Affiliation(s)
- Malcolm Proudfoot
- From the Nuffield Department of Clinical Neurosciences (M.P., K.T., M.R.T.), and Oxford Centre for Human Brain Activity (M.P., G.L.C., A.Q., A.C.N., M.W.W., M.R.T.), University of Oxford, UK; and Miller School of Medicine (J.W., M.B.), University of Miami, FL
| | - Giles L Colclough
- From the Nuffield Department of Clinical Neurosciences (M.P., K.T., M.R.T.), and Oxford Centre for Human Brain Activity (M.P., G.L.C., A.Q., A.C.N., M.W.W., M.R.T.), University of Oxford, UK; and Miller School of Medicine (J.W., M.B.), University of Miami, FL
| | - Andrew Quinn
- From the Nuffield Department of Clinical Neurosciences (M.P., K.T., M.R.T.), and Oxford Centre for Human Brain Activity (M.P., G.L.C., A.Q., A.C.N., M.W.W., M.R.T.), University of Oxford, UK; and Miller School of Medicine (J.W., M.B.), University of Miami, FL
| | - Joanne Wuu
- From the Nuffield Department of Clinical Neurosciences (M.P., K.T., M.R.T.), and Oxford Centre for Human Brain Activity (M.P., G.L.C., A.Q., A.C.N., M.W.W., M.R.T.), University of Oxford, UK; and Miller School of Medicine (J.W., M.B.), University of Miami, FL
| | - Kevin Talbot
- From the Nuffield Department of Clinical Neurosciences (M.P., K.T., M.R.T.), and Oxford Centre for Human Brain Activity (M.P., G.L.C., A.Q., A.C.N., M.W.W., M.R.T.), University of Oxford, UK; and Miller School of Medicine (J.W., M.B.), University of Miami, FL
| | - Michael Benatar
- From the Nuffield Department of Clinical Neurosciences (M.P., K.T., M.R.T.), and Oxford Centre for Human Brain Activity (M.P., G.L.C., A.Q., A.C.N., M.W.W., M.R.T.), University of Oxford, UK; and Miller School of Medicine (J.W., M.B.), University of Miami, FL
| | - Anna C Nobre
- From the Nuffield Department of Clinical Neurosciences (M.P., K.T., M.R.T.), and Oxford Centre for Human Brain Activity (M.P., G.L.C., A.Q., A.C.N., M.W.W., M.R.T.), University of Oxford, UK; and Miller School of Medicine (J.W., M.B.), University of Miami, FL
| | - Mark W Woolrich
- From the Nuffield Department of Clinical Neurosciences (M.P., K.T., M.R.T.), and Oxford Centre for Human Brain Activity (M.P., G.L.C., A.Q., A.C.N., M.W.W., M.R.T.), University of Oxford, UK; and Miller School of Medicine (J.W., M.B.), University of Miami, FL.
| | - Martin R Turner
- From the Nuffield Department of Clinical Neurosciences (M.P., K.T., M.R.T.), and Oxford Centre for Human Brain Activity (M.P., G.L.C., A.Q., A.C.N., M.W.W., M.R.T.), University of Oxford, UK; and Miller School of Medicine (J.W., M.B.), University of Miami, FL.
| |
Collapse
|
56
|
Menke RAL, Agosta F, Grosskreutz J, Filippi M, Turner MR. Neuroimaging Endpoints in Amyotrophic Lateral Sclerosis. Neurotherapeutics 2017; 14:11-23. [PMID: 27752938 PMCID: PMC5233627 DOI: 10.1007/s13311-016-0484-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative, clinically heterogeneous syndrome pathologically overlapping with frontotemporal dementia. To date, therapeutic trials in animal models have not been able to predict treatment response in humans, and the revised ALS Functional Rating Scale, which is based on coarse disability measures, remains the gold-standard measure of disease progression. Advances in neuroimaging have enabled mapping of functional, structural, and molecular aspects of ALS pathology, and these objective measures may be uniquely sensitive to the detection of propagation of pathology in vivo. Abnormalities are detectable before clinical symptoms develop, offering the potential for neuroprotective intervention in familial cases. Although promising neuroimaging biomarker candidates for diagnosis, prognosis, and disease progression have emerged, these have been from the study of necessarily select patient cohorts identified in specialized referral centers. Further multicenter research is now needed to establish their validity as therapeutic outcome measures.
Collapse
Affiliation(s)
- Ricarda A L Menke
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Julian Grosskreutz
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
- Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
57
|
Fraschini M, Demuru M, Hillebrand A, Cuccu L, Porcu S, Di Stefano F, Puligheddu M, Floris G, Borghero G, Marrosu F. EEG functional network topology is associated with disability in patients with amyotrophic lateral sclerosis. Sci Rep 2016; 6:38653. [PMID: 27924954 PMCID: PMC5141491 DOI: 10.1038/srep38653] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/10/2016] [Indexed: 12/27/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is one of the most severe neurodegenerative diseases, which is known to affect upper and lower motor neurons. In contrast to the classical tenet that ALS represents the outcome of extensive and progressive impairment of a fixed set of motor connections, recent neuroimaging findings suggest that the disease spreads along vast non-motor connections. Here, we hypothesised that functional network topology is perturbed in ALS, and that this reorganization is associated with disability. We tested this hypothesis in 21 patients affected by ALS at several stages of impairment using resting-state electroencephalography (EEG) and compared the results to 16 age-matched healthy controls. We estimated functional connectivity using the Phase Lag Index (PLI), and characterized the network topology using the minimum spanning tree (MST). We found a significant difference between groups in terms of MST dissimilarity and MST leaf fraction in the beta band. Moreover, some MST parameters (leaf, hierarchy and kappa) significantly correlated with disability. These findings suggest that the topology of resting-state functional networks in ALS is affected by the disease in relation to disability. EEG network analysis may be of help in monitoring and evaluating the clinical status of ALS patients.
Collapse
Affiliation(s)
- Matteo Fraschini
- Department of Electrical and Electronic Engineering, University of Cagliari, Piazza D’armi, Cagliari, 09123, Italy
| | - Matteo Demuru
- Department of Clinical Neurophysiology and MEG Center, VU University Medical Centre, Amsterdam, The Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, VU University Medical Centre, Amsterdam, The Netherlands
| | - Lorenza Cuccu
- Biomedical Engineering Course, University of Cagliari, Piazza D’armi, Cagliari, 09123, Italy
| | - Silvia Porcu
- Department of Neurology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | | | - Monica Puligheddu
- Department of Neurology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Gianluca Floris
- Department of Neurology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Giuseppe Borghero
- Department of Neurology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Francesco Marrosu
- Department of Neurology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| |
Collapse
|