51
|
Salz T, Deng C, Pampo C, Siemann D, Qiu Y, Brown K, Huang S. Histone Methyltransferase hSETD1A Is a Novel Regulator of Metastasis in Breast Cancer. Mol Cancer Res 2014; 13:461-9. [PMID: 25373480 DOI: 10.1158/1541-7786.mcr-14-0389] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Epigenetic alteration is a hallmark of all cancers. Such alterations lead to modulation of fundamental cancer-related functions, such as proliferation, migration, and invasion. In particular, methylation of Histone H3 Lysine 4 (H3K4), a histone mark generally associated with transcriptional activation, is altered during progression of several human cancers. While the depletion of H3K4 demethylases promotes breast cancer metastasis, the effect of H3K4 methyltransferases on metastasis is not clear. Nevertheless, gene duplications in the human SETD1A (hSETD1A) H3K4 methyltransferase are present in almost half of breast cancers. Herein, expression analysis determined that hSETD1A is upregulated in multiple metastatic human breast cancer cell lines and clinical tumor specimens. Ablation of hSETD1A in breast cancer cells led to a decrease in migration and invasion in vitro and to a decrease in metastasis in nude mice. Furthermore, a group of matrix metalloproteinases (including MMP2, MMP9, MMP12, MMP13, and MMP17) were identified which were downregulated upon depletion of hSETD1A and demonstrated a decrease in H3K4me3 at their proximal promoters based on chromatin immunoprecipitation analysis. These results provide evidence for a functional and mechanistic link among hSETD1A, MMPs, and metastasis in breast cancer, thereby supporting an oncogenic role for hSETD1A in cancer. IMPLICATIONS This study reveals that hSETD1A controls tumor metastasis by activating MMP expression and provides an epigenetic link among hSETD1A, MMPs, and metastasis of breast cancer.
Collapse
Affiliation(s)
- Tal Salz
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Changwang Deng
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Christine Pampo
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida
| | - Dietmar Siemann
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida. UF Health Cancer Center, University of Florida College of Medicine, Gainesville, Florida
| | - Yi Qiu
- UF Health Cancer Center, University of Florida College of Medicine, Gainesville, Florida. Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Kevin Brown
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida. UF Health Cancer Center, University of Florida College of Medicine, Gainesville, Florida
| | - Suming Huang
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida. UF Health Cancer Center, University of Florida College of Medicine, Gainesville, Florida.
| |
Collapse
|
52
|
Deb M, Kar S, Sengupta D, Shilpi A, Parbin S, Rath SK, Londhe VA, Patra SK. Chromatin dynamics: H3K4 methylation and H3 variant replacement during development and in cancer. Cell Mol Life Sci 2014; 71:3439-63. [PMID: 24676717 PMCID: PMC11113154 DOI: 10.1007/s00018-014-1605-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 02/11/2014] [Accepted: 03/06/2014] [Indexed: 12/11/2022]
Abstract
The dynamic nature of chromatin and its myriad modifications play a crucial role in gene regulation (expression and repression) during development, cellular survival, homeostasis, ageing, and apoptosis/death. Histone 3 lysine 4 methylation (H3K4 methylation) catalyzed by H3K4 specific histone methyltransferases is one of the more critical chromatin modifications that is generally associated with gene activation. Additionally, the deposition of H3 variant(s) in conjunction with H3K4 methylation generates an intricately reliable epigenetic regulatory circuit that guides transcriptional activity in normal development and homeostasis. Consequently, alterations in this epigenetic circuit may trigger disease development. The mechanistic relationship between H3 variant deposition and H3K4 methylation during normal development has remained foggy. However, recent investigations in the field of chromatin dynamics in various model organisms, tumors, cancer tissues, and cell lines cultured without and with therapeutic agents, as well as from model reconstituted chromatins reveal that there may be different subsets of chromatin assemblage with specific patterns of histone replacement executing similar functions. In this light, we attempt to explain the intricate control system that maintains chromatin structure and dynamics during normal development as well as during tumor development and cancer progression in this review. Our focus is to highlight the contribution of H3K4 methylation-histone variant crosstalk in regulating chromatin architecture and subsequently its function.
Collapse
Affiliation(s)
- Moonmoon Deb
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Swayamsiddha Kar
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Dipta Sengupta
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Arunima Shilpi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Sabnam Parbin
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Sandip K. Rath
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Vedang A. Londhe
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752 USA
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| |
Collapse
|
53
|
Zane L, Sharma V, Misteli T. Common features of chromatin in aging and cancer: cause or coincidence? Trends Cell Biol 2014; 24:686-94. [PMID: 25103681 DOI: 10.1016/j.tcb.2014.07.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 02/06/2023]
Abstract
Age is a major risk factor for cancer. Alterations in DNA methylation, histone modifications, chromatin structure, and epigenetic regulatory mechanisms are prominent hallmarks of both the aging process and cancer. Intriguingly--or possibly coincidentally--several chromatin features are common between aging and cancer. Here we ask whether, and if so how, aging-associated chromatin modifications contribute to tumor susceptibility and tumorigenesis.
Collapse
Affiliation(s)
- Linda Zane
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vivek Sharma
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
54
|
Frameshift mutation of a histone methylation-related gene SETD1B and its regional heterogeneity in gastric and colorectal cancers with high microsatellite instability. Hum Pathol 2014; 45:1674-81. [DOI: 10.1016/j.humpath.2014.04.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/03/2014] [Accepted: 04/09/2014] [Indexed: 12/13/2022]
|
55
|
Benard A, Goossens-Beumer IJ, van Hoesel AQ, de Graaf W, Horati H, Putter H, Zeestraten ECM, van de Velde CJH, Kuppen PJK. Histone trimethylation at H3K4, H3K9 and H4K20 correlates with patient survival and tumor recurrence in early-stage colon cancer. BMC Cancer 2014; 14:531. [PMID: 25047223 PMCID: PMC4223547 DOI: 10.1186/1471-2407-14-531] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/17/2014] [Indexed: 01/09/2023] Open
Abstract
Background Post-translational modification of histone tails by methylation plays an important role in tumorigenesis. In this study, we investigated the nuclear expression of H3K4me3, H3K9me3 and H4K20me3 in early-stage colon cancer in relation to clinical outcome. Methods Tumor tissue cores of 254 TNM stage I-III colorectal cancer patients were immunohistochemically stained for H3K4me3, H3K9me3 and H4K20me3 and scored using the semi-automated Ariol system. Cox proportional hazard trend analyses were performed to assess the prognostic value of the combined markers with respect to patient survival and tumor recurrence. Results The histone methylation markers only showed prognostic value in early-stage (TNM stage I and II) colon cancer. Therefore, only this patient set (n = 121) was used for further statistical analyses. Low nuclear expression of H3K4me3, and high expression of H3K9me3 and H4K20me3 were associated with good prognosis. In combined marker analyses, the patient group showing most favorable expression (low H3K4me3, high H3K9me3 and high H4K20me3) was associated with the best prognosis. Multivariate trend analyses showed significantly increased hazard ratios (HR) for each additional marker showing unfavorable expression, as compared to the “all favorable” reference group. The HR for disease-free survival was 3.81 (1.72-8.45; p = 0.001), for locoregional recurrence-free survival 2.86 (1.59-5.13; p < 0.001) and for distant recurrence-free survival 2.94 (1.66-5.22; p < 0.001). Conclusions Combined nuclear expression of histone modifications H3K4me3, H3K9me3 and H4K20me3 is prognostic in early-stage colon cancer. The combination of expression of the three histone modifications provides better stratification of patient groups as compared to the individual markers and provides a good risk assessment for each patient group.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Peter J K Kuppen
- Department of Surgery, K6-R, Leiden University Medical Center, P,O, Box 9600, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
56
|
Histone deacetylase inhibitors and epigenetic modifications as a novel strategy in renal cell carcinoma. Cancer J 2014; 19:333-40. [PMID: 23867515 DOI: 10.1097/ppo.0b013e3182a09e07] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent investigations of renal cell carcinoma (RCC) have revealed several epigenetic modifications, as well as alterations in the genes and enzymes that regulate these changes. Preclinical models have revealed that histone gene modifiers and epigenetic alterations may play a critical role in RCC tumorigenesis. Specific changes in DNA methylation and mutations of histone modifiers have been identified and may be associated with an aggressive phenotype. In addition, the potential of reversing the effects of these enzymes and hence reversing the cellular epigenetic landscape to a "normal phenotype" have led to an increasing interest in developing targeted chromatin remodeling agents. However, the translation of the understanding of these changes to the clinic for the treatment of RCC has posed significant challenges, partly due to tumor heterogeneity. This review describes the aberrant histone and DNA alterations recently reported in RCC and highlights the potential targeted chromatin remodeling therapies in the management of this disease.
Collapse
|
57
|
Chen QW, Zhu XY, Li YY, Meng ZQ. Epigenetic regulation and cancer (review). Oncol Rep 2013; 31:523-32. [PMID: 24337819 DOI: 10.3892/or.2013.2913] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/04/2013] [Indexed: 11/06/2022] Open
Abstract
'Epigenetics' is defined as the inheritable changes in gene expression with no alterations in DNA sequences. Epigenetics is a rapidly expanding field, and the study of epigenetic regulation in cancer is emerging. Disruption of the epigenome is a fundamental mechanism in cancer, and several epigenetic drugs have been proven to prolong survival and to be less toxic than conventional chemotherapy. Promising results from combination clinical trials with DNA methylation inhibitors and histone deacetylase inhibitors have recently been reported, and data are emerging that describe molecular determinants of clinical responses. Despite significant advances, challenges remain, including a lack of predictive markers, unclear mechanisms of response and resistance, and rare responses in solid tumors. Preclinical studies are ongoing with novel classes of agents that target various components of the epigenetic machinery. In the present review, examples of studies that demonstrate the role of epigenetic regulation in human cancers with the focus on histone modifications and DNA methylation, and the recent clinical and translational data in the epigenetics field that have potential in cancer therapy are discussed.
Collapse
Affiliation(s)
- Q W Chen
- Department of Integrated Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - X Y Zhu
- Department of Integrated Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Y Y Li
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Z Q Meng
- Department of Integrated Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
58
|
Ramakrishnan S, Ellis L, Pili R. Histone modifications: implications in renal cell carcinoma. Epigenomics 2013; 5:453-62. [PMID: 23895657 DOI: 10.2217/epi.13.40] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In 2012, an estimated 64,770 men and women were diagnosed with malignancy of the kidney and renal pelvis, of which 13,570 succumbed to their disease. Common genetic aberrations in renal cell carcinomas (RCCs) include loss of function of the VHL gene in clear-cell RCC, overexpression of the c-MET gene in papillary RCC type I, deficiency in the FH gene in papillary RCC type II and loss of heterozygozity of the BHD gene in chromophobe RCC. Recent studies illustrate epigenetic silencing of VHL, as well as alterations in histone modifications and their governing enzymes. The possibility of reversing these epigenetic marks has resulted in efforts to target these changes by utilizing inhibitors of HDACs, DNA methyltransferases and, recently, histone methyltransferases in preclinical and clinical studies. This article focuses on potential therapeutic interventions, and the implications of histone modifications and related enzyme alterations in RCC.
Collapse
Affiliation(s)
- Swathi Ramakrishnan
- Roswell Park Cancer Institute, Department of Cancer Pathology & Prevention, Grace Cancer Drug Center, Buffalo, NY, USA
| | | | | |
Collapse
|
59
|
Chen YW, Kao SY, Wang HJ, Yang MH. Histone modification patterns correlate with patient outcome in oral squamous cell carcinoma. Cancer 2013; 119:4259-67. [DOI: 10.1002/cncr.28356] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/13/2013] [Accepted: 08/05/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Ya-Wei Chen
- Division of Oral and Maxillofacial Surgery; Department of Stomatology; Taipei Veterans General Hospital; Taipei Taiwan
- Faculty of Dentistry; School of Dentistry; National Yang-Ming University; Taipei Taiwan
- Institute of Clinical Medicine; National Yang-Ming University; Taipei Taiwan
| | - Shou-Yen Kao
- Division of Oral and Maxillofacial Surgery; Department of Stomatology; Taipei Veterans General Hospital; Taipei Taiwan
- Division of Hematology-Oncology; Department of Medicine; Taipei Veterans General Hospital; Taipei Taiwan
| | - Hsiao-Jung Wang
- Institute of Clinical Medicine; National Yang-Ming University; Taipei Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine; National Yang-Ming University; Taipei Taiwan
- Division of Hematology-Oncology; Department of Medicine; Taipei Veterans General Hospital; Taipei Taiwan
- Cancer Research Center; National Yang-Ming University; Taipei Taiwan
| |
Collapse
|
60
|
Göke F, Franzen A, Menon R, Goltz D, Kirsten R, Boehm D, Vogel W, Göke A, Scheble V, Ellinger J, Gerigk U, Fend F, Wagner P, Schroeck A, Perner S. Rationale for treatment of metastatic squamous cell carcinoma of the lung using fibroblast growth factor receptor inhibitors. Chest 2013; 142:1020-1026. [PMID: 22499828 DOI: 10.1378/chest.11-2943] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND We previously identified amplification of the fibroblast growth factor receptor 1 gene (FGFR1) as a potential therapeutic target for small-molecule inhibitor therapy in squamous cell lung cancer (L-SCC). Currently, clinical phase I trials are underway to examine whether patients with FGFR1-amplified L-SCC benefit from a targeted therapy approach using small-molecule inhibitors. Because most patients with lung cancer present with metastatic disease, we investigated whether lymph node metastases in L-SCC share the FGFR1 amplification status of their corresponding primary tumor. METHODS The study cohort consisted of 72 patients with L-SCC, 39 with regional lymph node metastases. Tissue microarrays were constructed from formalin-fixed, paraffin-embedded tissue of the primary tumors and, where present, of the corresponding lymph node metastasis. A biotin-labeled target probe spanning the FGFR1 locus (8p11.22-23) was used to determine the FGFR1 amplification status by fluorescence in situ hybridization. RESULTS FGFR1 amplification was detected in 16% (12 of 72) of all primary L-SCCs. In metastatic tumors, 18% (seven of 39) of the lymph node metastases displayed FGFR1 amplification with an exact correlation of FGFR1 amplification status between tumor and metastatic tissue. CONCLUSIONS FGFR1 amplification is a common genetic event occurring at a frequency of 16% in L-SCCs. Moreover, lymph node metastases derived from FGFR1-amplified L-SCCs also exhibit FGFR1 amplification. Therefore, we suggest that the FGFR1 amplification is a clonal event in tumor progression. Beyond this biologically relevant observation, the findings carry potential therapeutic implications in that small-molecule inhibitors may be applicable to the treatment of a subset of patients with metastatic L-SCC.
Collapse
Affiliation(s)
- Friederike Göke
- Institute of Pathology, Affiliated Malteser Hospital, University Hospital of Bonn, Bonn, Germany; Institute of Prostate Cancer Research, Affiliated Malteser Hospital, University Hospital of Bonn, Bonn, Germany
| | - Alina Franzen
- Institute of Pathology, Affiliated Malteser Hospital, University Hospital of Bonn, Bonn, Germany; Institute of Prostate Cancer Research, Affiliated Malteser Hospital, University Hospital of Bonn, Bonn, Germany
| | - Roopika Menon
- Institute of Pathology, Affiliated Malteser Hospital, University Hospital of Bonn, Bonn, Germany; Institute of Prostate Cancer Research, Affiliated Malteser Hospital, University Hospital of Bonn, Bonn, Germany
| | - Diane Goltz
- Institute of Pathology, Affiliated Malteser Hospital, University Hospital of Bonn, Bonn, Germany
| | - Robert Kirsten
- Institute of Prostate Cancer Research, Affiliated Malteser Hospital, University Hospital of Bonn, Bonn, Germany
| | - Diana Boehm
- Institute of Prostate Cancer Research, Affiliated Malteser Hospital, University Hospital of Bonn, Bonn, Germany
| | - Wenzel Vogel
- Institute of Prostate Cancer Research, Affiliated Malteser Hospital, University Hospital of Bonn, Bonn, Germany
| | - Antonia Göke
- Institute of Prostate Cancer Research, Affiliated Malteser Hospital, University Hospital of Bonn, Bonn, Germany
| | - Veit Scheble
- Department of Hematology and Oncology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Joerg Ellinger
- Department of Urology, Affiliated Malteser Hospital, University Hospital of Bonn, Bonn, Germany
| | - Ulrich Gerigk
- Department of Thorax Surgery, Affiliated Malteser Hospital, University Hospital of Bonn, Bonn, Germany
| | - Falko Fend
- Institute of Pathology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Patrick Wagner
- Division of Surgical Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Andreas Schroeck
- Institute of Prostate Cancer Research, Affiliated Malteser Hospital, University Hospital of Bonn, Bonn, Germany; Department of Head and Neck Surgery, Affiliated Malteser Hospital, University Hospital of Bonn, Bonn, Germany
| | - Sven Perner
- Institute of Pathology, Affiliated Malteser Hospital, University Hospital of Bonn, Bonn, Germany; Institute of Prostate Cancer Research, Affiliated Malteser Hospital, University Hospital of Bonn, Bonn, Germany.
| |
Collapse
|
61
|
Young LC, McDonald DW, Hendzel MJ. Kdm4b histone demethylase is a DNA damage response protein and confers a survival advantage following γ-irradiation. J Biol Chem 2013; 288:21376-21388. [PMID: 23744078 DOI: 10.1074/jbc.m113.491514] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
DNA damage evokes a complex and highly coordinated DNA damage response (DDR) that is integral to the suppression of genomic instability. Double-strand breaks (DSBs) are considered the most deleterious form damage. Evidence suggests that trimethylation of histone H3 lysine 9 (H3K9me3) presents a barrier to DSB repair. Also, global levels of histone methylation are clinically predictive for several tumor types. Therefore, demethylation of H3K9 may be an important step in the repair of DSBs. The KDM4 subfamily of demethylases removes H3K9 tri- and dimethylation and contributes to the regulation of cellular differentiation and proliferation; mutation or aberrant expression of KDM4 proteins has been identified in several human tumors. We hypothesize that members of the KDM4 subfamily may be components of the DDR. We found that Kdm4b-enhanced GFP (EGFP) and KDM4D-EGFP were recruited rapidly to DNA damage induced by laser micro-irradiation. Focusing on the clinically relevant Kdm4b, we found that recruitment was dependent on poly(ADP-ribose) polymerase 1 activity as well as Kdm4b demethylase activity. The Kdm4 proteins did not measurably accumulate at γ-irradiation-induced γH2AX foci. Nevertheless, increased levels of Kdm4b were associated with decreased numbers of γH2AX foci 6 h after irradiation as well as increased cell survival. Finally, we found that levels of H3K9me2 and H3K9me3 were decreased at early time points after 2 gray of γ-irradiation. Taken together, these data demonstrate that Kdm4b is a DDR protein and that overexpression of Kdm4b may contribute to the failure of anti-cancer therapy that relies on the induction of DNA damage.
Collapse
Affiliation(s)
- Leah C Young
- From the Cross Cancer Institute and the Department of Experimental Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Darin W McDonald
- From the Cross Cancer Institute and the Department of Experimental Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Michael J Hendzel
- From the Cross Cancer Institute and the Department of Experimental Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada.
| |
Collapse
|
62
|
Young LC, Hendzel MJ. The oncogenic potential of Jumonji D2 (JMJD2/KDM4) histone demethylase overexpression. Biochem Cell Biol 2012; 91:369-77. [PMID: 24219278 DOI: 10.1139/bcb-2012-0054] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Jumonji D2 proteins (JMJD2/KDM4) function to demethylate di- and trimethylated (me2/3) histone 3 lysine 9 (H3K9me2/3) and H3K36me3. Knockout mouse models for Kdm4b and Kdm4d have not resulted in gross abnormalities, while mouse models for Kdm4a and Kdm4c have not been reported. However, the KDM4 subfamily of demethylases are overexpressed in several tumor types. Overexpression of KDM4 proteins alters transcription and chromatin remodeling, driving cellular proliferation, anchorage-independent growth, invasion, and migration. Increased proliferation occurs through KDM4-mediated modification of cell cycle timing, as well as through increased numbers of replication forks. Recent evidence also suggests that KDM4C overexpression contributes to the maintenance of a pluripotent state. Together these data suggest that overexpression of KDM4 proteins induces numerous oncogenic effects.
Collapse
Affiliation(s)
- Leah C Young
- Cross Cancer Institute and the Department of Experimental Oncology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | | |
Collapse
|
63
|
Rogenhofer S, Miersch H, Göke F, Kahl P, Wieland WF, Hofstädter F, Kristiansen G, von Ruecker A, Müller SC, Ellinger J. Histone methylation defines an epigenetic entity in penile squamous cell carcinoma. J Urol 2012; 189:1117-22. [PMID: 22999995 DOI: 10.1016/j.juro.2012.08.221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE Earlier studies indicate that epigenetics contribute to the pathogenesis of penile squamous cell carcinoma. Histone methylation patterns are frequently altered during carcinogenesis. Therefore, we investigated the methylation pattern of the histones H3K4, H3K9 and H3K27 in penile carcinoma and normal tissue. MATERIALS AND METHODS A tissue microarray was constructed with 65 penile carcinomas, 6 metastatic lesions and 30 control tissues. Global histone methylation was assessed using immunohistochemistry. RESULTS Global levels of H3K4me1, H3K9me1, H3K9me2, H3K27me2 and H3K27me3 were decreased, whereas H3K9me3 was increased in penile carcinoma. Histone methylation levels defined an epigenetic entity that allowed accurate differentiation of cancer and normal samples. We observed no correlation of histone methylation levels with clinicopathological parameters or patient outcome. CONCLUSIONS The description of a definite epigenetic entity in penile carcinoma provides a rationale for testing epigenetic agents in patients with metastatic disease.
Collapse
Affiliation(s)
- Sebastian Rogenhofer
- Klinik und Poliklinik für Urologie und Kinderurologie, Universitätsklinikum Bonn, Bonn, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Protzel C, Maruschke M, Hakenberg OW. Epidemiology, Aetiology, and Pathogenesis of Renal Cell Carcinoma. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.eursup.2012.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
65
|
Jonasch E, Futreal A, Davis I, Bailey S, Kim WY, Brugarolas J, Giaccia A, Kurban G, Pause A, Frydman J, Zurita A, Rini BI, Sharma P, Atkins M, Walker C, Rathmell WK. State of the science: an update on renal cell carcinoma. Mol Cancer Res 2012; 10:859-80. [PMID: 22638109 PMCID: PMC3399969 DOI: 10.1158/1541-7786.mcr-12-0117] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Renal cell carcinomas (RCC) are emerging as a complex set of diseases that are having a major socioeconomic impact and showing a continued rise in incidence throughout the world. As the field of urologic oncology faces these trends, several major genomic and mechanistic discoveries are altering our core understanding of this multitude of cancers, including several new rare subtypes of renal cancers. In this review, these new findings are examined and placed in the context of the well-established association of clear cell RCC (ccRCC) with mutations in the von Hippel-Lindau (VHL) gene and resultant aberrant hypoxia inducible factor (HIF) signaling. The impact of novel ccRCC-associated genetic lesions on chromatin remodeling and epigenetic regulation is explored. The effects of VHL mutation on primary ciliary function, extracellular matrix homeostasis, and tumor metabolism are discussed. Studies of VHL proteostasis, with the goal of harnessing the proteostatic machinery to refunctionalize mutant VHL, are reviewed. Translational efforts using molecular tools to elucidate discriminating features of ccRCC tumors and develop improved prognostic and predictive algorithms are presented, and new therapeutics arising from the earliest molecular discoveries in ccRCC are summarized. By creating an integrated review of the key genomic and molecular biological disease characteristics of ccRCC and placing these data in the context of the evolving therapeutic landscape, we intend to facilitate interaction among basic, translational, and clinical researchers involved in the treatment of this devastating disease, and accelerate progress toward its ultimate eradication.
Collapse
Affiliation(s)
| | | | - Ian Davis
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC
| | - Sean Bailey
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC
| | - William Y. Kim
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC
| | | | | | | | | | | | | | - Brian I. Rini
- Cleveland Clinic Taussig Cancer Center, Cleveland, OH
| | - Pam Sharma
- University of Texas-Houston Medical Center, Houston, TX
| | | | - Cheryl Walker
- University of Texas-Houston Medical Center, Houston, TX
| | | |
Collapse
|
66
|
Henrique R, Luís AS, Jerónimo C. The epigenetics of renal cell tumors: from biology to biomarkers. Front Genet 2012; 3:94. [PMID: 22666228 PMCID: PMC3364466 DOI: 10.3389/fgene.2012.00094] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 05/09/2012] [Indexed: 12/22/2022] Open
Abstract
Renal cell tumors (RCT) collectively constitute the third most common type of genitourinary neoplasms, only surpassed by prostate and bladder cancer. They comprise a heterogeneous group of neoplasms with distinctive clinical, morphological, and genetic features. Epigenetic alterations are a hallmark of cancer cells and their role in renal tumorigenesis is starting to emerge. Aberrant DNA methylation, altered chromatin remodeling/histone onco-modifications and deregulated microRNA expression not only contribute to the emergence and progression of RCTs, but owing to their ubiquity, they also constitute a promising class of biomarkers tailored for disease detection, diagnosis, assessment of prognosis, and prediction of response to therapy. Moreover, due to their dynamic and reversible properties, those alterations represent a target for epigenetic-directed therapies. In this review, the current knowledge about epigenetic mechanisms and their altered status in RCT is summarized and their envisaged use in a clinical setting is also provided.
Collapse
Affiliation(s)
- Rui Henrique
- Cancer Epigenetics Group, Research Center of the Portuguese Oncology Institute - Porto, Rua Dr. António Bernardino de Almeida Porto, Portugal
| | | | | |
Collapse
|
67
|
Abstract
This article focuses on the epigenetic alterations of aberrant promoter hypermethylation of genes, and histone modifications or RNA interference in cancer cells. Current knowledge of the hypermethylation of allele(s) in classical tumor suppressor genes in inherited and sporadic cancer, candidate tumor suppressor and other cancer genes is summarized gene by gene. Global and array-based studies of tumor cell hypermethylation are discussed. The importance of standardization of scoring of the methylation status of a gene is highlighted. The histone marks associated with hypermethylated genes, and the miRNAs with dysregulated expression, in kidney or bladder tumor cells are also discussed. Kidney cancer has the highest mortality rate of the genito-urinary cancers. There are management issues associated with the high recurrence rate of superficial bladder cancer, while muscle-invasive bladder cancer has a poor prognosis. These clinical problems are the basis for the translational application of gene hypermethylation in the diagnosis and prognosis of kidney and bladder cancer.
Collapse
Affiliation(s)
- Amanda M Hoffman
- Departments of Surgical Oncology & Pathology, W350, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | |
Collapse
|
68
|
Behbahani TE, Kahl P, von der Gathen J, Heukamp LC, Baumann C, Gütgemann I, Walter B, Hofstädter F, Bastian PJ, von Ruecker A, Müller SC, Rogenhofer S, Ellinger J. Alterations of global histone H4K20 methylation during prostate carcinogenesis. BMC Urol 2012; 12:5. [PMID: 22413846 PMCID: PMC3323457 DOI: 10.1186/1471-2490-12-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/13/2012] [Indexed: 04/18/2023] Open
Abstract
Background Global histone modifications have been implicated in the progression of various tumour entities. Our study was designed to assess global methylation levels of histone 4 lysine 20 (H4K20me1-3) at different stages of prostate cancer (PCA) carcinogenesis. Methods Global H4K20 methylation levels were evaluated using a tissue microarray in patients with clinically localized PCA (n = 113), non-malignant prostate disease (n = 27), metastatic hormone-naive PCA (mPCA, n = 30) and castration-resistant PCA (CRPC, n = 34). Immunohistochemistry was performed to assess global levels of H4K20 methylation levels. Results Similar proportions of the normal, PCA, and mPCA prostate tissues showed strong H4K20me3 staining. CRPC tissue analysis showed the weakest immunostaining levels of H4K20me1 and H4K20me2, compared to other prostate tissues. H4K20me2 methylation levels indicated significant differences in examined tissues except for normal prostate versus PCA tissue. H4K20me1 differentiates CRPC from other prostate tissues. H4K20me1 was significantly correlated with lymph node metastases, and H4K20me2 showed a significant correlation with the Gleason score. However, H4K20 methylation levels failed to predict PSA recurrence after radical prostatectomy. Conclusions H4K20 methylation levels constitute valuable markers for the dynamic process of prostate cancer carcinogenesis.
Collapse
Affiliation(s)
- Turang E Behbahani
- Klinik und Poliklinik für Urologie und Kinderurologie, Universitätsklinikum Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
High expression of trimethylated histone H3 lysine 4 is associated with poor prognosis in hepatocellular carcinoma. Hum Pathol 2012; 43:1425-35. [PMID: 22406368 DOI: 10.1016/j.humpath.2011.11.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 10/30/2011] [Accepted: 11/02/2011] [Indexed: 12/21/2022]
Abstract
Tumor-associated epigenetic alterations including DNA methylation and histone modifications are important determinants in the initiation and progression of hepatocellular cancer (HCC) and represent promising biomarkers and therapeutic targets. Locus-specific trimethylation of histone H3 lysine 4 (H3K4me) is a well-known modification linked to the enhanced transcriptional expression of many genes activated in HCC. Our aim was to assess the cellular expression pattern of H3K4me3 in HCC and its association with clinicopathologic variables and outcome. Expression of H3K4me3 and the histone methyltransferase (HMT) SET and MYND domain-containing protein 3 (SMYD3) was studied by Western blotting and immunohistochemistry in cell lines and tumor tissue microarray from a well-characterized series of HCC patients (n = 168). The optimal cut-point of H3K4me3 expression for prognosis was determined by the X-tile program. The prognostic significance was evaluated using Kaplan-Meier survival estimates and log-rank tests. Tumor tissue microarray from another independent HCC patients cohort (n = 147) was used for validation studies. Expression of H3K4me3 and SMYD3 were enhanced in HCC cell lines. In tumor specimens, enhanced expression of H3K4me3 was correlated with reduced overall survival (P < .0001), especially in early-stage HCC patients (TNM I/II). Furthermore, both univariate and multivariate analyses revealed that H3K4me3 level was a significant and independent predictor of poor survival (hazard ratio, 3.592; 95% confidence interval, 2.302-5.605). In addition, H3K4m3 expression was positively correlated with SMYD3 expression in both testing and validation cohorts (P < .0001). In conclusion, H3K4me3 level defines unrecognized subsets of HCC patients with distinct epigenetic phenotype and clinical outcome and can thus be a novel predictor for poor prognosis of HCC patients, especially at TNM I/II stage.
Collapse
|
70
|
Ellinger J, Kahl P, von der Gathen J, Heukamp LC, Gütgemann I, Walter B, Hofstädter F, Bastian PJ, von Ruecker A, Müller SC, Rogenhofer S. Global Histone H3K27 Methylation Levels are Different in Localized and Metastatic Prostate Cancer. Cancer Invest 2012; 30:92-7. [DOI: 10.3109/07357907.2011.636117] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
71
|
Cho HS, Shimazu T, Toyokawa G, Daigo Y, Maehara Y, Hayami S, Ito A, Masuda K, Ikawa N, Field HI, Tsuchiya E, Ohnuma SI, Ponder BA, Yoshida M, Nakamura Y, Hamamoto R. Enhanced HSP70 lysine methylation promotes proliferation of cancer cells through activation of Aurora kinase B. Nat Commun 2012; 3:1072. [PMID: 22990868 PMCID: PMC3658001 DOI: 10.1038/ncomms2074] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 08/20/2012] [Indexed: 01/17/2023] Open
Abstract
Although heat-shock protein 70 (HSP70), an evolutionarily highly conserved molecular chaperone, is known to be post-translationally modified in various ways such as phosphorylation, ubiquitination and glycosylation, physiological significance of lysine methylation has never been elucidated. Here we identify dimethylation of HSP70 at Lys-561 by SETD1A. Enhanced HSP70 methylation was detected in various types of human cancer by immunohistochemical analysis, although the methylation was barely detectable in corresponding non-neoplastic tissues. Interestingly, methylated HSP70 predominantly localizes to the nucleus of cancer cells, whereas most of the HSP70 protein locates to the cytoplasm. Nuclear HSP70 directly interacts with Aurora kinase B (AURKB) in a methylation-dependent manner and promotes AURKB activity in vitro and in vivo. We also find that methylated HSP70 has a growth-promoting effect in cancer cells. Our findings demonstrate a crucial role of HSP70 methylation in human carcinogenesis.
Collapse
Affiliation(s)
- Hyun-Soo Cho
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo
108-8639, Japan
- These authors contributed equally to this work
| | - Tadahiro Shimazu
- Chemical Genomics Research Group, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako
351-0198, Japan
- These authors contributed equally to this work
| | - Gouji Toyokawa
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo
108-8639, Japan
- Department of Surgery and Science, Graduate School of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka
812-8582, Japan
| | - Yataro Daigo
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo
108-8639, Japan
- Department of Medical Oncology, Shiga University of Medical Science, Otsu
520-2192, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka
812-8582, Japan
| | - Shinya Hayami
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo
108-8639, Japan
| | - Akihiro Ito
- Chemical Genomics Research Group, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako
351-0198, Japan
| | - Ken Masuda
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo
108-8639, Japan
| | - Noriko Ikawa
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo
108-8639, Japan
| | - Helen I. Field
- Department of Genetics, University of Cambridge, Downing Street, Cambridge
CB2 3EH, UK
| | - Eiju Tsuchiya
- Department of Pathology, Saitama Cancer Center, 818 Komuro, Inamachi, Kita-Adachi, Saitama
362-0806, Japan
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Kanagawa
241-0815, Japan
| | - Shin-ichi Ohnuma
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London
EC1V 9EL, UK
| | - Bruce A.J. Ponder
- Department of Oncology, Cancer Research UK Cambridge Research Institute, University of Cambridge, Robinson Way, Cambridge
CB2 0RE, UK
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako
351-0198, Japan
| | - Yusuke Nakamura
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo
108-8639, Japan
- Section of Hematology/Oncology, The University of Chicago, 900 E 57th Street, KCBD6126, Chicago, Illinois
60637, USA
| | - Ryuji Hamamoto
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo
108-8639, Japan
- Department of Oncology, Cancer Research UK Cambridge Research Institute, University of Cambridge, Robinson Way, Cambridge
CB2 0RE, UK
| |
Collapse
|
72
|
Jerónimo C, Henrique R. Epigenetic biomarkers in urological tumors: A systematic review. Cancer Lett 2011; 342:264-74. [PMID: 22198482 DOI: 10.1016/j.canlet.2011.12.026] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/14/2011] [Accepted: 12/16/2011] [Indexed: 01/23/2023]
Abstract
Prostate, bladder, kidney and testis cancers, the most common genitourinary (GU) neoplasms, are generally clinically silent at their earliest stages when curative treatment is most likely successful. However, there are no consensual guidelines for GU cancer screening and available methods are characterized by suboptimal sensitivity and specificity. Moreover, standard clinical and pathological parameters meet with important limitations in the assessment of prognosis in an individual basis. Herein, we focus on the development of epigenetic-based GU cancer biomarkers, which have emerged from exploratory studies in recent years and that hold the promise to revolutionize the clinical management of GU cancer patients.
Collapse
Affiliation(s)
- Carmen Jerónimo
- Cancer Epigenetics Group, Research Center of the Portuguese Oncology Institute, Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; Department of Genetics, Portuguese Oncology Institute, Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto, Largo Prof. Abel Salazar 2, 4099-003 Porto, Portugal.
| | | |
Collapse
|
73
|
Behbahani TE, Thierse C, Baumann C, Holl D, Bastian PJ, von Ruecker A, Müller SC, Ellinger J, Hauser S. Tyrosine kinase expression profile in clear cell renal cell carcinoma. World J Urol 2011; 30:559-65. [PMID: 21969129 DOI: 10.1007/s00345-011-0767-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 09/20/2011] [Indexed: 10/17/2022] Open
Abstract
PURPOSE To profile different tyrosine kinase (TK) expression patterns in clear cell renal carcinoma (ccRCC). METHODS We analysed mRNA expression levels of 89 receptor and non-receptor TK in corresponding cancer and normal renal tissue from 5 patients with ccRCC using the TaqMan Low-Density Array technology. In order to confirm aberrant TK expressions, a subsequent analysis of 25 ccRCC and corresponding normal renal tissues was performed, applying quantitative real-time PCR. To confirm mRNA expression levels on protein level, we studied ERBB4 and HCK using immunohistochemistry. RESULTS A total of 12 TK were significantly upregulated in ccRCC (ABL2, FLT1, BTK, HCK, JAK3, CSF1R, MET, JAK1, MATK, PTPRC, FYN and CSK), coherently 7 TK demonstrated a down-regulation (ERBB4, PDGFRA, NRTK3, SYK, ERBB2, FGFR3 and PTK7). These findings were validated by the utilization of RT-PCR for ABL2, FLT1 BTK, HCK, JAK3, CSF1R, MET, JAK1, MATK and vice versa for ERBB4 and PDGFRA. Immunohistochemistry revealed ERBB4 expression to be significantly lower in ccRCC in comparison to papillary RCC, chromophobe RCC, renal oncocytoma and normal renal tissue (P < 0.001). HCK protein expression was reduced in ccRCC in contrast to papillary RCC (P < 0.001) or oncocytoma (P = 0.023), but similar to chromphobe RCC (P = 0.470), sarcomatoid RCC (P = 0.754) and normal renal tissue (P = 0.083). Neither ERBB4 nor HCK were correlated (P > 0.05) with clinical-pathological parameters. CONCLUSION TK constitute valuable targets for pharmaceutical anti-cancer therapy. ERBB4 and HCK depict significantly lower expression levels in renal cancer tissues.
Collapse
Affiliation(s)
- Turang E Behbahani
- Klinik und Poliklinik für Urologie und Kinderurologie, Universitätsklinikum Bonn, Sigmund-Freud-Strasse 25, Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Nakazawa T, Kondo T, Ma D, Niu D, Mochizuki K, Kawasaki T, Yamane T, Iino H, Fujii H, Katoh R. Global histone modification of histone H3 in colorectal cancer and its precursor lesions. Hum Pathol 2011; 43:834-42. [PMID: 21917293 DOI: 10.1016/j.humpath.2011.07.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 07/11/2011] [Accepted: 07/21/2011] [Indexed: 01/01/2023]
Abstract
Chromatin remodeling through histone modification is an important mechanism of epigenetic gene dysregulation in human cancers. However, little is known about global alteration of histone status during tumorigenesis and cancer progression. Histone H3 status was examined in benign and malignant colorectal tumors by immunohistochemistry and Western blotting. For immunohistochemical evaluation, 4 anti-histone H3 antibodies, specific to dimethylation at lysine 4 (H3K4me2), acetylation at lysine 9 (H3K9ac), dimethylation at lysine 9 (H3K9me2), and trimethylation at lysine 27 (H3K27me3), were used. On immunohistochemistry, H3K4me2, H3K9ac, and H3K27me3 showed no significant changes between normal and colorectal tumors. On the other hand, the global level of H3K9me2 was distinctly higher in neoplastic cells (adenoma and adenocarcinoma) than in normal glandular cells. In addition, it was significantly higher in adenocarcinoma than in adenoma. Correspondingly, Western blotting confirmed that H3K9me2 expression was significantly higher in adenocarcinomas than in normal colorectal mucosa. No alteration of H3K9me2 was observed with tumor differentiation and with the histological subtypes of colorectal cancers. These results suggest that aberration of the global H3K9me2 level is an important epigenetic event in colorectal tumorigenesis and carcinogenesis involved with gene regulation in neoplastic cells through chromatin remodeling.
Collapse
Affiliation(s)
- Tadao Nakazawa
- Department of Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Current World Literature. Curr Opin Support Palliat Care 2011; 5:297-305. [DOI: 10.1097/spc.0b013e32834a76ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
76
|
Rogenhofer S, Kahl P, Mertens C, Hauser S, Hartmann W, Büttner R, Müller SC, von Ruecker A, Ellinger J. Global histone H3 lysine 27 (H3K27) methylation levels and their prognostic relevance in renal cell carcinoma. BJU Int 2011; 109:459-65. [PMID: 21810159 DOI: 10.1111/j.1464-410x.2011.10278.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To evaluate if histone H3 lysine 27 (H3K27) methylation plays a role in renal cell carcinoma (RCC) tissue and whether its expression is a predictor of cancer recurrence in RCC. MATERIALS AND METHODS A tissue microarray (TMA) with 193 RCC specimens (comprising 142 clear-cell, 31 papillary, 10 chromophobe and 10 sarcomatoid RCC), 10 oncocytoma tissue specimens and a TMA with 30 benign renal tissue samples were stained with antibodies against H3K27-monomethyl (H3K27me1), H3K27-dimethyl (H3K27me2) and H3K27-trimethyl (H3K27me3). Sections were scored according to staining intensity and the proportion of epithelial cells showing nuclear staining. H3K27 methylation levels were correlated with established clinical-pathological variables (tumour-node-metastasis [TNM] stage, Fuhrman grade) and progression-free/cancer-specific survival. RESULTS H3K27me1/-me2/-me3 staining was significantly more intense in papillary RCC then in clear-cell RCC. H3K27me3 levels were higher in oncocytoma than in RCC. H3K27me1/-me2/-me3 methylation levels were inversely correlated with Fuhrman grading and pT-stage. Global H3K27me1/-me2/-me3 methylation levels were always higher in benign renal tissue than in RCC with tumour relapse (H3K27me1 P < 0.001, H3K27me2 P= 0.032, H3K27me3 P= 0.004). Progression-free survival was shorter in patients with lower levels of H3K27me1 and H3K27me3 in the univariate analysis. The newly created H3K27me score (combining the staining levels of the single modifications) was a significant and independent predictor of RCC progression-free survival. CONCLUSION The present study on H3K27-methylation supports the hypothesis that global histone modifications are potential markers of cancer prognosis in RCC. One reason could be that decreased H3K27 indicates transcriptional activation and therefore predicts cancer activation.
Collapse
|
77
|
PLU1 histone demethylase decreases the expression of KAT5 and enhances the invasive activity of the cells. Biochem J 2011; 437:555-64. [DOI: 10.1042/bj20110343] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PLU1 is a candidate oncogene that encodes H3K4 (Lys4 of histone H3) demethylase. In the present study, we found that ectopic expression of PLU1 enhanced the invasive potential of the weakly invasive cells dependent on its demethylase activity. PLU1 was shown to repress the expression of the KAT5 gene through its H3K4 demethylation on the promoter. The regulation of KAT5 by PLU1 was suggested to be responsible for PLU1-induced cell invasion. First, knockdown of KAT5 similarly increased the invasive potential of the cells. Secondly, knockdown of PLU1 in the highly invasive cancer cells increased KAT5 expression and reduced the invasive activity. Thirdly, simultaneous knockdown of KAT5 partially relieved the suppression of cell invasion imposed by PLU1 knockdown. Finally, we found that CD82, which was transcriptionally regulated by KAT5, might be a candidate effector of cell invasion promoted by PLU1. The present study demonstrated a functional contribution of PLU1 overexpression with concomitant epigenetic dysregulation in cancer progression.
Collapse
|
78
|
Minardi D, Lucarini G, Filosa A, Zizzi A, Milanese G, Polito M, Polito M, Di Primio R, Montironi R, Muzzonigro G. Do DNA-methylation and histone acetylation play a role in clear cell renal carcinoma? Analysis of radical nephrectomy specimens in a long-term follow-up. Int J Immunopathol Pharmacol 2011; 24:149-58. [PMID: 21496397 DOI: 10.1177/039463201102400117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We investigated global methylation and histone acetylation in 50 conventional clear cell renal carcinomas (RCC), treated with radical nephrectomy, to assess their possible role as diagnostic biomarkers. The features considered in this study were patient age, tumor size and grade, percentage and intensity of 5-methylcytosine (5mc) and Acetyl-Histone (Lys 9) expression in tumor tissue. All considered parameters were correlated with patient specific survival. The mean percentage of global cellular methylation in tumoral tissue was significantly higher compared to normal peritumoral tissue (p<0.0001), while the intensity of cellular methylation was significantly higher in normal tissue than in tumoral tissue (p=0.001). The mean percentage of histone cellular acetylation in tumoral tissue was significantly lower compared to normal peritumoral tissue (p=0.0005), while the intensity of mean acetylation in neoplastic tissue was similar to the normal tissue. The percentage of global DNA methylation was significantly higher in grades 3 and 4 tumors (p=0.033). Global DNA methylation and histone acetylation in tumoral tissue did not correlate with survival. Fuhrman grade was statistically significant for prognosis (p=0.031). In conclusion, global hypermethylation and histone hypoacetylation play an important role in RCC carcinogenesis; Fuhrman grade is still considered the most important factor for patient survival; 5mc can have a role as markers of aggressiveness.
Collapse
Affiliation(s)
- D Minardi
- Department of Clinic and Specialistic Sciences, Marche Polytechnic University, Ancona, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Schneider AC, Heukamp LC, Rogenhofer S, Fechner G, Bastian PJ, von Ruecker A, Müller SC, Ellinger J. Global histone H4K20 trimethylation predicts cancer-specific survival in patients with muscle-invasive bladder cancer. BJU Int 2011; 108:E290-6. [PMID: 21627749 DOI: 10.1111/j.1464-410x.2011.10203.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE •To determine the role of global histone methylation as a prognostic parameter in patients with bladder cancer. PATIENTS AND METHODS •We used a tissue microarray with samples from patients with non-muscle-invasive bladder cancer (NMIBC; n= 161), muscle-invasive bladder cancer (MIBC, n= 127), normal urothelium (NU; n= 31) and bladder cancer metastases (METS; n= 31) to determine global histone methylation (me) levels at histone H3 lysine 4 (H3K4) and H4K20. RESULTS •Global histone modification levels (H3K4me1, H3K4me3, H4K20me1, H4K20me2, and H4K20me3) were lower in bladder cancer samples than in NU tissue •Global levels of H3K4me1, H4K20me1, H4K20me2 and H4K20me3 were decreasing from NU over NMIBC and MIBC to METS. •H4K20me1 levels were increased in patients with NMIBC with advanced pTstage and less differentiated bladder cancer. •In patients with MIBC, pTstage was negatively correlated with H3K4me1, H4K20me1 and H4K20me2 levels. •H4K20me3 levels were significantly correlated in a univariate and multivariate model with bladder cancer-specific mortality after radical cystectomy in patients with MIBC. CONCLUSION •Global histone methylation levels may help to identify patients with bladder cancer with poor prognosis after radical cystectomy.
Collapse
Affiliation(s)
- Ann-Christin Schneider
- Klinik und Poliklinik für Urologie und Kinderurologie, Universitätsklinikum Bonn, Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Abstract
Post-translational modification of histones provides an important regulatory platform for processes such as gene expression, DNA replication and repair, chromosome condensation and segregation and apoptosis. Disruption of these processes has been linked to the multistep process of carcinogenesis. We review the aberrant covalent histone modifications observed in cancer, and discuss how these epigenetic changes, caused by alterations in histone-modifying enzymes, can contribute to the development of a variety of human cancers. As a conclusion, a new terminology 'histone onco-modifications' is proposed to describe post-translational modifications of histones, which have been linked to cancer. This new term would take into account the active contribution and importance of these histone modifications in the development and progression of cancer.
Collapse
|
81
|
The role of epigenetics in resistance to Cisplatin chemotherapy in lung cancer. Cancers (Basel) 2011; 3:1426-53. [PMID: 24212667 PMCID: PMC3756421 DOI: 10.3390/cancers3011426] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 03/09/2011] [Accepted: 03/10/2011] [Indexed: 12/23/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common cause of cancer related death in the world. Cisplatin and carboplatin are the most commonly used cytotoxic chemotherapeutic agents to treat the disease. These agents, usually combined with drugs such as gemcitabine or pemetrexed, induce objective tumor responses in only 20-30% of patients. Aberrant epigenetic regulation of gene expression is a frequent event in NSCLC. In this article we review the emerging evidence that epigenetics and the cellular machinery involved with this type of regulation may be key elements in the development of cisplatin resistance in NSCLC.
Collapse
|
82
|
Arai E, Kanai Y. Genetic and epigenetic alterations during renal carcinogenesis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2010; 4:58-73. [PMID: 21228928 PMCID: PMC3016104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 12/11/2010] [Indexed: 05/30/2023]
Abstract
Renal cell carcinoma (RCC) is not a single entity, but comprises a group of tumors including clear cell RCC, papillary RCC and chromophobe RCC, which arise from the epithelium of renal tubules. The majority of clear cell RCCs, the major histological subtype, have genetic or epigenetic inactivation of the von Hippel-Lindau (VHL) gene. Germline mutations in the MET and fumarate hydratase (FH) genes lead to the development of type 1 and type 2 papillary RCCs, respectively, and such mutations of either the TSC1 or TSC2 gene increase the risk of RCC. Genome-wide copy number alteration analysis has suggested that loss of chromosome 3p and gain of chromosomes 5q and 7 may be copy number aberrations indispensable for the development of clear cell RCC. When chromosome 1p, 4, 9, 13q or 14q is also lost, more clinicopathologically aggressive clear cell RCC may develop. Since renal carcinogenesis is associated with neither chronic inflammation nor persistent viral infection, and hardly any histological change is evident in corresponding non-tumorous renal tissue from patients with renal tumors, precancerous conditions in the kidney have been rarely described. However, regional DNA hypermethylation on C-type CpG islands has already accumulated in such non-cancerous renal tissues, suggesting that, from the viewpoint of altered DNA methylation, the presence of precancerous conditions can be recognized even in the kidney. Genome-wide DNA methylation profiles in precancerous conditions are basically inherited by the corresponding clear cell RCCs developing in individual patients: DNA methylation alterations at the precancerous stage may further predispose renal tissue to epigenetic and genetic alterations, generate more malignant cancers, and even determine patient outcome. The list of tumor-related genes silenced by DNA hypermethylation has recently been increasing. Genetic and epigenetic profiling provides an optimal means of prognostication for patients with RCCs. Recently developed high-throughput technologies for genetic and epigenetic analyses will further accelerate the identification of key molecules for use in the prevention, diagnosis and therapy of RCCs.
Collapse
Affiliation(s)
- Eri Arai
- Division of Molecular Pathology, National Cancer Center Research Institute Tokyo 104-0045, Japan
| | | |
Collapse
|
83
|
Mosashvilli D, Kahl P, Mertens C, Holzapfel S, Rogenhofer S, Hauser S, Büttner R, Von Ruecker A, Müller SC, Ellinger J. Global histone acetylation levels: prognostic relevance in patients with renal cell carcinoma. Cancer Sci 2010; 101:2664-9. [PMID: 20825416 PMCID: PMC11159183 DOI: 10.1111/j.1349-7006.2010.01717.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Epigenetic alterations play an important role in carcinogenesis. Recent studies have suggested that global histone modifications are predictors of cancer recurrence in various tumor entities. Global histone acetylation levels (histone H3 lysine 9 acetylation [H3K9Ac], histone H3 lysine 18 acetylation [H3K18Ac], total histone H3 acetylation [H3Ac] and total histone H4 acetylation [H4Ac]) were determined in patients with renal cell carcinoma (RCC) using immunohistochemistry in a tissue micro array with 193 RCC and 10 oncocytoma specimens. The histone acetylation pattern was not different among the diverse histological subtypes of RCC or oncocytoma samples. The H3Ac levels were inversely correlated with pT-stage (P = 0.005), distant metastasis (P = 0.036), Fuhrman grading (P = 0.001) and RCC progression (P = 0.029, hazard ratio 0.87). H4Ac deacetylation was correlated with pT-stage (P = 0.011) and grading (P = 0.029). H3K18Ac levels were an independent predictor of cancer-progression following surgery for localized RCC in the univariate (P = 0.001, hazard ratio 0.78) and multivariate (P = 0.005, hazard ratio 0.82) analysis. In conclusion, our study supports the concept of global histone modification levels as a universal cancer prognosis marker, and provides evidence for the use of histone deacetylases inhibitors as future drugs in the therapy of RCC.
Collapse
|