51
|
Abstract
Liver cancer is an often fatal malignant tumor with a high recurrence rate and chemoresistance. The major malignant phenotypes of cancer, including recurrence, metastasis, and chemoresistance, are related to the presence of cancer stem cells (CSCs). In the past few decades, CSCs have been identified and characterized in many tumors including liver cancer. Accumulated evidence has revealed many aspects of the biological behavior of liver CSCs and the mechanism of their regulation. Based on these findings, a number of studies have investigated eradication of liver CSCs. This review focuses on the recent advances in our understanding of the biology of liver CSCs and the development of strategies for their treatment.
Collapse
|
52
|
Raggi C, Correnti M, Sica A, Andersen JB, Cardinale V, Alvaro D, Chiorino G, Forti E, Glaser S, Alpini G, Destro A, Sozio F, Di Tommaso L, Roncalli M, Banales JM, Coulouarn C, Bujanda L, Torzilli G, Invernizzi P. Cholangiocarcinoma stem-like subset shapes tumor-initiating niche by educating associated macrophages. J Hepatol 2017; 66:102-115. [PMID: 27593106 PMCID: PMC5522599 DOI: 10.1016/j.jhep.2016.08.012] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/17/2016] [Accepted: 08/18/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS A therapeutically challenging subset of cells, termed cancer stem cells (CSCs) are responsible for cholangiocarcinoma (CCA) clinical severity. Presence of tumor-associated macrophages (TAMs) has prognostic significance in CCA and other malignancies. Thus, we hypothesized that CSCs may actively shape their tumor-supportive immune niche. METHODS CCA cells were cultured in 3D conditions to generate spheres. CCA sphere analysis of in vivo tumorigenic-engraftment in immune-deficient mice and molecular characterization was performed. The in vitro and in vivo effect of CCA spheres on macrophage precursors was tested after culturing healthy donor cluster of differentiation (CD)14+ with CCA-sphere conditioned medium. RESULTS CCA spheres engrafted in 100% of transplanted mice and revealed a significant 20.3-fold increase in tumor-initiating fraction (p=0.0011) and a sustained tumorigenic potential through diverse xenograft-generations. Moreover, CCA spheres were highly enriched for CSC, liver cancer and embryonic stem cell markers both at gene and protein levels. Next, fluorescence-activated cell sorting analysis showed that in the presence of CCA sphere conditioned medium, CD14+ macrophages expressed key markers (CD68, CD115, human leukocyte antigen-D related, CD206) indicating that CCA sphere conditioned medium was a strong macrophage-activator. Gene expression profile of CCA sphere activated macrophages revealed unique molecular TAM-like features confirmed by high invasion capacity. Also, freshly isolated macrophages from CCA resections recapitulated a similar molecular phenotype of in vitro-educated macrophages. Consistent with invasive features, the largest CD163+ set was found in the tumor front of human CCA specimens (n=23) and correlated with a high level of serum cancer antigen 19.9 (n=17). Among mediators released by CCA spheres, only interleukin (IL)13, IL34 and osteoactivin were detected and further confirmed in CCA patient sera (n=12). Surprisingly, a significant association of IL13, IL34 and osteoactivin with sphere stem-like genes was provided by a CCA database (n=104). In vitro combination of IL13, IL34, osteoactivin was responsible for macrophage-differentiation and invasion, as well as for in vivo tumor-promoting effect. CONCLUSION CCA-CSCs molded a specific subset of stem-like associated macrophages thus providing a rationale for a synergistic therapeutic strategy for CCA-disease. LAY SUMMARY Immune plasticity represents an important hallmark of tumor outcome. Since cancer stem cells are able to manipulate stromal cells to their needs, a better definition of the key dysregulated immune subtypes responsible for cooperating in supporting tumor initiation may facilitate the development of new therapeutic approaches. Considering that human cholangiocarcinoma represents a clinical emergency, it is essential to move to predictive models in order to understand the adaptive process of macrophage component (imprinting, polarization and maintenance) engaged by tumor stem-like compartment.
Collapse
Affiliation(s)
- Chiara Raggi
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy.
| | - Margherita Correnti
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Antonio Sica
- Laboratory of Molecular Immunology, Humanitas Clinical and Research Center, Rozzano, Italy,Department of Pharmaceutical Sciences, University of Piemonte Orientale “Amedeo Avogadro” Novara, Italy
| | - Jesper B. Andersen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Giovanna Chiorino
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia, Biella, Italy
| | - Elisa Forti
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Scott & White Digestive Disease Research Center, Scott & White, Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, United States
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Scott & White Digestive Disease Research Center, Scott & White, Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, United States
| | | | - Francesca Sozio
- Leukocyte Migration Laboratory, Humanitas Clinical and Research Center, Rozzano, Italy,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luca Di Tommaso
- Pathology Unit, Humanitas Research Hospital, Rozzano, Italy,University of Milan Medical School, Milan, Italy
| | - Massimo Roncalli
- Pathology Unit, Humanitas Research Hospital, Rozzano, Italy,University of Milan Medical School, Milan, Italy
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastián, Spain
| | | | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastián, Spain
| | - Guido Torzilli
- Department of Hepatobiliary and General Surgery, Humanitas Research Hospital, Rozzano, Italy
| | - Pietro Invernizzi
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy; Program for Autoimmune Liver Diseases, International Center for Digestive Health, Department of Medicine and Surgery, University of Milan-Bicocca, Italy.
| |
Collapse
|
53
|
Nishida N, Kudo M. Clinical Significance of Epigenetic Alterations in Human Hepatocellular Carcinoma and Its Association with Genetic Mutations. Dig Dis 2016; 34:708-713. [PMID: 27750242 DOI: 10.1159/000448863] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Accumulation of genetic and epigenetic alterations is a hallmark of cancer genomes, including those in hepatocellular carcinoma (HCC). Particularly, in human HCC, epigenetic changes are more frequently observed than genetic changes in a variety of cancer-related genes, suggesting a potential role for epigenetic alterations during hepatocarcinogenesis. Several environmental factors, such as inflammation, obesity, and steatosis, are reported to affect the epigenetic status in hepatocytes, which could play a role in HCC development. In addition, genetic mutations in histone modulators and chromatin regulators would be critical for the acceleration of epigenetic alteration. It is also possible that major genetic mutations of HCC, such as TP53 and CNTTB1 mutations, are associated with the disturbance of epigenetic integrity. For example, specific TP53 mutations frequently induced by aflatoxin B1 exposure might affect histone modifiers and nucleosome remodelers. Generally, epigenetic alteration is reversible, because of which dysregulation of transcription takes place, without affecting protein structure. Therefore, differentiation therapy is one of the potential approaches for HCC with advanced epigenetic alterations. On the other hand, a tumor carrying an accumulation of genetic mutations would result in many abnormal proteins that could be recognized as non-self and could be targets for immune reactions; thus, immune-checkpoint blockers should be effective for HCCs with genetic hypermutation. Although the emergence of genetic and epigenetic alterations could be linked to each other and there could be some crossover or convergence between these cancer pathways, characterization of the mutation spectrum of genetic and epigenetic alterations could influence future HCC treatment.
Collapse
|
54
|
Abstract
The pathogenesis of hepatocellular carcinoma (HCC) is a multistep process involving the progressive accumulation of molecular alterations pinpointing different molecular and cellular events. The next-generation sequencing technology is facilitating the global and systematic evaluation of molecular landscapes in HCC. There is emerging evidence supporting the importance of cancer metabolism and tumor microenvironment in providing a favorable and supportive niche to expedite HCC development. Moreover, recent studies have identified distinct surface markers of cancer stem cell (CSC) in HCC, and they also put forward the profound involvement of altered signaling pathways and epigenetic modifications in CSCs, in addition to the concomitant drug resistance and metastasis. Taken together, multiple key genetic and non-genetic factors, as well as liver CSCs, result in the development and progression of HCC.
Collapse
Affiliation(s)
- Daniel Wai-Hung Ho
- Department of Pathology, The University of Hong Kong, Hong Kong, SAR, China,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, SAR, China
| | - Regina Cheuk-Lam Lo
- Department of Pathology, The University of Hong Kong, Hong Kong, SAR, China,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, SAR, China
| | - Lo-Kong Chan
- Department of Pathology, The University of Hong Kong, Hong Kong, SAR, China,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, SAR, China
| | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Hong Kong, SAR, China,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, SAR, China,*Irene O. L. Ng, MD, PhD, Department of Pathology and State Key Laboratory for Liver Research, The University of Hong Kong, Room 127B, University Pathology Building, Department of Pathology, The University of Hong Kong, Queen Mary, Hospital, Pokfulam, Hong Kong, SAR (China), Tel. +852 2255 3967, E-Mail
| |
Collapse
|
55
|
Tang B, Qi G, Tang F, Yuan S, Wang Z, Liang X, Li B, Yu S, Liu J, Huang Q, Wei Y, Zhai R, Lei B, Yu H, Tomlinson S, He S. Aberrant JMJD3 Expression Upregulates Slug to Promote Migration, Invasion, and Stem Cell-Like Behaviors in Hepatocellular Carcinoma. Cancer Res 2016; 76:6520-6532. [PMID: 27651311 DOI: 10.1158/0008-5472.can-15-3029] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 08/10/2016] [Accepted: 09/04/2016] [Indexed: 11/16/2022]
Abstract
The Jumonji domain-containing chromatin remodeling factor JMJD3 has important roles in development and cancer. Here, we report a pivotal role for JMJD3 in sustaining the phenotype of aggressive hepatocellular carcinomas. Expression levels of JMJD3 in clinical specimens of hepatocellular carcinoma correlated inversely with patient survival. In hepatocellular carcinoma cells, we found that enforcing its overexpression induced epithelial-mesenchymal transition (EMT), invasive migration, stem cell-like traits, and metastatic properties. Conversely, silencing JMJD3 in hepatocellular carcinoma cells overexpressing it inhibited these aggressive phenotypes. Mechanistically, JMJD3 modulated H3K27me3 in the SLUG gene promoter, a histone mark associated with active SLUG transcription. SLUG silencing blocked JMJD3-induced EMT, stemness, and metastasis. Furthermore, SLUG expression in hepatocellular carcinoma clinical specimens correlated positively with JMJD3 expression. Our results establish JMJD3 as a critical driver of hepatocellular carcinoma stem cell-like and metastatic behaviors, with implications for prognosis and treatment. Cancer Res; 76(22); 6520-32. ©2016 AACR.
Collapse
Affiliation(s)
- Bo Tang
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi, China.,Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Guangying Qi
- Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Guilin, Guangxi, China.,Department of Pathology and Physiopathology, Guilin Medical University, Guilin, Guangxi, China
| | - Fang Tang
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi, China.,Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Shengguang Yuan
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi, China.,Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Zhenran Wang
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi, China.,Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Xingsi Liang
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi, China.,Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Bo Li
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi, China.,Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Shuiping Yu
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi, China.,Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Jie Liu
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi, China.,Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Qi Huang
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi, China.,Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Yangchao Wei
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi, China.,Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Run Zhai
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi, China.,Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Biao Lei
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi, China.,Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Hongping Yu
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical College, Guilin, Guangxi, China
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Darby Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina.,Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Songqing He
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi, China. .,Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
56
|
Lee ES, Won YJ, Kim BC, Park D, Bae JH, Park SJ, Noh SJ, Kang YR, Choi SH, Yoon JH, Heo K, Yang K, Son TG. Low-dose irradiation promotes Rad51 expression by down-regulating miR-193b-3p in hepatocytes. Sci Rep 2016; 6:25723. [PMID: 27225532 PMCID: PMC4880923 DOI: 10.1038/srep25723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/21/2016] [Indexed: 12/28/2022] Open
Abstract
Current evidence indicates that there is a relationship between microRNA (miRNA)-mediated gene silencing and low-dose irradiation (LDIR) responses. Here, alterations of miRNA expression in response to LDIR exposure in male BALB/c mice and three different types of hepatocytes were investigated. The miRNome of the LDIR-exposed mouse spleens (0.01 Gy, 6.5 mGy/h) was analyzed, and the expression of miRNA and mRNA was validated by qRT-PCR. Western blotting, chromatin immunoprecipitation (ChIP), and luciferase assays were also performed to evaluate the interaction between miRNAs and their target genes and to gain insight into the regulation of miRNA expression. The expression of miRNA-193b-3p was down-regulated in the mouse spleen and liver and in various hepatocytes (NCTC, Hepa, and HepG2 cell lines) in response to LDIR. The down-regulation of miR-193b-3p expression was caused by histone deacetylation on the miR-193b-3p promoter in the HepG2 cells irradiated with 0.01 Gy. However, the alteration of histone deacetylation and miR-193b-3p and Rad51 expression in response to LDIR was restored by pretreatment with N-acetyl-cyctein. In conclusion, we provide evidence that miRNA responses to LDIR include the modulation of cellular stress responses and repair mechanisms.
Collapse
Affiliation(s)
- Eon-Seok Lee
- Research Center, Dongnam Institute of Radiological and Medical Science, 40 Jwadong-gil, Jangan-eup, Gijang-gun, Busan, 46033, Republic of Korea
| | - Yeo Jin Won
- Research Center, Dongnam Institute of Radiological and Medical Science, 40 Jwadong-gil, Jangan-eup, Gijang-gun, Busan, 46033, Republic of Korea
| | - Byoung-Chul Kim
- In silico Toxicology Research Center, Korea Insititute of Toxciology, Daejeon 305-343, Republic of Korea
| | - Daeui Park
- In silico Toxicology Research Center, Korea Insititute of Toxciology, Daejeon 305-343, Republic of Korea
| | - Jin-Han Bae
- Research Center, Dongnam Institute of Radiological and Medical Science, 40 Jwadong-gil, Jangan-eup, Gijang-gun, Busan, 46033, Republic of Korea
| | - Seong-Joon Park
- Research Center, Dongnam Institute of Radiological and Medical Science, 40 Jwadong-gil, Jangan-eup, Gijang-gun, Busan, 46033, Republic of Korea
| | - Sung Jin Noh
- Research Center, Dongnam Institute of Radiological and Medical Science, 40 Jwadong-gil, Jangan-eup, Gijang-gun, Busan, 46033, Republic of Korea
| | - Yeong-Rok Kang
- Research Center, Dongnam Institute of Radiological and Medical Science, 40 Jwadong-gil, Jangan-eup, Gijang-gun, Busan, 46033, Republic of Korea
| | - Si Ho Choi
- Research Center, Dongnam Institute of Radiological and Medical Science, 40 Jwadong-gil, Jangan-eup, Gijang-gun, Busan, 46033, Republic of Korea
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kyu Heo
- Research Center, Dongnam Institute of Radiological and Medical Science, 40 Jwadong-gil, Jangan-eup, Gijang-gun, Busan, 46033, Republic of Korea
| | - Kwangmo Yang
- Research Center, Dongnam Institute of Radiological and Medical Science, 40 Jwadong-gil, Jangan-eup, Gijang-gun, Busan, 46033, Republic of Korea.,Department of Radiation Oncology, Korea Institute of Radiological and Medical Sciences, Seoul 139-709, Republic of Korea
| | - Tae Gen Son
- Research Center, Dongnam Institute of Radiological and Medical Science, 40 Jwadong-gil, Jangan-eup, Gijang-gun, Busan, 46033, Republic of Korea
| |
Collapse
|
57
|
The Therapeutic Targets of miRNA in Hepatic Cancer Stem Cells. Stem Cells Int 2016; 2016:1065230. [PMID: 27118975 PMCID: PMC4826947 DOI: 10.1155/2016/1065230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/23/2016] [Accepted: 03/14/2016] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide malignancy and the third leading cause of cancer death in patients. Several studies demonstrated that hepatic cancer stem cells (HCSCs), also called tumor-initiating cells, are involved in regulation of HCC initiation, tumor progression, metastasis development, and drug resistance. Despite the extensive research, the underlying mechanisms by which HCSCs are regulated remain still unclear. MicroRNAs (miRNAs) are able to regulate a lot of biological processes such as self-renewal and pluripotency of HCSCs, representing a new promising strategy for treatment of HCC chemotherapy-resistant tumors. In this review, we synthesize the latest findings on therapeutic regulation of HCSCs by miRNAs, in order to highlight the perspective of novel miRNA-based anticancer therapies for HCC treatment.
Collapse
|
58
|
Chiba T, Iwama A, Yokosuka O. Cancer stem cells in hepatocellular carcinoma: Therapeutic implications based on stem cell biology. Hepatol Res 2016; 46:50-7. [PMID: 26123821 DOI: 10.1111/hepr.12548] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/13/2015] [Accepted: 06/22/2015] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third most frequent cause of cancer-related death worldwide. Despite advances in its diagnosis and treatment, the prognosis of patients with advanced HCC remains unfavorable. Recent advances in stem cell biology and associated technologies have enabled the identification of minor components of tumorigenic cells, termed cancer stem cells (CSC) or tumor-initiating cells, in cancers such as HCC. Furthermore, because CSC play a central role in tumor development, metastasis and recurrence, they are considered to be a therapeutic target in cancer treatment. Hepatic CSC have been successfully identified using functional and cell surface markers. The analysis of purified hepatic CSC has revealed the molecular machinery and signaling pathways involved in their maintenance. In addition, epigenetic transcriptional regulation has been shown to be important in the development and maintenance of CSC. Although inhibitors of CSC show promise as CSC-targeting drugs, novel therapeutic approaches for the eradication of CSC are yet to be established. In this review, we describe recent progress in hepatic CSC research and provide a perspective on the available therapeutic approaches based on stem cell biology.
Collapse
Affiliation(s)
- Tetsuhiro Chiba
- Departments of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Osamu Yokosuka
- Departments of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
59
|
Su S, Hong F, Liang Y, Zhou J, Liang Y, Chen K, Wang X, Wang Z, Wang Z, Chang C, Han W, Gong W, Qin H, Jiang B, Xiong H, Peng L. Lgr5 Methylation in Cancer Stem Cell Differentiation and Prognosis-Prediction in Colorectal Cancer. PLoS One 2015; 10:e0143513. [PMID: 26599100 PMCID: PMC4657969 DOI: 10.1371/journal.pone.0143513] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 11/05/2015] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Leucine-rich-repeat-containing G-protein-coupled receptor 5 (lgr5) is a candidate marker for colorectal cancer stem cells (CSC). In the current study, we investigated the methylation status within thelgr5 promoter and evaluated its relationship with CSC differentiation, prognosis for colorectal cancer, and its clinicopathological features. METHODS The methylation status within Lgr5 promoter was detected with a methylation-specific PCR in six colorectal cancer cell lines as well as 169 primary colorectal tumor tissues. Differentiation of CSC was examined with immunofluorescence and immunocytochemistry. Down-regulation of lgr5 was achieved with gene-specific siRNA. The associations between lgr5 methylation and the clinicopathological features as well as survival of patients were analyzed with statistical methods. RESULTS The lgr5 promoter was methylated to different degrees for the six colorectal cell lines examined, with complete methylation observed in HCT116 cells in which the lgr5 expression was partially recovered following DAC treatment. The stem-cell sphere formation from HCT116 cells was accompanied by increasing methylation within the lgr5 promoter and decreasing expression of lgr5. Knocking down lgr5 by siRNA also led to stem-cell spheres formation. Among primary colorectal tumors, 40% (67/169) were positive for lgr5 methylation, while none of the normal colon tissues were positive for lgr5 methylation. Furthermore, lgr5 methylation significantly associated with higher tumor grade, and negative distant metastasis (p < 0.05), as well as better prognosis (p = 0.001) in patients with colorectal cancer. CONCLUSIONS Our data suggests that lgr5 methylation, through the regulation of lgr5 expression and colorectal CSC differentiation, may constitute a novel prognostic marker for colorectal cancer patients.
Collapse
Affiliation(s)
- Shasha Su
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Feng Hong
- Institute of liver diseases, Affiliated Hospital of Jining Medical University, Shandong, 273100, China
| | - Yanling Liang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jieqiong Zhou
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yan Liang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kequan Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xinying Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhongqiu Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhiqing Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Cassie Chang
- Immunology Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, New York 10029, United States of America
| | - Weihua Han
- Second affiliated hospital of XingTai medical college, Hebei, 054002, China
| | - Wei Gong
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haitao Qin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bo Jiang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Huabao Xiong
- Immunology Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, New York 10029, United States of America
| | - Liang Peng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- * E-mail:
| |
Collapse
|
60
|
Nio K, Yamashita T, Okada H, Kondo M, Hayashi T, Hara Y, Nomura Y, Zeng SS, Yoshida M, Hayashi T, Sunagozaka H, Oishi N, Honda M, Kaneko S. Defeating EpCAM(+) liver cancer stem cells by targeting chromatin remodeling enzyme CHD4 in human hepatocellular carcinoma. J Hepatol 2015; 63:1164-72. [PMID: 26095183 DOI: 10.1016/j.jhep.2015.06.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 06/03/2015] [Accepted: 06/10/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma is composed of a subset of cells with enhanced tumorigenicity and chemoresistance that are called cancer stem (or stem-like) cells. We explored the role of chromodomain-helicase-DNA-binding protein 4, which is encoded by the CHD4 gene and is known to epigenetically control gene regulation and DNA damage responses in EpCAM(+) liver cancer stem cells. METHODS Gene and protein expression profiles were determined by microarray and immunohistochemistry in 245 and 144 hepatocellular carcinoma patients, respectively. The relationship between gene/protein expression and prognosis was examined. The functional role of CHD4 was evaluated in primary hepatocellular carcinoma cells and in cell lines in vitro and in vivo. RESULTS CHD4 was abundantly expressed in EpCAM(+) hepatocellular carcinoma with expression of hepatic stem cell markers and poor prognosis in two independent cohorts. In cell lines, CHD4 knockdown increased chemosensitivity and CHD4 overexpression induced epirubicin chemoresistance. To inhibit the functions of CHD4 that are mediated through histone deacetylase and poly (ADP-ribose) polymerase, we evaluated the effect of the histone deacetylase inhibitor suberohydroxamic acid and the poly (ADP-ribose) polymerase inhibitor AG-014699. Treatment with either suberohydroxamic acid or AG-014699 reduced the number of EpCAM(+) liver cancer stem cells in vitro, and suberohydroxamic acid and AG-014699 in combination successfully inhibited tumor growth in a mouse xenograft model. CONCLUSIONS CHD4 plays a pivotal role in chemoresistance and the maintenance of stemness in liver cancer stem cells and is therefore a good target for the eradication of hepatocellular carcinoma.
Collapse
MESH Headings
- Animals
- Autoantigens/biosynthesis
- Autoantigens/genetics
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Blotting, Western
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Proliferation
- Chromatin Assembly and Disassembly
- Epithelial Cell Adhesion Molecule/biosynthesis
- Epithelial Cell Adhesion Molecule/genetics
- Gene Expression Regulation, Neoplastic
- Hepatectomy
- Humans
- Immunohistochemistry
- Liver/metabolism
- Liver/pathology
- Liver/surgery
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Mi-2 Nucleosome Remodeling and Deacetylase Complex/biosynthesis
- Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics
- Mice
- Mice, Inbred NOD
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Prognosis
- RNA, Neoplasm/genetics
- Retrospective Studies
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Kouki Nio
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan.
| | - Hikari Okada
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | - Mitsumasa Kondo
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | - Takehiro Hayashi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | - Yasumasa Hara
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | - Yoshimoto Nomura
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | - Sha Sha Zeng
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | - Mariko Yoshida
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | - Tomoyuki Hayashi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | - Hajime Sunagozaka
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | - Naoki Oishi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| |
Collapse
|
61
|
Abstract
Neil Theise speaks to Georgia Patey, Commissioning Editor: Neil Theise is a diagnostic liver pathologist, adult stem cell researcher and complexity theorist in New York City, where he is a Professor of Pathology at the Mount Sinai Beth Israel Medical Center of Icahn School of Medicine at Mount Sinai. He received his medical degree from Columbia University College of Physicians and Surgeons, where he also received his training in Anatomic Pathology. Subspecialty training was pursued in gastrointestinal (NYU), liver (Royal Free Hospital) and liver transplant (Mount Sinai, NYC) pathology. His earliest research focus was on defining the premalignant dysplastic nodules in human chronic liver disease. He revised understandings of human liver microanatomy, which in turn, led directly to identification of possible liver stem cell niches and the marrow-to-liver regeneration pathway. He is considered a pioneer of multiorgan adult stem cell plasticity. His publications on these topics in model systems and human liver stem cells have been highlighted on a record five covers of Hepatology.
Collapse
Affiliation(s)
- Neil D Theise
- Departments of Pathology & Medicine (Division of Digestive Diseases), Mount Sinai Beth Israel Medical Center, First Avenue at 16th Street, New York, NY 10003, USA
| |
Collapse
|
62
|
Brunt EM, Paradis V, Sempoux C, Theise ND. Biphenotypic (hepatobiliary) primary liver carcinomas: the work in progress. Hepat Oncol 2015; 2:255-273. [PMID: 30191007 PMCID: PMC6095308 DOI: 10.2217/hep.15.8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent WHO classification for combined hepatocellular-cholangiocarcinoma and recognized stem cell subtypes has increased attention to such tumors; however, the resulting burst of reporting and research indicates that this classification, while provocative, is incomplete for description of the full array of primary liver carcinomas with biphenotypic (hepatobiliary) differentiation. We review the history of such lesions and consider the wider array of such tumors previously described. Mixed hepatobiliary phenotypes and immunophenotypes are found in individual tumors at the tissue level - with architectural and cytologic features supportive of both differentiation states - and at the cellular level, with individual cells that display cytology of one cell type, but immunophenotypically showing mixed expression. Pathobiologic and clinical questions to be answered by future research are suggested.
Collapse
Affiliation(s)
- Elizabeth M Brunt
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Valerie Paradis
- Department of Pathology, Beaujon Hospital, 92118 Clichy, France
| | - Christine Sempoux
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, CH-1011 Lausanne, Switzerland
| | - Neil D Theise
- Departments of Pathology & Medicine, Mount Sinai Beth Israel Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY 10002, USA
| |
Collapse
|
63
|
Cancer stem cells and tumor-associated macrophages: a roadmap for multitargeting strategies. Oncogene 2015; 35:671-82. [PMID: 25961921 DOI: 10.1038/onc.2015.132] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 03/16/2015] [Accepted: 03/20/2015] [Indexed: 12/12/2022]
Abstract
The idea that tumor initiation and progression are driven by a subset of cells endowed with stem-like properties was first described by Rudolf Virchow in 1855. 'Cancer stem cells', as they were termed more than a century later, represent a subset of tumor cells that are able to generate all tumorigenic and nontumorigenic cell types within the malignancy. Although their existence was hypothesized >150 years ago, it was only recently that stem-like cells started to be isolated from different neoplastic malignancies. Interestingly, Virchow, in suggesting a correlation between cancer and the inflammatory microenvironment, also paved the way for the 'Seed and Soil' theory proposed by Paget a few years later. Despite the time that has passed since these two important concepts were suggested, the relationships between Virchow's 'stem-like cells' and Paget's 'soil' are far from being fully understood. One emerging topic is the importance of a stem-like niche in modulating the biological properties of stem-like cancer cells and thus in affecting the response of the tumor to drugs. This review aims to summarize the recent molecular data concerning the multilayered relationship between cancer stem cells and tumor-associated macrophages that form a key component of the tumor microenvironment. We also discuss the therapeutic implications of targeting this synergistic interplay.
Collapse
|
64
|
Pérez-Aguilar B, Vidal CJ, Palomec G, García-Dolores F, Gutiérrez-Ruiz MC, Bucio L, Gómez-Olivares JL, Gómez-Quiroz LE. Acetylcholinesterase is associated with a decrease in cell proliferation of hepatocellular carcinoma cells. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1380-7. [PMID: 25869328 DOI: 10.1016/j.bbadis.2015.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 03/27/2015] [Accepted: 04/02/2015] [Indexed: 01/08/2023]
Abstract
Acetylcholinesterase (AChE), the enzyme that rapidly splits acetylcholine into acetate and choline, presents non-cholinergic functions through which may participate in the control of cell proliferation and apoptosis. These two features are relevant in cancer, particularly in hepatocellular carcinoma (HCC), a very aggressive liver tumor with high incidence and poor prognosis in advanced stages. Here we explored the relation between acetylcholinesterase and HCC growth by testing the influence of AChE on proliferation of Huh-7 and HepG2 cell lines, addressed in monolayer cultures, spheroid formation and human liver tumor samples. Results showed a clear relation in AChE expression and cell cycle progression, an effect which depended on cell confluence. Inhibition of AChE activity led to an increase in cell proliferation, which was associated with downregulation of p27 and cyclins. The fact that Huh-7 and HepG2 cell lines provided similar results lent weight to the relationship of AChE expression with cell cycle progression in hepatoma cell lines at least. Human liver tumor samples exhibited a decrease in AChE activity as compared with normal tissue. The evidence presented herein provides additional support for the proposed tumor suppressor role of AChE, which makes it a potential therapeutic target in therapies against hepatocellular carcinoma.
Collapse
Affiliation(s)
- Benjamín Pérez-Aguilar
- Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, México DF, Mexico; Laboratorio de Fisiología Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, México DF, Mexico
| | - Cecilio J Vidal
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Guillermina Palomec
- Laboratorio de Biomembranas, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, México DF, Mexico
| | | | - María Concepción Gutiérrez-Ruiz
- Laboratorio de Fisiología Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, México DF, Mexico
| | - Leticia Bucio
- Laboratorio de Fisiología Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, México DF, Mexico
| | - José Luis Gómez-Olivares
- Laboratorio de Biomembranas, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, México DF, Mexico.
| | - Luis Enrique Gómez-Quiroz
- Laboratorio de Fisiología Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, México DF, Mexico.
| |
Collapse
|
65
|
Fernekorn U, Hampl J, Weise F, Klett M, Läffert A, Friedel K, Schober A. Microfluidic 3D HepG2 cell culture: Reproducing hepatic tumor gene and protein expression in in vitro scaffolds. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Uta Fernekorn
- Center of Innovation Competence MacroNano®; Technische Universität Ilmenau; Ilmenau Germany
| | - Jörg Hampl
- Center of Innovation Competence MacroNano®; Technische Universität Ilmenau; Ilmenau Germany
| | - Frank Weise
- Center of Innovation Competence MacroNano®; Technische Universität Ilmenau; Ilmenau Germany
| | - Maren Klett
- Center of Innovation Competence MacroNano®; Technische Universität Ilmenau; Ilmenau Germany
| | - Annette Läffert
- Center of Innovation Competence MacroNano®; Technische Universität Ilmenau; Ilmenau Germany
| | - Karin Friedel
- Center of Innovation Competence MacroNano®; Technische Universität Ilmenau; Ilmenau Germany
| | - Andreas Schober
- Center of Innovation Competence MacroNano®; Technische Universität Ilmenau; Ilmenau Germany
| |
Collapse
|
66
|
Chan LH, Luk ST, Ma S. Turning hepatic cancer stem cells inside out--a deeper understanding through multiple perspectives. Mol Cells 2015; 38:202-9. [PMID: 25666349 PMCID: PMC4363719 DOI: 10.14348/molcells.2015.2356] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 01/02/2015] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC), a highly malignant disease and the third leading cause of all cancer mortalities worldwide, often responses poorly to current treatments and results in dismal outcomes due to frequent chemoresistance and tumor relapse. The heterogeneity of HCC is an important attribute of the disease. It is the outcome of many factors, including the cross-talk between tumor cells within the tumor microenvironment and the acquisition and accumulation of genetic and epigenetic alterations in tumor cells. In addition, there is accumulating evidence in recent years to show that the malignancy of HCC can be attributed partly to the presence of cancer stem cell (CSC). CSCs are capable to self-renew, differentiate and initiate tumor formation. The regulation of the stem cell-like properties by several important signaling pathways have been found to endow the tumor cells with an increased level of tumorigenicity, chemoresistance, and metastatic ability. In this review, we will discuss the recent findings on hepatic CSCs, with special emphasis on their putative origins, relationship with hepatitis viruses, regulatory signaling networks, tumor microenvironment, and how these factors control the stemness of hepatic CSCs. We will also discuss some novel therapeutic strategies targeted at hepatic CSCs for combating HCC and perspectives of future investigation.
Collapse
Affiliation(s)
- Lok-Hei Chan
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong
| | - Steve T. Luk
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong
| | - Stephanie Ma
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory for Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
67
|
Chernet BT, Levin M. Transmembrane voltage potential of somatic cells controls oncogene-mediated tumorigenesis at long-range. Oncotarget 2015; 5:3287-306. [PMID: 24830454 PMCID: PMC4102810 DOI: 10.18632/oncotarget.1935] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The microenvironment is increasingly recognized as a crucial aspect of cancer. In contrast and complement to the field's focus on biochemical factors and extracellular matrix, we characterize a novel aspect of host:tumor interaction - endogenous bioelectric signals among non-excitable somatic cells. Extending prior work focused on the bioelectric state of cancer cells themselves, we show for the first time that the resting potentials of distant cells are critical for oncogene-dependent tumorigenesis. In the Xenopus laevis tadpole model, we used human oncogenes such as mutant KRAS to drive formation of tumor-like structures that exhibited overproliferation, increased nuclear size, hypoxia, acidity, and leukocyte attraction. Remarkably, misexpression of hyperpolarizing ion channels at distant sites within the tadpole significantly reduced the incidence of these tumors. The suppression of tumorigenesis could also be achieved by hyperpolarization using native CLIC1 chloride channels, suggesting a treatment modality not requiring gene therapy. Using a dominant negative approach, we implicate HDAC1 as the mechanism by which resting potential changes affect downstream cell behaviors. Based on published data on the voltage-mediated changes of butyrate flux through the SLC5A8 transporter, we present a model linking resting potentials of host cells to the ability of oncogenes to initiate tumorigenesis. Antibiotic data suggest that the relevant butyrate is generated by a native bacterial species, identifying a novel link between the microbiome and cancer that is mediated by alterations in bioelectric signaling.
Collapse
Affiliation(s)
- Brook T Chernet
- Center for Regenerative and Developmental Biology and Department of Biology Tufts University 200 Boston Avenue,Suite 4600 Medford, MA 02155 U.S.A
| | | |
Collapse
|
68
|
Raggi C, Invernizzi P, Andersen JB. Impact of microenvironment and stem-like plasticity in cholangiocarcinoma: molecular networks and biological concepts. J Hepatol 2015; 62:198-207. [PMID: 25220250 DOI: 10.1016/j.jhep.2014.09.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 08/30/2014] [Accepted: 09/03/2014] [Indexed: 12/13/2022]
Abstract
Clinical complexity, anatomic diversity and molecular heterogeneity of cholangiocarcinoma (CCA) represent a major challenge in the assessment of effective targeted therapies. Molecular and cellular mechanisms underlying the diversity of CCA growth patterns remain a key issue of clinical concern. Crucial questions comprise the nature of the CCA-origin, the initial target for cellular transformation as well as the relationship with the cancer stem cells (CSC) concept. Additionally, since CCA often develops in the context of an inflammatory milieu (cirrhosis and cholangitis), the stromal compartment or tumour microenvironment (TME) likely promotes initiation and progression of this malignancy, contributing to its heterogeneity. This review will emphasize the dynamic interplay between stem-like intrinsic and TME-extrinsic pathways, which may represent novel options for multi-targeted therapies in CCA.
Collapse
Affiliation(s)
- Chiara Raggi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy.
| | - Pietro Invernizzi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Jesper B Andersen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
69
|
Frau M, Feo CF, Feo F, Pascale RM. New insights on the role of epigenetic alterations in hepatocellular carcinoma. J Hepatocell Carcinoma 2014; 1:65-83. [PMID: 27508177 PMCID: PMC4918272 DOI: 10.2147/jhc.s44506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Emerging evidence assigns to epigenetic mechanisms heritable differences in gene function that come into being during cell development or via the effect of environmental factors. Epigenetic deregulation is strongly involved in the development of hepatocellular carcinoma (HCC). It includes changes in methionine metabolism, promoter hypermethylation, or increased proteasomal degradation of oncosuppressors, as well as posttranscriptional deregulation by microRNA or messenger RNA (mRNA) binding proteins. Alterations in the methylation of the promoter of methyl adenosyltransferase MAT1A and MAT2A genes in HCC result in decreased S-adenosylmethionine levels, global DNA hypomethylation, and deregulation of signal transduction pathways linked to methionine metabolism and methyl adenosyltransferases activity. Changes in S-adenosylmethionine levels may also depend on MAT1A mRNA destabilization associated with MAT2A mRNA stabilization by specific proteins. Decrease in MAT1A expression has also been attributed to miRNA upregulation in HCC. A complex deregulation of miRNAs is also strongly involved in hepatocarcinogenesis, with up-regulation of different miRNAs targeting oncosuppressor genes and down-regulation of miRNAs targeting genes involved in cell-cycle and signal transduction control. Oncosuppressor gene down-regulation in HCC is also induced by promoter hypermethylation or posttranslational deregulation, leading to proteasomal degradation. The role of epigenetic changes in hepatocarcinogenesis has recently suggested new promising therapeutic approaches for HCC on the basis of the administration of methylating agents, inhibition of methyl adenosyltransferases, and restoration of the expression of tumor-suppressor miRNAs.
Collapse
Affiliation(s)
- Maddalena Frau
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Claudio F Feo
- Department of Clinical and Experimental Medicine, Division of Surgery, University of Sassari, Sassari, Italy
| | - Francesco Feo
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Rosa M Pascale
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| |
Collapse
|