51
|
Ren WH, Xin S, Yang K, Yu YB, Li SM, Zheng JJ, Huang K, Zeng RC, Yang XX, Gao L, Li SQ, Zhi K. Strontium‐Doped Hydroxyapatite Promotes Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells in Osteoporotic Rats through the CaSR‐JAK2/STAT3 Signaling Pathway. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Wen-Hao Ren
- Department of Oral and Maxillofacial Surgery The Affiliated Hospital of Qingdao University No.1677 Wutaishan Road Qingdao 266003 China
| | - Shanshan Xin
- Department of Oral and Maxillofacial Surgery The Affiliated Hospital of Qingdao University No.1677 Wutaishan Road Qingdao 266003 China
- School of Stomatology of Qingdao University Qingdao University Qingdao 266003 China
| | - Kai Yang
- School of Materials Science and Engineering Shandong University of Science and Technology Qingdao Shandong 266590 China
| | - Yan-Bin Yu
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology Shandong University of Science and Technology Qingdao 266590 China
| | - Shao-Ming Li
- Department of Oral and Maxillofacial Surgery The Affiliated Hospital of Qingdao University No.1677 Wutaishan Road Qingdao 266003 China
- School of Stomatology of Qingdao University Qingdao University Qingdao 266003 China
| | - Jing-Jing Zheng
- Department of Endodontics The Affiliated Hospital of Qingdao University Qingdao 266003 China
| | - Kai Huang
- Department of Radiology The Affiliated Hospital of Qingdao University Qingdao China
| | - Rong-Chang Zeng
- School of Materials Science and Engineering Shandong University of Science and Technology Qingdao Shandong 266590 China
| | - Xiao-Xia Yang
- Department of Oral and Maxillofacial Surgery The Affiliated Hospital of Qingdao University No.1677 Wutaishan Road Qingdao 266003 China
- School of Stomatology of Qingdao University Qingdao University Qingdao 266003 China
| | - Ling Gao
- Department of Oral and Maxillofacial Surgery The Affiliated Hospital of Qingdao University No.1677 Wutaishan Road Qingdao 266003 China
- Key Lab of Oral Clinical Medicine The Affiliated Hospital of Qingdao University Qingdao 266003 China
| | - Shuo-Qi Li
- School of Materials Science and Engineering Shandong University of Science and Technology Qingdao Shandong 266590 China
| | - Keqian Zhi
- Department of Oral and Maxillofacial Surgery The Affiliated Hospital of Qingdao University No.1677 Wutaishan Road Qingdao 266003 China
- School of Stomatology of Qingdao University Qingdao University Qingdao 266003 China
- Key Lab of Oral Clinical Medicine The Affiliated Hospital of Qingdao University Qingdao 266003 China
| |
Collapse
|
52
|
Guntermann L, Rohrbach A, Schäfer E, Dammaschke T. Remineralization and protection from demineralization: effects of a hydroxyapatite-containing, a fluoride-containing and a fluoride- and hydroxyapatite-free toothpaste on human enamel in vitro. Head Face Med 2022; 18:26. [PMID: 35831871 PMCID: PMC9278013 DOI: 10.1186/s13005-022-00330-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/25/2022] [Indexed: 12/05/2022] Open
Abstract
Background The aim was to evaluate the remineralization potential as well as the extent of protection against renewed demineralization of enamel by hydroxyapatite-containing toothpaste (Karex) in comparison to fluoride-containing (Elmex) and fluoride- and hydroxyapatite-free toothpaste (Ajona) as control. Methods Fifty-seven enamel samples were obtained from 19 human teeth. Five demarcated surfaces were created on each tooth (S0—S4). Four of the surfaces (S1—S4) were exposed to lactic acid (pH 3) for 8 h (demineralization). S0 was left untreated as control. S1 was solely treated with acid. After demineralization, S2 was exposed to Karex for 2 min, of which 15 s were brushing. S3 was treated with Elmex and S4 with Ajona, accordingly. Then, the samples were evaluated using a scanning electron microscope and ImageJ image analysis software to determine the percentage of demineralization. Afterwards, S2-S4 were again exposed to lactic acid for 2 h, and subjected to pixel analysis another time. Data were statistically analysed using ANOVA with post-hoc Scheffé test and the Kurskal-Wallis test. Results The surfaces treated with Elmex showed the lowest percentage of demineralization (mean 5.01 ± 0.98%) (p < 0.01). Thus, Elmex remineralized more effectively compared to Ajona (8.89 ± 1.41%) and Karex (9.85 ± 1.63%) (p < 0.01). Furthermore, Elmex showed the lowest percentage of demineralized enamel after new demineralization (median 6.29%), followed by Ajona (11.92%) and Karex (13.46%) (p < 0.001). Conclusion In terms of remineralization and protection against renewed demineralization, a hydroxyapatite-containing toothpaste (Karex) appears to be inferior to a fluoride-containing toothpaste (Elmex) and a fluoride- and hydroxyapatite-free toothpaste (Ajona). Hence, the recommendation to use Karex to protect against demineralization should be critically questioned.
Collapse
Affiliation(s)
| | - Arno Rohrbach
- Institute of Mineralogy, Westphalian Wilhelms-University, Corrensstr. 24, 48149, Münster, Germany
| | - Edgar Schäfer
- Central Interdisciplinary Ambulance in the School of Dentistry, Westphalian Wilhelms-University, Waldeyerstr. 30, 48149, Münster, Germany
| | - Till Dammaschke
- Department of Periodontology and Operative Dentistry, Westphalian Wilhelms-University, Waldeyerstr. 30, 48149, Münster, Germany.
| |
Collapse
|
53
|
Simultaneous Substitution of Fe and Sr in Beta-Tricalcium Phosphate: Synthesis, Structural, Magnetic, Degradation, and Cell Adhesion Properties. MATERIALS 2022; 15:ma15134702. [PMID: 35806825 PMCID: PMC9268321 DOI: 10.3390/ma15134702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 12/03/2022]
Abstract
β-tricalcium phosphate is a promising bone graft substitute material with biocompatibility and high osteoinductivity. However, research on the ideal degradation and absorption for better clinical application remains a challenge. Now, we focus on modifying physicochemical properties and improving biological properties through essential ion co-substitution (Fe and Sr) in β-TCPs. Fe- and Sr-substituted and Fe/Sr co-substituted β-TCP were synthesized by aqueous co-precipitation with substitution levels ranging from 0.2 to 1.0 mol%. The β-TCP phase was detected by X-ray diffraction and Fourier transform infrared spectroscopy. Changes in Ca–O and P–O bond lengths of the co-substituted samples were observed through X-ray photoelectron spectroscopy. The results of VSM represent the M-H graph having a combination of diamagnetic and ferromagnetic properties. A TRIS–HCl solution immersion test showed that the degradation and resorption functions act synergistically on the surface of the co-substituted sample. Cell adhesion tests demonstrated that Fe enhances the initial adhesion and proliferation behavior of hDPSCs. The present work suggests that Fe and Sr co-substitution in β-TCP can be a candidate for promising bone graft materials in tissue engineering fields. In addition, the possibility of application of hyperthermia for cancer treatment can be expected.
Collapse
|
54
|
Pajor K, Michalicha A, Belcarz A, Pajchel L, Zgadzaj A, Wojas F, Kolmas J. Antibacterial and Cytotoxicity Evaluation of New Hydroxyapatite-Based Granules Containing Silver or Gallium Ions with Potential Use as Bone Substitutes. Int J Mol Sci 2022; 23:ijms23137102. [PMID: 35806116 PMCID: PMC9266790 DOI: 10.3390/ijms23137102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
The aim of the current work was to study the physicochemical properties and biological activity of different types of porous granules containing silver or gallium ions. Firstly, hydroxyapatites powders doped with Ga3+ or Ag+ were synthesized by the standard wet method. Then, the obtained powders were used to fabricate ceramic microgranules (AgM and GaM) and alginate/hydroxyapatite composite granules (AgT and GaT). The ceramic microgranules were also used to prepare a third type of granules (AgMT and GaMT) containing silver or gallium, respectively. All the granules turned out to be porous, except that the AgT and GaT granules were characterized by higher porosity and a better developed specific surface, whereas the microgranules had very fine, numerous micropores. The granules revealed a slow release of the substituted ions. All the granules except AgT were classified as non-cytotoxic according to the neutral red uptake (NRU) test and the MTT assay. The obtained powders and granules were subjected to various antibacterial test towards the following four different bacterial strains: Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa and Escherichia coli. The Ag-containing materials revealed high antibacterial activity.
Collapse
Affiliation(s)
- Kamil Pajor
- Department of Analytical Chemistry, Chair of Analytical Chemistry and Biomaterials, Medical University of Warsaw, Faculty of Pharmacy, 02-097 Warsaw, Poland; (K.P.); (L.P.)
| | - Anna Michalicha
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (A.B.)
| | - Anna Belcarz
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (A.B.)
| | - Lukasz Pajchel
- Department of Analytical Chemistry, Chair of Analytical Chemistry and Biomaterials, Medical University of Warsaw, Faculty of Pharmacy, 02-097 Warsaw, Poland; (K.P.); (L.P.)
| | - Anna Zgadzaj
- Department of Environmental Health Sciences, Medical University of Warsaw, Faculty of Pharmacy, 02-097 Warsaw, Poland; (A.Z.); (F.W.)
| | - Filip Wojas
- Department of Environmental Health Sciences, Medical University of Warsaw, Faculty of Pharmacy, 02-097 Warsaw, Poland; (A.Z.); (F.W.)
| | - Joanna Kolmas
- Department of Analytical Chemistry, Chair of Analytical Chemistry and Biomaterials, Medical University of Warsaw, Faculty of Pharmacy, 02-097 Warsaw, Poland; (K.P.); (L.P.)
- Correspondence:
| |
Collapse
|
55
|
Light-Activated Hydroxyapatite Photocatalysts: New Environmentally-Friendly Materials to Mitigate Pollutants. MINERALS 2022. [DOI: 10.3390/min12050525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review focuses on a reasoned search for articles to treat contaminated water using hydroxyapatite (HAp)-based compounds. In addition, the fundamentals of heterogeneous photocatalysis were considered, combined with parameters that affect the pollutants’ degradation using hydroxyapatite-based photocatalyst design and strategies of this photocatalyst, and the challenges of and perspectives on the development of these materials. Many critical applications have been analyzed to degrade dyes, drugs, and pesticides using HAp-based photocatalysts. This systematic review highlights the recent state-of-the-art advances that enable new paths and good-quality preparations of HAp-derived photocatalysts for photocatalysis.
Collapse
|
56
|
Electrodeposition of Calcium Phosphate Coatings on Metallic Substrates for Bone Implant Applications: A Review. COATINGS 2022. [DOI: 10.3390/coatings12040539] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This review summaries more than three decades of scientific knowledge on electrodeposition of calcium phosphate coatings. This low-temperature process aims to make the surface of metallic bone implants bioactive within a physiological environment. The first part of the review describes the reaction mechanisms that lead to the synthesis of a bioactive coating. Electrodeposition occurs in three consecutive steps that involve electrochemical reactions, pH modification, and precipitation of the calcium phosphate coating. However, the process also produces undesired dihydrogen bubbles during the deposition because of the reduction of water, the solvent of the electrolyte solution. To prevent the production of large amounts of dihydrogen bubbles, the current density value is limited during deposition. To circumvent this issue, the use of pulsed current has been proposed in recent years to replace the traditional direct current. Thanks to breaking times, dihydrogen bubbles can regularly escape from the surface of the implant, and the deposition of the calcium phosphate coating is less disturbed by the accumulation of bubbles. In addition, the pulsed current has a positive impact on the chemical composition, morphology, roughness, and mechanical properties of the electrodeposited calcium phosphate coating. Finally, the review describes one of the most interesting properties of electrodeposition, i.e., the possibility of adding ionic substituents to the calcium phosphate crystal lattice to improve the biological performance of the bone implant. Several cations and anions are reviewed from the scientific literature with a description of their biological impact on the physiological environment.
Collapse
|
57
|
Investigation of Inclusion States of Silicate and Carbonate Ions in Hydroxyapatite Particles Prepared under the Presence of Sodium Silicate. Biomimetics (Basel) 2022; 7:biomimetics7020040. [PMID: 35466257 PMCID: PMC9036305 DOI: 10.3390/biomimetics7020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
Biological hydroxyapatite (HA) contains the different minor ions which favour its bio-reactivity in vivo. In this study, the preparation of HA particles containing both silicate and carbonate ions under the presence of sodium silicate was investigated, and the physicochemical properties were evaluated according to the contents and states of silicate and carbonate ions. The increment in the silicate ion reduced the crystallinity and expanded the crystalline size along with a-axis. Solid-state 29Si–NMR spectra indicated the increase in the adsorption of oligomeric silicate species on the HA particle surfaces in addition to the substitution state of silicate ions, suggesting the occurrence of the surface coating of silicates on the surfaces. The possible states of carbonate and silicate ions at the HA surfaces will provide the bioactivity.
Collapse
|
58
|
Thermal and structural properties of sodium, potassium and carbonate doped strontium hydroxyfluorapatite. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
59
|
Influence of Synthesis Conditions on Gadolinium-Substituted Tricalcium Phosphate Ceramics and Its Physicochemical, Biological, and Antibacterial Properties. NANOMATERIALS 2022; 12:nano12050852. [PMID: 35269340 PMCID: PMC8912835 DOI: 10.3390/nano12050852] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 01/27/2023]
Abstract
Gadolinium-containing calcium phosphates are promising contrast agents for various bioimaging modalities. Gadolinium-substituted tricalcium phosphate (TCP) powders with 0.51 wt% of gadolinium (0.01Gd-TCP) and 5.06 wt% of (0.1Gd-TCP) were synthesized by two methods: precipitation from aqueous solutions of salts (1) (Gd-TCP-pc) and mechano-chemical activation (2) (Gd-TCP-ma). The phase composition of the product depends on the synthesis method. The product of synthesis (1) was composed of β-TCP (main phase, 96%), apatite/chlorapatite (2%), and calcium pyrophosphate (2%), after heat treatment at 900 °C. The product of synthesis (2) was represented by β-TCP (main phase, 73%), apatite/chlorapatite (20%), and calcium pyrophosphate (7%), after heat treatment at 900 °C. The substitution of Ca2+ ions by Gd3+ in both β-TCP (main phase) and apatite (admixture) phases was proved by the electron paramagnetic resonance technique. The thermal stability and specific surface area of the Gd-TCP powders synthesized by two methods were significantly different. The method of synthesis also influenced the size and morphology of the prepared Gd-TCP powders. In the case of synthesis route (1), powders with particle sizes of tens of nanometers were obtained, while in the case of synthesis (2), the particle size was hundreds of nanometers, as revealed by transmission electron microscopy. The Gd-TCP ceramics microstructure investigated by scanning electron microscopy was different depending on the synthesis route. In the case of (1), ceramics with grains of 1–50 μm, pore sizes of 1–10 µm, and a bending strength of about 30 MPa were obtained; in the case of (2), the ceramics grain size was 0.4–1.4 μm, the pore size was 2 µm, and a bending strength of about 39 MPa was prepared. The antimicrobial activity of powders was tested for four bacteria (S. aureus, E. coli, S. typhimurium, and E. faecalis) and one fungus (C. albicans), and there was roughly 30% of inhibition of the micro-organism’s growth. The metabolic activity of the NCTC L929 cell and viability of the human dental pulp stem cell study demonstrated the absence of toxic effects for all the prepared ceramic materials doped with Gd ions, with no difference for the synthesis route.
Collapse
|
60
|
Mahanty A, Shikha D. Changes in the morphology, mechanical strength and biocompatibility of polymer and metal/polymer fabricated hydroxyapatite for orthopaedic implants: a review. JOURNAL OF POLYMER ENGINEERING 2022. [DOI: 10.1515/polyeng-2021-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Hydroxyapatite (HAp) is a well-known bioceramic known for its high biocompatibility and good bioactivity. The structure of HAp mimics the natural bone structure and thus, it is widely used as implants for hard tissues. Despite possessing the above properties, it lacks mechanical strength, is susceptible to the growth of microbes over time and has low degradability. Polymers can be synthetic or natural. They can be a better choice to be used as additives to improve the properties of HAp due to its better mechanical strength and high biodegradability. A combination of metals and polymers together can overcome the drawbacks of HAp to a greater extent. This review article deals with different polymers and metal/polymer fabricated HAp to show the changes in the properties of HAp following the substitution. It also deals with how better they could be used as a hard tissue implant.
Collapse
Affiliation(s)
- Anuradha Mahanty
- Department of Chemistry , Birla Institute of Technology , Mesra , Ranchi 835215 , India
| | - Deep Shikha
- Department of Chemistry , Birla Institute of Technology , Mesra , Ranchi 835215 , India
| |
Collapse
|
61
|
PLA/Hydroxyapatite scaffolds exhibit in vitro immunological inertness and promote robust osteogenic differentiation of human mesenchymal stem cells without osteogenic stimuli. Sci Rep 2022; 12:2333. [PMID: 35149687 PMCID: PMC8837663 DOI: 10.1038/s41598-022-05207-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Bone defects stand out as one of the greatest challenges of reconstructive surgery. Fused deposition modelling (FDM) allows for the printing of 3D scaffolds tailored to the morphology and size of bone damage in a patient-specific and high-precision manner. However, FDM still suffers from the lack of materials capable of efficiently supporting osteogenesis. In this study, we developed 3D-printed porous scaffolds composed of polylactic acid/hydroxyapatite (PLA/HA) composites with high ceramic contents (above 20%, w/w) by FDM. The mechanical properties of the PLA/HA scaffolds were compatible with those of trabecular bone. In vitro degradation tests revealed that HA can neutralize the acidification effect caused by PLA degradation, while simultaneously releasing calcium and phosphate ions. Importantly, 3D-printed PLA/HA did not induce the upregulation of activation markers nor the expression of inflammatory cytokines in dendritic cells thus exhibiting no immune-stimulatory properties in vitro. Evaluations using human mesenchymal stem cells (MSC) showed that pure PLA scaffolds exerted an osteoconductive effect, whereas PLA/HA scaffolds efficiently induced osteogenic differentiation of MSC even in the absence of any classical osteogenic stimuli. Our findings indicate that 3D-printed PLA scaffolds loaded with high concentrations of HA are most suitable for future applications in bone tissue engineering.
Collapse
|
62
|
SiC- and Ag-SiC-Doped Hydroxyapatite Coatings Grown Using Magnetron Sputtering on Ti Alloy for Biomedical Application. COATINGS 2022. [DOI: 10.3390/coatings12020195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
SiC- and Ag-SiC-doped hydroxyapatite (HA) coatings were deposited via magnetron sputtering aiming at increased corrosion protection of Ti-10Nb-10Zr-5Ta alloy in simulated body fluid environment and superior mechanical properties compared to plain hydroxyapatite. The coatings had a total thickness of about 350 nm. The X ray diffraction patterns indicate that HA coatings are polycrystalline with a hexagonal structure and the addition of SiC determined the coating amorphization. All coatings presented a lower roughness compared to the Ti alloy and were hydrophilic. Ag-SiC-HA coating presented the best corrosion resistance and tribological parameters. All coatings were biocompatible, as ascertained via indirect cytocompatibility studies conducted on Vero cells.
Collapse
|
63
|
Cui W, Yang L, Ullah I, Yu K, Zhao Z, Gao X, Liu T, Liu M, Li P, Wang J, Guo X. Biomimetic porous scaffolds containing decellularized small intestinal submucosa and Sr 2+/Fe 3+co-doped hydroxyapatite accelerate angiogenesis/osteogenesis for bone regeneration. Biomed Mater 2022; 17. [PMID: 35026740 DOI: 10.1088/1748-605x/ac4b45] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/13/2022] [Indexed: 11/11/2022]
Abstract
The design of bone scaffolds is predominately aimed to well reproduce the natural bony environment by imitating the architecture/composition of host bone. Such biomimetic biomaterials are gaining increasing attention and acknowledged quite promising for bone tissue engineering. Herein, novel biomimetic bone scaffolds containing decellularized small intestinal submucosa matrix (SIS-ECM) and Sr2+/Fe3+co-doped hydroxyapatite (SrFeHA) are fabricated for the first time by the sophisticated self-assembled mineralization procedure, followed by cross-linking and lyophilization post-treatments. The results indicate the constructed SIS/SrFeHA scaffolds are characterized by highly porous structures, rough microsurface and improved mechanical strength, as well as efficient releasing of bioactive Sr2+/Fe3+and ECM components. These favorable physico-chemical properties endow SIS/SrFeHA scaffolds with an architectural/componential biomimetic bony environment which appears to be highly beneficial for inducing angiogenesis/osteogenesis both in vitro and in vivo. In particular, the cellular functionality and bioactivity of endotheliocytes/osteoblasts are significantly enhanced by SIS/SrFeHA scaffolds, and the cranial defects model further verifies the potent ability of SIS/SrFeHA to accelerate in vivo vascularization and bone regeneration following implantation. In this view these results highlight the considerable angiogenesis/osteogenesis potential of biomimetic porous SIS/SrFeHA scaffolds for inducing bone regeneration and thus may afford a new promising alternative for bone tissue engineering.
Collapse
Affiliation(s)
- Wei Cui
- orthopaedics, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hanzheng avenue 473, Wuhan, 430000, CHINA
| | - Liang Yang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai, Wuhan, 430074, CHINA
| | - Ismat Ullah
- Suzhou Institute of Nano-tech and Nano-Bionics Chinese Academy of Sciences, School of Materials Science and Engineering, Suzhou, Jiangsu, 215123, CHINA
| | - Keda Yu
- Department of Orthopedics, Wuhan Union Hospital, Tongji Medical College, Wuhan, Hubei, 430000, CHINA
| | - Zhigang Zhao
- orthopaedics, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hanzheng avenue 473, Wuhan, 430000, CHINA
| | - Xinfeng Gao
- orthopaedics, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hanzheng avenue 473, Wuhan, 430000, CHINA
| | - Tao Liu
- orthopaedics, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hanzheng avenue 473, Wuhan, 430000, CHINA
| | - Ming Liu
- orthopaedics, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hanzheng avenue 473, Wuhan, 430000, CHINA
| | - Peng Li
- orthopaedics, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hanzheng avenue 473, Wuhan, 430000, CHINA
| | - Junwen Wang
- orthopaedics, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hanzheng avenue 473, Wuhan, 430000, CHINA
| | - Xiaodong Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430000, CHINA
| |
Collapse
|
64
|
Wang D, Wang X, Huang L, Pan Z, Liu K, Du B, Xue Y, Li B, Zhang Y, Wang H, Li D, Sun H. Unraveling an Innate Mechanism of Pathological Mineralization-Regulated Inflammation by a Nanobiomimetic System. Adv Healthc Mater 2021; 10:e2101586. [PMID: 34601825 DOI: 10.1002/adhm.202101586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/15/2021] [Indexed: 12/18/2022]
Abstract
Pathological mineralization (PTM) often occurs under inflammation and affects the prognosis of diseases, such as atherosclerosis and cancers. However, how the PTM impacts inflammation has not been well explored. Herein, poly lactic-co-glycolic acid (PLGA)/gelatin/hydroxyapatite (HA) electrospun nanofibers are rationally designed as an ideal PTM microenvironment biomimetic system for unraveling the role of PTM on inflammation. The results demonstrate that the inflammatory response decreases continuously during the process of mineralization. When mature macromineralization forms, the inflammation almost completely disappears. Mechanistically, the PTM formation is mediated by matrix proteins, local high calcium, and cell debris (nuclei), or actively regulated by the lysosomal/plasma membrane components secreted by macrophages. These inflammatory inducible factors (calcium, cell debris, etc.) can be "buried" through PTM process, resulting in reduced immune responses. Overall, the present study demonstrates that PTM is an innate mechanism of inflammation subsidence, providing valuable insight into understanding the action of mineralization on inflammation.
Collapse
Affiliation(s)
- Dongyang Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun, Jilin, 130021, P. R. China
| | - Xiaomeng Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun, Jilin, 130021, P. R. China
| | - Lei Huang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun, Jilin, 130021, P. R. China
| | - Ziyi Pan
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun, Jilin, 130021, P. R. China
| | - Kexuan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun, Jilin, 130021, P. R. China
| | - Beibei Du
- Department of Cardiology, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Avenue, Changchun, Jilin, 130033, P. R. China
| | - Ying Xue
- HOOKE Instruments Ltd., 77 Yingkou Road, Changchun, Jilin, 130033, P. R. China
| | - Bei Li
- HOOKE Instruments Ltd., 77 Yingkou Road, Changchun, Jilin, 130033, P. R. China
- The State Key Lab of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, CAS, 3888 East Nanhu Road, Changchun, Jilin, 130033, P. R. China
| | - Yuan Zhang
- Department of Anesthesiology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021, P. R. China
| | - Huan Wang
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, P. R. China
| | - Daowei Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun, Jilin, 130021, P. R. China
| | - Hongchen Sun
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun, Jilin, 130021, P. R. China
| |
Collapse
|
65
|
Abstract
High-temperature powder sintering is an integral part of the dense ceramic manufacturing process. In order to find the optimal conditions for producing a ceramic product, the information about its behavior at high temperatures is required. However, the data available in the literature are very contradictory. In this work, the thermal stability of hydroxyapatite prepared by a solid-state mechanochemical method and structural changes occurring during sintering were studied. Stoichiometric hydroxyapatite was found to remain as a single-phase apatite structure with the space group P63/m up to 1300 °C inclusively. A further increase in the sintering temperature leads to its partial decomposition, a decrease in the crystallite size of the apatite phase, and the appearance of significant structural strains. It was shown that small deviations from stoichiometry in the Ca/P ratio upward or downward during the hydroxyapatite synthesis lead to a significant decrease in the thermal stability of hydroxyapatite. An apatite containing almost no hydroxyl groups, which is close to the composition of oxyapatite, was prepared. It was shown that the congruent melting of stoichiometric hydroxyapatite upon slow heating in a high-temperature furnace does not occur. At the same time, the fast heating of hydroxyapatite by laser radiation allows, under certain conditions, its congruent melting with the formation of a recrystallized monolayer of oxyhydroxyapatite. The data obtained in this study can be used when choosing sintering conditions to produce hydroxyapatite-based ceramics.
Collapse
|
66
|
Oltean-Dan D, Dogaru GB, Jianu EM, Riga S, Tomoaia-Cotisel M, Mocanu A, Barbu-Tudoran L, Tomoaia G. Biomimetic Composite Coatings for Activation of Titanium Implant Surfaces: Methodological Approach and In Vivo Enhanced Osseointegration. MICROMACHINES 2021; 12:mi12111352. [PMID: 34832764 PMCID: PMC8618198 DOI: 10.3390/mi12111352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
Innovative nanomaterials are required for the coatings of titanium (Ti) implants to ensure the activation of Ti surfaces for improved osseointegration, enhanced bone fracture healing and bone regeneration. This paper presents a systematic investigation of biomimetic composite (BC) coatings on Ti implant surfaces in a rat model of a diaphyseal femoral fracture. Methodological approaches of surface modification of the Ti implants via the usual joining methods (e.g., grit blasting and acid etching) and advanced physicochemical coating via a self-assembled dip-coating method were used. The biomimetic procedure used multi-substituted hydroxyapatite (ms-HAP) HAP-1.5 wt% Mg-0.2 wt% Zn-0.2 wt% Si nanoparticles (NPs), which were functionalized using collagen type 1 molecules (COL), resulting in ms-HAP/COL (core/shell) NPs that were embedded into a polylactic acid (PLA) matrix and finally covered with COL layers, obtaining the ms-HAP/COL@PLA/COL composite. To assess the osseointegration issue, first, the thickness, surface morphology and roughness of the BC coating on the Ti implants were determined using AFM and SEM. The BC-coated Ti implants and uncoated Ti implants were then used in Wistar albino rats with a diaphyseal femoral fracture, both in the absence and the presence of high-frequency pulsed electromagnetic shortwave (HF-PESW) stimulation. This study was performed using a bone marker serum concentration and histological and computer tomography (micro-CT) analysis at 2 and 8 weeks after surgical implantation. The implant osseointegration was evaluated through the bone–implant contact (BIC). The bone–implant interface was investigated using FE-SEM images and EDX spectra of the retrieved surgical implants at 8 weeks in the four animal groups. The obtained results showed significantly higher bone–implants contact and bone volume per tissue volume, as well as a greater amount of newly formed bone, in the BC-coated Ti implants than in the uncoated Ti implants. Direct bone–implant contact was also confirmed via histological examination. The results of this study confirmed that these biomimetic composite coatings on Ti implants were essential for a significant enhancement of osseointegration of BC-coated Ti implants and bone regeneration. This research provides a novel strategy for the treatment of bone fractures with possible orthopedic applications.
Collapse
Affiliation(s)
- Daniel Oltean-Dan
- Department of Orthopedics and Traumatology, Iuliu Hatieganu University of Medicine and Pharmacy, 47 General Traian Mosoiu Street, 400132 Cluj-Napoca, Romania;
| | - Gabriela-Bombonica Dogaru
- Department of Medical Rehabilitation, Iuliu Hatieganu University of Medicine and Pharmacy, 46-50 Viilor Street, 400347 Cluj-Napoca, Romania;
| | - Elena-Mihaela Jianu
- Department of Histology, Iuliu Hatieganu University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Sorin Riga
- Research Center of Physical Chemistry, Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania; (S.R.); (A.M.)
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050085 Bucharest, Romania
| | - Maria Tomoaia-Cotisel
- Research Center of Physical Chemistry, Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania; (S.R.); (A.M.)
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050085 Bucharest, Romania
- Correspondence: (M.T.-C.); (G.T.)
| | - Aurora Mocanu
- Research Center of Physical Chemistry, Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania; (S.R.); (A.M.)
| | - Lucian Barbu-Tudoran
- Electron Microscopy Laboratory Prof. C. Craciun, Faculty of Biology and Geology, Babes-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania;
| | - Gheorghe Tomoaia
- Department of Orthopedics and Traumatology, Iuliu Hatieganu University of Medicine and Pharmacy, 47 General Traian Mosoiu Street, 400132 Cluj-Napoca, Romania;
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050085 Bucharest, Romania
- Correspondence: (M.T.-C.); (G.T.)
| |
Collapse
|
67
|
Ferrés-Amat E, Al Madhoun A, Ferrés-Amat E, Al Demour S, Ababneh MA, Ferrés-Padró E, Marti C, Carrio N, Barajas M, Atari M. Histologic and Histomorphometric Evaluation of a New Bioactive Liquid BBL on Implant Surface: A Preclinical Study in Foxhound Dogs. MATERIALS 2021; 14:ma14206217. [PMID: 34683810 PMCID: PMC8540508 DOI: 10.3390/ma14206217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/10/2021] [Accepted: 10/16/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Bioactive chemical surface modifications improve the wettability and osseointegration properties of titanium implants in both animals and humans. The objective of this animal study was to investigate and compare the bioreactivity characteristics of titanium implants (BLT) pre-treated with a novel bone bioactive liquid (BBL) and the commercially available BLT-SLA active. METHODS Forty BLT-SLA titanium implants were placed in in four foxhound dogs. Animals were divided into two groups (n = 20): test (BLT-SLA pre-treated with BBL) and control (BLT-SLA active) implants. The implants were inserted in the post extraction sockets. After 8 and 12 weeks, the animals were sacrificed, and mandibles were extracted, containing the implants and the surrounding soft and hard tissues. Bone-to-implant contact (BIC), inter-thread bone area percentage (ITBA), soft tissue, and crestal bone loss were evaluated by histology and histomorphometry. RESULTS All animals were healthy with no implant loss or inflammation symptoms. All implants were clinically and histologically osseo-integrated. Relative to control groups, test implants demonstrated a significant 1.5- and 1.7-fold increase in BIC and ITBA values, respectively, at both assessment intervals. Crestal bone loss was also significantly reduced in the test group, as compared with controls, at week 8 in both the buccal crests (0.47 ± 0.32 vs 0.98 ± 0.51 mm, p < 0.05) and lingual crests (0.39* ± 0.3 vs. 0.89 ± 0.41 mm, p < 0.05). At week 12, a pronounced crestal bone loss improvement was observed in the test group (buccal, 0.41 ± 0.29 mm and lingual, 0.54 ± 0.23 mm). Tissue thickness showed comparable values at both the buccal and lingual regions and was significantly improved in the studied groups (0.82-0.92 mm vs. 33-48 mm in the control group). CONCLUSIONS Relative to the commercially available BLT-SLA active implants, BLT-SLA pre-treated with BBL showed improved histological and histomorphometric characteristics indicating a reduced titanium surface roughness and improved wettability, promoting healing and soft and hard tissue regeneration at the implant site.
Collapse
Affiliation(s)
- Eduard Ferrés-Amat
- Oral and Maxillofacial Surgery Service, Hospital HM Nens, HM Hospitales, 08009 Barcelona, Spain; (E.F.-A.); (E.F.-A.); (E.F.-P.)
| | - Ashraf Al Madhoun
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Elvira Ferrés-Amat
- Oral and Maxillofacial Surgery Service, Hospital HM Nens, HM Hospitales, 08009 Barcelona, Spain; (E.F.-A.); (E.F.-A.); (E.F.-P.)
- Oral and Maxillofacial Surgery Department, Universitat Internacional de Catalunya, St Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain;
| | - Saddam Al Demour
- Department of Special Surgery/Division of Urology, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Mera A. Ababneh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Eduard Ferrés-Padró
- Oral and Maxillofacial Surgery Service, Hospital HM Nens, HM Hospitales, 08009 Barcelona, Spain; (E.F.-A.); (E.F.-A.); (E.F.-P.)
- Biointelligent Technology Systems SL, Diputaccion 316, 3D, 08009 Barcelona, Spain; (C.M.); (M.B.)
| | - Carles Marti
- Biointelligent Technology Systems SL, Diputaccion 316, 3D, 08009 Barcelona, Spain; (C.M.); (M.B.)
- Oral and Maxillofacial Surgery Department, Hospital Clinic de Barcelona, 08036 Barcelona, Spain
| | - Neus Carrio
- Oral and Maxillofacial Surgery Department, Universitat Internacional de Catalunya, St Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain;
| | - Miguel Barajas
- Biointelligent Technology Systems SL, Diputaccion 316, 3D, 08009 Barcelona, Spain; (C.M.); (M.B.)
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - Maher Atari
- Biointelligent Technology Systems SL, Diputaccion 316, 3D, 08009 Barcelona, Spain; (C.M.); (M.B.)
- Ziacom Medical SL, C. Buhos, 2, 28320 Madrid, Spain
- Correspondence:
| |
Collapse
|
68
|
Tao C, Li R. Lone-pair stabilized channels and blocked transport in apatite-related structures. Dalton Trans 2021; 50:13232-13235. [PMID: 34553713 DOI: 10.1039/d1dt01485d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two apatite-related silicates compounds, Tb2Pb3Si3O12 (I) and Pb5SiP2O12 (II), were obtained in the crystalline forms. Structure and ELF calculated results reveal that the lone pair cation of Pb2+ preferentially occupies the Cs site, and the repulsion between the mutual lone pair stabilizes channels. Moreover, combining conductivity results this preference has the important implications of exclusion and blocking the movement of the oxide ion in the channel of apatite-related structures. Our findings provide an experimental foundation for further interpreting the conductivity decrease in lone-pair ions as dopants into apatite-related silicate materials.
Collapse
Affiliation(s)
- Ce Tao
- Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Rukang Li
- Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
69
|
Singh G, Singh RP. Multifunctional strontium-sulphate co-substituted hydroxyapatite nanopowders. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
70
|
Abdul Halim NA, Hussein MZ, Kandar MK. Nanomaterials-Upconverted Hydroxyapatite for Bone Tissue Engineering and a Platform for Drug Delivery. Int J Nanomedicine 2021; 16:6477-6496. [PMID: 34584412 PMCID: PMC8464594 DOI: 10.2147/ijn.s298936] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/30/2021] [Indexed: 01/03/2023] Open
Abstract
Hydroxyapatite is a basic mineral that is very important to the human body framework. Recently, synthetic hydroxyapatite (SHA) and its nanocomposites (HANs) are the subject of intense research for bone tissue engineering and drug loading system applications, due to their unique, tailor-made characteristics, as well as their similarities with the bone mineral component in the human body. Although hydroxyapatite has good biocompatibility and osteoconductive characteristics, the poor mechanical strength restricts its use in non-load-bearing applications. Consequently, a rapid increase in reinforcing of other nanomaterials into hydroxyapatite for the formation of HANs could improve the mechanical properties. Most of the research reported on the success of other nanomaterials such as metals, ceramics and natural/synthetic polymers as additions into hydroxyapatite is reviewed. In addition, this review also focuses on the addition of various substances into hydroxyapatite for the formation of various HANs and at the same time to try to minimize the limitations so that various bone tissue engineering and drug loading system applications can be exploited.
Collapse
Affiliation(s)
- Nur Akma Abdul Halim
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Seri Kembangan, Selangor Darul Ehsan, 43400, Malaysia
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Seri Kembangan, Selangor Darul Ehsan, 43400, Malaysia
| | - Mohd Khairuddin Kandar
- Department of Orthopedics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Selangor Darul Ehsan, 43400, Malaysia
| |
Collapse
|
71
|
Wojasiński M, Latocha J, Liszewska P, Makowski Ł, Sobieszuk P, Ciach T. Scaled-Up 3D-Printed Reactor for Precipitation of Lecithin-Modified Hydroxyapatite Nanoparticles. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Michał Wojasiński
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Joanna Latocha
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Paulina Liszewska
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Łukasz Makowski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Paweł Sobieszuk
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Tomasz Ciach
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
- CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
72
|
Hydroxyapatite in Oral Care Products-A Review. MATERIALS 2021; 14:ma14174865. [PMID: 34500955 PMCID: PMC8432723 DOI: 10.3390/ma14174865] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 12/18/2022]
Abstract
Calcium phosphate compounds form the inorganic phases of our mineralised tissues such as bone and teeth, playing an important role in hard tissue engineering and regenerative medicine. In dentistry and oral care products, hydroxyapatite (HA) is a stable and biocompatible calcium phosphate with low solubility being used for various applications such as tooth remineralisation, reduction of tooth sensitivity, oral biofilm control, and tooth whitening. Clinical data on these products is limited with varied results; additionally, the effectiveness of these apatite compounds versus fluoride, which has conventionally been used in toothpaste, has not been established. Therefore, this review critically evaluates current research on HA oral care, and discusses the role and mechanism of HA in remineralisation of both enamel and dentine and for suppressing dentine sensitivity. Furthermore, we position HA’s role in biofilm management and highlight the role of HA in dental applications by summarising the recent achievement and providing an overview of commercialised HA dental products. The review also indicates the existing limitations and provides direction for future research and commercialisation of apatite-based oral care products.
Collapse
|
73
|
Mosaad KE, Shoueir KR, Saied AH, Dewidar MM. New Prospects in Nano Phased Co-substituted Hydroxyapatite Enrolled in Polymeric Nanofiber Mats for Bone Tissue Engineering Applications. Ann Biomed Eng 2021; 49:2006-2029. [PMID: 34378121 DOI: 10.1007/s10439-021-02810-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/03/2021] [Indexed: 01/12/2023]
Abstract
The most common forms of tissue impairment are fracture bones and significant bone disorders caused by multiple traumas or normal aging. Surgical care sometimes necessitates the placement of a temporary or permanent prosthesis, which continues to be a challenge for orthopedic surgeons, including those with large bone defects. Electrospun scaffolds made from natural and synthetic nanofiber-based polymers are studied as natural extracellular matrix (ECM)-like scaffolds for tissue engineering. Besides, nanostructured materials have properties and functions depending on the scale of natural materials such as hydroxyapatite (HAP), ranging from 1 to 100 nm, which activity was proficient upon enrolled in nanofiber mats. The use of nanofibers in combination with nano-HAP has increased the scaffold's ability to replicate the construction of natural bone tissue that is the aim of the present text. In bone engineering, nanofiber substrates facilitate cell adhesion, proliferation, and differentiation, while HAP induces cells to secrete ECM for bone mineralization and development. This review aims to draw the reader's attention to the critical issues with synthetic and natural polymers containing HAP in bone tissue engineering; co-substituted hydroxyapatite has also been mentioned.
Collapse
Affiliation(s)
- Kareem E Mosaad
- Faculty of Engineering, Mechanical Department, Al-Azahar University, Cairo, Egypt
| | - Kamel R Shoueir
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt.
- Institut de Chimie et Procédés Pour l'Énergie, l'Environnement et la Santé (ICPEES), CNRS, UMR 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Ahmed H Saied
- Department of Mechanical Engineering, Faculty of Engineering, Kafrelsheikh University, El-Gaish Street, Kafrelsheikh, Egypt
| | - Montasser M Dewidar
- Department of Mechanical Engineering, Faculty of Engineering, Kafrelsheikh University, El-Gaish Street, Kafrelsheikh, Egypt
- Higher Institute of Engineering and Technology, Kafrelsheikh, Egypt
| |
Collapse
|
74
|
Zdral S, Monge Calleja ÁM, Catarino L, Curate F, Santos AL. Elemental Composition in Female Dry Femora Using Portable X-Ray Fluorescence (pXRF): Association with Age and Osteoporosis. Calcif Tissue Int 2021; 109:231-240. [PMID: 33792736 DOI: 10.1007/s00223-021-00840-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/17/2021] [Indexed: 01/19/2023]
Abstract
Pathophysiological conditions can modify the skeletal chemical concentration. This study analyzes the elemental composition in two anatomical regions from dry femoral bone using a portable X-Ray Fluorescence (pXRF) and evaluates its impact in the bone mineral density (BMD). The left femora of 97 female skeletons (21-95 years old individuals) from the Coimbra Identified Skeletal Collection were studied. Diagenetic biases were discarded at the outset and BMD was determined with Dual-energy X-ray absorptiometry. Chemical measurements were performed at the midpoint of the femoral neck and at the midshaft using a pXRF device, and comparisons were made considering the age and the BMD values. Only elements with a Technical Measurement Error ≤ 5% were selected: P, S, Ca, Fe, Zn, As, Sr, Pb and the Ca/P ratio. Statistically significant differences were found between regions, with higher concentrations of P, Ca, Zn and S at the midshaft, and the Ca/P ratio at the femoral neck. The concentration of P is higher in individuals < 50 years, while S and Ca/P ratio increase in individuals ≥ 50 years. The decrease of P with age can be simultaneously related to the decline of its concentration in osteoporosis. Decreased BMD is also associated with higher levels of S and Pb. Osteoporosis enhances the absorption of osteolytic elements in specific locations. This fast and non-destructive technique has proved effective for the comprehension of chemical changes related to bone mass loss. This study highlights the potential of identified skeletal collections to improve the knowledge about bone fragility.
Collapse
Affiliation(s)
- Sofía Zdral
- Physical Anthropology Unit, Department of Biology, Universidad Autónoma de Madrid, Calle Darwin 2, 28049, Madrid, Spain.
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Regulation of Gene Expression During Development Group, Calle Albert Einstein 22, 39011, Santander, Spain.
| | - Álvaro M Monge Calleja
- Department of Life Sciences, Research Centre for Anthropology and Health (CIAS), University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Lidia Catarino
- Department of Earth Sciences, Geosciences Center (CGeo), University of Coimbra, Rua Sílvio Lima, 3030-790, Coimbra, Portugal
| | - Francisco Curate
- Department of Life Sciences, Research Centre for Anthropology and Health (CIAS), University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Ana Luisa Santos
- Department of Life Sciences, Research Centre for Anthropology and Health (CIAS), University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| |
Collapse
|
75
|
Song Q, Prabakaran S, Duan J, Jeyaraj M, Mickymaray S, Paramasivam A, Rajan M. Enhanced bone tissue regeneration via bioactive electrospun fibrous composite coated titanium orthopedic implant. Int J Pharm 2021; 607:120961. [PMID: 34333026 DOI: 10.1016/j.ijpharm.2021.120961] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/30/2022]
Abstract
One of the very reliable, attractive, and cheapest techniques for synthesizing nanofibers for biomedical applications is electrospinning. Here, we have created a novel nanofibrous composite coated Ti plate to mimic an Extra Cellular Matrix (ECM) of native bone in order to enhance the bone tissue regeneration. An electrospun fibrous composite was obtained by the combination of minerals (Zn, Mg, Si) substituted hydroxyapatite (MHAP)/Polyethylene Glycol (PEG)/Cissus quadrangularis (CQ) extract. Fibrous composite's functionality, phase characteristics, and morphology were evaluated by FT-IR, XRD, and SEM techniques, respectively. The average fiber diameter of MHAP/PVA had decreased from ~274 to ~255 nm after incorporating PEG polymer. That further increased from ~255 to ~275 nm after adding CQ extract. Besides the bioactivity in SBF solution, the degradable nature was confirmed by immersing the fibrous composite in Tris-HCL solution. The degradable studies evaluate that the composite was degraded depending on time, and it degrades about 9.42% after 7 days of immersion. Osteoblasts like MG-63 cells differentiation, proliferation, and calcium deposition were also determined. These results show that this new fibrous composite exhibits advanced osteoblasts properties. Thus, we concluded that this new fibrous scaffold coated Ti implant could act as a better implant to mimic ECM of bone structure and to improve osteogenesis during bone regeneration.
Collapse
Affiliation(s)
- Qichun Song
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Selvakani Prabakaran
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India.
| | - Jiafeng Duan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology Xi'an Jiaotong University, Xi'an 710004, China
| | | | - Suresh Mickymaray
- Department of Biology, College of Science, Al-Zulfi, Majmaah University, Majmaah 11952, Riyadh Region, Saudi Arabia
| | - Anand Paramasivam
- Department of Basic Medical Sciences, College of Dentistry, Al-Zulfi, Majmaah University, Majmaah 11952, Riyadh region, Saudi Arabia
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| |
Collapse
|
76
|
Yuan SJ, Qi XY, Zhang H, Yuan L, Huang J. Doping gadolinium versus lanthanum into hydroxyapatite particles for better biocompatibility in bone marrow stem cells. Chem Biol Interact 2021; 346:109579. [PMID: 34274335 DOI: 10.1016/j.cbi.2021.109579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
Lanthanide ions (Ln3+) doped hydroxyapatite (HAP) particles are well established in biomedical areas. Although Ln elements are closely located in the periodic table and have plenty of similar characteristics, the minor differences in the effective ionic radii could cause alterations in the physicochemical and biological properties of HAP substitutes. The present study synthesized lanthanum-(La-) and gadolinium-(Gd-) doped HAP particles (La-HAP and Gd-HAP). And the effects of two types of particles on bone marrow stem cells (BMSCs) viability were also measured and compared in vitro. The results indicated that the Gd-HAP adsorbed more serum proteins from culture media and inhibited the new layer of apatite formation on its surface when comparing to La-HAP with a similar crystalline structure, particle size, and Zeta potential. These surface modifications can significantly reduce the cell adhesion of Gd-HAP, simultaneously decreasing the Gd-HAP particle uptake efficiency. Moreover, the cell viability of Gd-HAP remained higher than that of La-HAP in culture periods. We concluded that a slight variation in the effective ionic radii between Gd3+ and La3+ could alter the adsorption of serum proteins on the particles' surface, modulating subsequent cellular responses. The present work provides an interesting view that Gd-HAP is endowed with better cellular biocompatibility than La-HAP.
Collapse
Affiliation(s)
- Shuai-Jun Yuan
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, PR China
| | - Xin-Yi Qi
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, PR China
| | - He Zhang
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, PR China
| | - Lan Yuan
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, PR China
| | - Jian Huang
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, PR China.
| |
Collapse
|
77
|
Nanocomposite of cosubstituted carbonated hydroxyapatite fabricated inside Poly(sodium hyaluronate-acrylamide) hydrogel template prepared by gamma radiation for osteoblast cell regeneration. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109408] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
78
|
Zhao R, Yang R, Cooper PR, Khurshid Z, Shavandi A, Ratnayake J. Bone Grafts and Substitutes in Dentistry: A Review of Current Trends and Developments. Molecules 2021; 26:3007. [PMID: 34070157 PMCID: PMC8158510 DOI: 10.3390/molecules26103007] [Citation(s) in RCA: 195] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023] Open
Abstract
After tooth loss, bone resorption is irreversible, leaving the area without adequate bone volume for successful implant treatment. Bone grafting is the only solution to reverse dental bone loss and is a well-accepted procedure required in one in every four dental implants. Research and development in materials, design and fabrication technologies have expanded over the years to achieve successful and long-lasting dental implants for tooth substitution. This review will critically present the various dental bone graft and substitute materials that have been used to achieve a successful dental implant. The article also reviews the properties of dental bone grafts and various dental bone substitutes that have been studied or are currently available commercially. The various classifications of bone grafts and substitutes, including natural and synthetic materials, are critically presented, and available commercial products in each category are discussed. Different bone substitute materials, including metals, ceramics, polymers, or their combinations, and their chemical, physical, and biocompatibility properties are explored. Limitations of the available materials are presented, and areas which require further research and development are highlighted. Tissue engineering hybrid constructions with enhanced bone regeneration ability, such as cell-based or growth factor-based bone substitutes, are discussed as an emerging area of development.
Collapse
Affiliation(s)
- Rusin Zhao
- Department of Oral Science, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand; (R.Z.); (R.Y.); (P.R.C.)
| | - Ruijia Yang
- Department of Oral Science, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand; (R.Z.); (R.Y.); (P.R.C.)
| | - Paul R. Cooper
- Department of Oral Science, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand; (R.Z.); (R.Y.); (P.R.C.)
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Amin Shavandi
- BioMatter Unit—École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50—CP 165/61, 1050 Brussels, Belgium;
| | - Jithendra Ratnayake
- Department of Oral Science, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand; (R.Z.); (R.Y.); (P.R.C.)
| |
Collapse
|
79
|
Goldmann WH. Biosensitive and antibacterial coatings on metallic material for medical applications. Cell Biol Int 2021; 45:1624-1632. [PMID: 33818836 DOI: 10.1002/cbin.11604] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/01/2021] [Indexed: 11/09/2022]
Abstract
Metallic materials are commonly used for load-bearing implants and as internal fixation devices. It is customary to use austenitic stainless steel, especially surgical grade type 316L SS as temporary and Ti alloys as permanent implants. However, long-term, poor bonding with bone, corrosion, and release of metal ions, such as chromium and nickel occur. These ions are powerful allergens and carcinogens and their uncontrolled leaching may be avoided by surface coatings. Therefore, bioactive glasses (BGs) became a vital biomedical material, which can form a biologically active phase of hydroxycarbonate apatite on their surface when in contact with physiological fluids. To reduce the high coefficient of friction and the brittle nature of BGs, polymers are normally incorporated to avoid the high-temperature sintering/densification of ceramic-only coatings. For medical application, electrophoretic deposition (EPD) is now used for polymer (organic) and ceramic (inorganic) components at room temperature due to its simplicity, control of coating thickness and uniformity, low cost of equipment, ability to coat substrates of intricate shape and to supply thick films in composite form, high purity of deposits as well as no phase transformation during coating. Although extensive research has been conducted on polymer/inorganic composite coatings, only some studies have reported multifunctional properties, such as biological antibacterial activity, enhanced cell adhesion, controlled drug release ability, and mechanical properties. This review will focus on biodegradable coatings, including zien, chitosan, gelatin, cellulose loaded with antibacterial drugs/metallic ions/natural herbs on biostable substrates (PEEK/PMMA/PCL/PLLA layers), which have the potential of multifunctional coating for metallic implants.
Collapse
Affiliation(s)
- Wolfgang H Goldmann
- Department of Biophysics, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
80
|
Nowicki DA, Skakle JM, Gibson IR. Maximising carbonate content in sodium-carbonate Co-substituted hydroxyapatites prepared by aqueous precipitation reaction. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
81
|
Shurtakova DV, Yavkin BV, Mamin GV, Orlinskii SB, Sirotinkin VP, Fedotov AY, Shinkarev A, Antuzevics A, Smirnov IV, Tovtin VI, Starostin EE, Gafurov MR, Komlev VS. X-Ray Diffraction and Multifrequency EPR Study of Radiation-Induced Room Temperature Stable Radicals in Octacalcium Phosphate. Radiat Res 2021; 195:200-210. [PMID: 33302290 DOI: 10.1667/rade-20-00194.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/12/2020] [Indexed: 11/03/2022]
Abstract
Octacalcium phosphate (OCP) {Ca8H2(PO4)6×5H2O] has attracted increasing attention over the last decade as a transient intermediate to the biogenic apatite for bone engineering and in studies involving the processes of pathological calcification. In this work, OCP powders obtained by hydrolysis of dicalcium phosphate dehydrate were subjected to X- and γ-ray irradiation and studied by means of stationary and pulsed electron paramagnetic resonance at 9, 36 and 94 GHz microwave frequencies. Several types of paramagnetic centers were observed in the investigated samples. Their spectroscopic parameters (components of the g and hyperfine tensors) were determined. Based on the extracted parameters, the induced centers were ascribed to H0, CO33-, CO2- and nitrogen-centered (presumably NO32-) radicals. The spectroscopic parameters of the nitrogen-centered stable radical in OCP powders were found to be markedly different from those in hydroxyapatite. According to X-ray diffraction data, γ-ray irradiation allowed the phase composition of calcium phosphates to change; all minor phases with the exception of OCP and hydroxyapatite disappeared, while the OCP crystal lattice parameters changed after irradiation. The obtained results could be used for the tracing of mineralization processes from their initiation to completion of the final product, identification of the OCP phase, and to follow the influence of radiation processes on phase composition of calcium phosphates.
Collapse
Affiliation(s)
| | | | - G V Mamin
- Kazan Federal University, Kazan, Russia
| | | | - V P Sirotinkin
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia
| | - A Yu Fedotov
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia
| | - A Shinkarev
- Kazan National Research Technological University, Kazan, Russia
| | - A Antuzevics
- Institute of Solid State Physics, University of Latvia, LV-1063, Riga, Latvia
| | - I V Smirnov
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia
| | - V I Tovtin
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia
| | - E E Starostin
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia
| | | | - V S Komlev
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
82
|
Maqbool M, Nawaz Q, Atiq Ur Rehman M, Cresswell M, Jackson P, Hurle K, Detsch R, Goldmann WH, Shah AT, Boccaccini AR. Synthesis, Characterization, Antibacterial Properties, and In Vitro Studies of Selenium and Strontium Co-Substituted Hydroxyapatite. Int J Mol Sci 2021; 22:4246. [PMID: 33921909 PMCID: PMC8072711 DOI: 10.3390/ijms22084246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
In this study, as a measure to enhance the antimicrobial activity of biomaterials, the selenium ions have been substituted into hydroxyapatite (HA) at different concentration levels. To balance the potential cytotoxic effects of selenite ions (SeO32-) in HA, strontium (Sr2+) was co-substituted at the same concentration. Selenium and strontium-substituted hydroxyapatites (Se-Sr-HA) at equal molar ratios of x Se/(Se + P) and x Sr/(Sr + Ca) at (x = 0, 0.01, 0.03, 0.05, 0.1, and 0.2) were synthesized via the wet precipitation route and sintered at 900 °C. The effect of the two-ion concentration on morphology, surface charge, composition, antibacterial ability, and cell viability were studied. X-ray diffraction verified the phase purity and confirmed the substitution of selenium and strontium ions. Acellular in vitro bioactivity tests revealed that Se-Sr-HA was highly bioactive compared to pure HA. Se-Sr-HA samples showed excellent antibacterial activity against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus carnosus) bacterial strains. In vitro cell-material interaction, using human osteosarcoma cells MG-63 studied by WST-8 assay, showed that Se-HA has a cytotoxic effect; however, the co-substitution of strontium in Se-HA offsets the negative impact of selenium and enhanced the biological properties of HA. Hence, the prepared samples are a suitable choice for antibacterial coatings and bone filler applications.
Collapse
Affiliation(s)
- Muhammad Maqbool
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (M.M.); (Q.N.); (M.A.U.R.); (R.D.)
- Lucideon Ltd., Penkhull, Stoke-on-Trent, Staffordshire ST4 7LQ, UK; (M.C.); (P.J.)
- CAM Bioceramics B.V., 2333 CL Leiden, The Netherlands
| | - Qaisar Nawaz
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (M.M.); (Q.N.); (M.A.U.R.); (R.D.)
| | - Muhammad Atiq Ur Rehman
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (M.M.); (Q.N.); (M.A.U.R.); (R.D.)
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan
| | - Mark Cresswell
- Lucideon Ltd., Penkhull, Stoke-on-Trent, Staffordshire ST4 7LQ, UK; (M.C.); (P.J.)
| | - Phil Jackson
- Lucideon Ltd., Penkhull, Stoke-on-Trent, Staffordshire ST4 7LQ, UK; (M.C.); (P.J.)
| | - Katrin Hurle
- GeoZentrum Nordbayern, Mineralogy, University of Erlangen-Nuremberg, 91054 Erlangen, Germany;
| | - Rainer Detsch
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (M.M.); (Q.N.); (M.A.U.R.); (R.D.)
| | - Wolfgang H. Goldmann
- Department of Biophysics, University of Erlangen-Nuremberg, 91052 Erlangen, Germany;
| | - Asma Tufail Shah
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Defence Road, Off-Raiwind Road, Lahore 54000, Pakistan;
| | - Aldo R. Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (M.M.); (Q.N.); (M.A.U.R.); (R.D.)
| |
Collapse
|
83
|
Marcello E, Maqbool M, Nigmatullin R, Cresswell M, Jackson PR, Basnett P, Knowles JC, Boccaccini AR, Roy I. Antibacterial Composite Materials Based on the Combination of Polyhydroxyalkanoates With Selenium and Strontium Co-substituted Hydroxyapatite for Bone Regeneration. Front Bioeng Biotechnol 2021; 9:647007. [PMID: 33898403 PMCID: PMC8059794 DOI: 10.3389/fbioe.2021.647007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/04/2021] [Indexed: 11/25/2022] Open
Abstract
Due to the threat posed by the rapid growth in the resistance of microbial species to antibiotics, there is an urgent need to develop novel materials for biomedical applications capable of providing antibacterial properties without the use of such drugs. Bone healing represents one of the applications with the highest risk of postoperative infections, with potential serious complications in case of bacterial contaminations. Therefore, tissue engineering approaches aiming at the regeneration of bone tissue should be based on the use of materials possessing antibacterial properties alongside with biological and functional characteristics. In this study, we investigated the combination of polyhydroxyalkanoates (PHAs) with a novel antimicrobial hydroxyapatite (HA) containing selenium and strontium. Strontium was chosen for its well-known osteoinductive properties, while selenium is an emerging element investigated for its multi-functional activity as an antimicrobial and anticancer agent. Successful incorporation of such ions in the HA structure was obtained. Antibacterial activity against Staphylococcus aureus 6538P and Escherichia coli 8739 was confirmed for co-substituted HA in the powder form. Polymer-matrix composites based on two types of PHAs, P(3HB) and P(3HO-co-3HD-co-3HDD), were prepared by the incorporation of the developed antibacterial HA. An in-depth characterization of the composite materials was conducted to evaluate the effect of the filler on the physicochemical, thermal, and mechanical properties of the films. In vitro antibacterial testing showed that the composite samples induce a high reduction of the number of S. aureus 6538P and E. coli 8739 bacterial cells cultured on the surface of the materials. The films are also capable of releasing active ions which inhibited the growth of both Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Elena Marcello
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Muhammad Maqbool
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
- Lucideon Ltd., Stoke-on-Trent, United Kingdom
- CAM Bioceramics B.V., Leiden, Netherlands
| | - Rinat Nigmatullin
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
- Bristol Composites Institute (ACCIS), University of Bristol, Bristol, United Kingdom
| | | | | | - Pooja Basnett
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Jonathan C. Knowles
- Division of Biomaterials and Tissue Engineering, Faculty of Medical Sciences, University College London Eastman Dental Institute, London, United Kingdom
- Department of Nanobiomedical Science and BK21 Plus NBM, Global Research Center for Regenerative Medicine, Dankook University, Cheonan, South Korea
- The Discoveries Centre for Regenerative and Precision Medicine, University College London, London, United Kingdom
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ipsita Roy
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
- Department of Materials Science and Engineering, Faculty of Engineering, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
84
|
Yang L, Ullah I, Yu K, Zhang W, Zhou J, Sun T, Shi L, Yao S, Chen K, Zhang X, Guo X. Bioactive Sr 2+/Fe 3+co-substituted hydroxyapatite in cryogenically 3D printed porous scaffolds for bone tissue engineering. Biofabrication 2021; 13. [PMID: 33260162 DOI: 10.1088/1758-5090/abcf8d] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022]
Abstract
Developing multi-doped bioceramics that possess biological multifunctionality is becoming increasingly attractive and promising for bone tissue engineering. In this view innovative Sr2+/Fe3+co-substituted nano-hydroxyapatite with gradient doping concentrations fixed at 10 mol% has been deliberately designed previously. Herein, to evaluate their therapeutic potentials for bone healing, novel gradient SrFeHA/PCL scaffolds are fabricated by extrusion cryogenic 3D printing technology with subsequent lyophilization. The obtained scaffolds exhibit desired 3D interconnected porous structure and rough microsurface, along with appreciable release of bioactive Sr2+/Fe3+from SrFeHA components. These favorable physicochemical properties render printed scaffolds realizing effective biological applications bothin vitroandin vivo, particularly the moderate co-substituted Sr7.5Fe2.5HA and Sr5Fe5HA groups exhibit remarkably enhanced bioactivity that not only promotes the functions of MC3T3 osteoblasts and HUVECs directly, but also energetically manipulates favorable macrophages activation to concurrently facilitate osteogenesis/angiogenesis. Moreover,in vivosubcutaneous implantation and cranial defects repair outcomes further confirm their superior capacity to dictate immune reaction, implants vascularization andin situbone regeneration, mainly dependent on the synergetic effects of released Sr2+/Fe3+. Accordingly, for the first time, present study highlights the great potential of Sr7.5Fe2.5HA and Sr5Fe5HA for ameliorating bone regeneration process by coupling of immunomodulation with enhanced angio- and osteogenesis and hence may provide a new promising alternative for future bone tissue engineering.
Collapse
Affiliation(s)
- Liang Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.,L Yang, I Ullah and K D Yu contributed equally to this work
| | - Ismat Ullah
- State Key Laboratory of Materials Processing and Die/Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.,L Yang, I Ullah and K D Yu contributed equally to this work
| | - Keda Yu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.,L Yang, I Ullah and K D Yu contributed equally to this work
| | - Wancheng Zhang
- State Key Laboratory of Materials Processing and Die/Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Jinge Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Tingfang Sun
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Lei Shi
- State Key Laboratory of Materials Processing and Die/Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Sheng Yao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Kaifang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Xianglin Zhang
- State Key Laboratory of Materials Processing and Die/Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Xiaodong Guo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| |
Collapse
|
85
|
Mg,Si-Co-Substituted Hydroxyapatite/Alginate Composite Beads Loaded with Raloxifene for Potential Use in Bone Tissue Regeneration. Int J Mol Sci 2021; 22:ijms22062933. [PMID: 33805785 PMCID: PMC7999305 DOI: 10.3390/ijms22062933] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 01/08/2023] Open
Abstract
Osteoporosis is a worldwide chronic disease characterized by increasing bone fragility and fracture likelihood. In the treatment of bone defects, materials based on calcium phosphates (CaPs) are used due to their high resemblance to bone mineral, their non-toxicity, and their affinity to ionic modifications and increasing osteogenic properties. Moreover, CaPs, especially hydroxyapatite (HA), can be successfully used as a vehicle for local drug delivery. Therefore, the aim of this work was to fabricate hydroxyapatite-based composite beads for potential use as local carriers for raloxifene. HA powder, modified with magnesium and silicon ions (Mg,Si-HA) (both of which play beneficial roles in bone formation), was used to prepare composite beads. As an organic matrix, sodium alginate with chondroitin sulphate and/or keratin was applied. Cross-linking of beads containing raloxifene hydrochloride (RAL) was carried out with Mg ions in order to additionally increase the concentration of this element on the material surface. The morphology and porosity of three different types of beads obtained in this work were characterized by scanning electron microscopy (SEM) and mercury intrusion porosimetry, respectively. The Mg and Si released from the Mg,Si-HA powder and from the beads were measured by inductively coupled plasma optical emission spectrometry (ICP-OES). In vitro RAL release profiles were investigated for 12 weeks and studied using UV/Vis spectroscopy. The beads were also subjected to in vitro biological tests on osteoblast and osteosarcoma cell lines. All the obtained beads revealed a spherical shape with a rough, porous surface. The beads based on chondroitin sulphate and keratin (CS/KER-RAL) with the lowest porosity resulted in the highest resistance to crushing. Results revealed that these beads possessed the most sustained drug release and no burst release effect. Based on the results, it was possible to select the optimal bead composition, consisting of a mixture of chondroitin sulphate and keratin.
Collapse
|
86
|
Advances in the Fabrication of Scaffold and 3D Printing of Biomimetic Bone Graft. Ann Biomed Eng 2021; 49:1128-1150. [PMID: 33674908 DOI: 10.1007/s10439-021-02752-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/14/2021] [Indexed: 12/26/2022]
Abstract
The need for bone grafts is tremendous, and that leads to the use of autograft, allograft, and bone graft substitutes. The biology of the bone is quite complex regarding cellular composition and architecture, hence developing a mineralized connective tissue graft is challenging. Traditionally used bone graft substitutes including metals, biomaterial coated metals and biodegradable scaffolds, suffer from persistent limitations. With the advent and rise of additive manufacturing technologies, the future of repairing bone trauma and defects seems to be optimistic. 3D printing has significant advantages, the foremost of all being faster manipulation of various biocompatible materials and live cells or tissues into the complex natural geometries necessary to mimic and stimulate cellular bone growth. The advent of new-generation bioprinters working with high-precision, micro-dispensing and direct digital manufacturing is aiding in ground-breaking organ and tissue printing, including the bone. The future bone replacement for patients holds excellent promise as scientists are moving closer to the generation of better 3D printed bio-bone grafts that will be safer and more effective. This review aims to summarize the advances in scaffold fabrication techniques, emphasizing 3D printing of biomimetic bone grafts.
Collapse
|
87
|
Wang SH, Lee SP, Yang CW, Lo CM. Surface Modification of Biodegradable Mg-Based Scaffolds for Human Mesenchymal Stem Cell Proliferation and Osteogenic Differentiation. MATERIALS 2021; 14:ma14020441. [PMID: 33477485 PMCID: PMC7831072 DOI: 10.3390/ma14020441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022]
Abstract
Magnesium alloys with coatings have the potential to be used for bone substitute alternatives since their mechanical properties are close to those of human bone. However, the surface modification of magnesium alloys to increase the surface biocompatibility and reduce the degradation rate remains a challenge. Here, FHA-Mg scaffolds were made of magnesium alloys and coated with fluorohydroxyapatite (FHA). Human mesenchymal stem cells (hMSCs) were cultured on FHA-Mg scaffolds and cell viability, proliferation, and osteogenic differentiation were investigated. The results showed that FHA-Mg scaffolds display a nano-scaled needle-like structure of aggregated crystallites on their surface. The average Mg2+ concentration in the conditioned media collected from FHA-Mg scaffolds (5.8–7.6 mM) is much lower than those collected from uncoated, Mg(OH)2-coated, and hydroxyapatite (HA)-coated samples (32.1, 17.7, and 21.1 mM, respectively). In addition, compared with hMSCs cultured on a culture dish, cells cultured on FHA-Mg scaffolds demonstrated better proliferation and comparable osteogenic differentiation. To eliminate the effect of osteogenic induction medium, hMSCs were cultured on FHA-Mg scaffolds in culture medium and an approximate 66% increase in osteogenic differentiation was observed three weeks later, indicating a significant effect of the nanostructured surface of FHA-Mg scaffolds on hMSC behaviors. With controllable Mg2+ release and favorable mechanical properties, porous FHA-Mg scaffolds have a great potential in cell-based bone regeneration.
Collapse
Affiliation(s)
- Si-Han Wang
- Department of Biomedical Engineering, National Yang-Ming University, Taipei 11221, Taiwan;
| | - Shiao-Pieng Lee
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, School of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Chung-Wei Yang
- Department of Materials Science and Engineering, National Formosa University, Yunlin 632, Taiwan
- Correspondence: (C.-W.Y.); (C.-M.L.); Tel.: +886-5-6315478 (C.-W.Y.); +886-2-28267018 (C.-M.L.)
| | - Chun-Min Lo
- Department of Biomedical Engineering, National Yang-Ming University, Taipei 11221, Taiwan;
- Correspondence: (C.-W.Y.); (C.-M.L.); Tel.: +886-5-6315478 (C.-W.Y.); +886-2-28267018 (C.-M.L.)
| |
Collapse
|
88
|
Andalib N, Kehtari M, Seyedjafari E, Motamed N, Matin MM. In vivo bone regeneration using a bioactive nanocomposite scaffold and human mesenchymal stem cells. Cell Tissue Bank 2021; 22:467-477. [PMID: 33398491 DOI: 10.1007/s10561-020-09894-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 12/15/2020] [Indexed: 11/25/2022]
Abstract
Due to the osteoconductive role of bioceramics, use of these bioactive nanocomposite scaffolds that can maintain their structural integrity during bone tissue repair is one of the major goals of tissue engineering. Herein, a nanofibrous poly-L-lactic acid (PLLA) scaffold was fabricated by electrospinning and then gelatin and hydroxyapatite nanoparticles (nHA) were coated over the surface of the scaffold. Osteoconductivity of the fabricated nano-composite scaffolds was then studied while grafted on the rat calvarial defects. Our results indicated that the coating of PLLA scaffold with nHA and gelatin increased the adhesion and growth of the human bone marrow derived mesenchymal stem cells (BM-MSCs) and also significantly increased the level of mineralization over a week culture period. The results of radiographic and histological studies showed that the newly created bone tissue at the defect site was significantly higher in animals treated with nanocomposite scaffolds than the empty scaffolds and control groups. This increase in the defect reconstruction was significantly increased after culturing BM-MSCs on the scaffolds, especially nanocomposite scaffolds. It can be concluded that the combination of nanocomposite scaffolds and BM-MSCs could be a very good candidate for treatment of bone lesions and could be considered as a bony bioimplant.
Collapse
Affiliation(s)
- Nazanin Andalib
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mousa Kehtari
- Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran.
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Nassrin Motamed
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran. .,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran. .,Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran.
| |
Collapse
|
89
|
Mocanu A, Cadar O, Frangopol PT, Petean I, Tomoaia G, Paltinean GA, Racz CP, Horovitz O, Tomoaia-Cotisel M. Ion release from hydroxyapatite and substituted hydroxyapatites in different immersion liquids: in vitro experiments and theoretical modelling study. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201785. [PMID: 33614097 PMCID: PMC7890514 DOI: 10.1098/rsos.201785] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/20/2020] [Indexed: 05/06/2023]
Abstract
Multi-substituted hydroxyapatites (ms-HAPs) are currently gaining more consideration owing to their multifunctional properties and biomimetic structure, owning thus an enhanced biological potential in orthopaedic and dental applications. In this study, nano-hydroxyapatite (HAP) substituted with multiple cations (Sr2+, Mg2+ and Zn2+) for Ca2+ and anion ( Si O 4 4 - ) for P O 4 3 - and OH-, specifically HAPc-5%Sr and HAPc-10%Sr (where HAPc is HAP-1.5%Mg-0.2%Zn-0.2%Si), both lyophilized non-calcined and lyophilized calcined, were evaluated for their in vitro ions release. These nanomaterials were characterized by scanning electron microscopy, field emission-scanning electron microscopy and energy-dispersive X-ray, as well as by atomic force microscope images and by surface specific areas and porosity. Further, the release of cations and of phosphate anions were assessed from nano-HAP and ms-HAPs, both in water and in simulated body fluid, in static and simulated dynamic conditions, using inductively coupled plasma optical emission spectrometry. The release profiles were analysed and the influence of experimental conditions was determined for each of the six nanomaterials and for various periods of time. The pH of the samples soaked in the immersion liquids was also measured. The ion release mechanism was theoretically investigated using the Korsmeyer-Peppas model. The results indicated a mechanism principally based on diffusion and dissolution, with possible contribution of ion exchange. The surface of ms-HAP nanoparticles is more susceptible to dissolution into immersion liquids owing to the lattice strain provoked by simultaneous multi-substitution in HAP structure. According to the findings, it is rational to suggest that both materials HAPc-5%Sr and HAPc-10%Sr are bioactive and can be potential candidates in bone tissue regeneration.
Collapse
Affiliation(s)
- Aurora Mocanu
- Faculty of Chemistry and Chemical Engineering, Physical Chemistry Centre, Chemical Engineering Department, Babes-Bolyai University of Cluj-Napoca, 11 Arany J. Street, 400028 Cluj-Napoca, Romania
| | - Oana Cadar
- INCDO INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Petre T. Frangopol
- Faculty of Chemistry and Chemical Engineering, Physical Chemistry Centre, Chemical Engineering Department, Babes-Bolyai University of Cluj-Napoca, 11 Arany J. Street, 400028 Cluj-Napoca, Romania
| | - Ioan Petean
- Faculty of Chemistry and Chemical Engineering, Physical Chemistry Centre, Chemical Engineering Department, Babes-Bolyai University of Cluj-Napoca, 11 Arany J. Street, 400028 Cluj-Napoca, Romania
| | - Gheorghe Tomoaia
- Department of Orthopedics and Traumatology, Iuliu Hatieganu University of Medicine and Pharmacy, 400132 Cluj-Napoca, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Gertrud-Alexandra Paltinean
- Faculty of Chemistry and Chemical Engineering, Physical Chemistry Centre, Chemical Engineering Department, Babes-Bolyai University of Cluj-Napoca, 11 Arany J. Street, 400028 Cluj-Napoca, Romania
| | - Csaba Pal Racz
- Faculty of Chemistry and Chemical Engineering, Physical Chemistry Centre, Chemical Engineering Department, Babes-Bolyai University of Cluj-Napoca, 11 Arany J. Street, 400028 Cluj-Napoca, Romania
| | - Ossi Horovitz
- Faculty of Chemistry and Chemical Engineering, Physical Chemistry Centre, Chemical Engineering Department, Babes-Bolyai University of Cluj-Napoca, 11 Arany J. Street, 400028 Cluj-Napoca, Romania
| | - Maria Tomoaia-Cotisel
- Faculty of Chemistry and Chemical Engineering, Physical Chemistry Centre, Chemical Engineering Department, Babes-Bolyai University of Cluj-Napoca, 11 Arany J. Street, 400028 Cluj-Napoca, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| |
Collapse
|
90
|
Schneider Werner Vianna T, Sartoretto SC, Neves Novellino Alves AT, Figueiredo de Brito Resende R, de Almeida Barros Mourão CF, de Albuquerque Calasans-Maia J, Martinez-Zelaya VR, Malta Rossi A, Granjeiro JM, Calasans-Maia MD, Seabra Louro R. Nanostructured Carbonated Hydroxyapatite Associated to rhBMP-2 Improves Bone Repair in Rat Calvaria. J Funct Biomater 2020; 11:jfb11040087. [PMID: 33291525 PMCID: PMC7768361 DOI: 10.3390/jfb11040087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 12/22/2022] Open
Abstract
Many biomaterials are used for Bone Morphogenetic Proteins (BMPs) delivery in bone tissue engineering. The BMP carrier system's primary function is to hold these growth factors at the wound's site for a prolonged time and provide initial support for cells to attach and elaborate the extracellular matrix for bone regeneration. This study aimed to evaluate the nanostructured carbonated hydroxyapatite microspheres (nCHA) as an rhBMP-2 carrier on rats calvaria. A total of fifteen male Wistar rats were randomly divided into three groups (n = 5): clot (control group), rhBMP-2 associated with collagen membrane (COL/rhBMP-2) or associated with the microspheres (nCHA/rhBMP-2). After 45 days, the calvaria defect samples were evaluated through histological, histomorphometric, and SR-µCT analyses to investigate new-formed bone and connective tissue volume densities. The descriptive histological analysis showed that nCHA/rhBMP-2 improved bone formation compared to other groups. These results were confirmed by histomorphometric and SR-µCT analysis that showed substantially defect area filling with a higher percentage of newly formed (36.24 ± 6.68) bone than those with the COL/rhBMP-2 (0.42 ± 0.40) and Clot (3.84 ± 4.57) (p < 0.05). The results showed that nCHA is an effective carrier for rhBMP-2 encouraging bone healing and an efficient alternative to collagen membrane for rhBMP-2 delivery.
Collapse
Affiliation(s)
- Thiago Schneider Werner Vianna
- Pos-Graduation Program, Dentistry School, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil; (T.S.W.V.); (C.F.d.A.B.M.); (J.M.G.)
| | - Suelen Cristina Sartoretto
- Oral Surgery Department, Universidade Veiga de Almeida, Rio de Janeiro 20271-020, Brazil;
- Oral Surgery Department, Universidade Iguaçu, Rio de Janeiro 26260-045, Brazil;
| | | | - Rodrigo Figueiredo de Brito Resende
- Oral Surgery Department, Universidade Iguaçu, Rio de Janeiro 26260-045, Brazil;
- Oral Surgery Department, Dentistry School, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil;
| | | | | | - Victor R. Martinez-Zelaya
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo 13083-970, Brazil;
| | - Alexandre Malta Rossi
- Department of Condensed Matter, Applied Physics and Nanoscience, Brazilian Center for Research in Physics, Rio de Janeiro 22290-180, Brazil;
| | - Jose Mauro Granjeiro
- Pos-Graduation Program, Dentistry School, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil; (T.S.W.V.); (C.F.d.A.B.M.); (J.M.G.)
- Directory of Life Sciences Applied Metrology, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias 25250-020, Brazil
| | - Monica Diuana Calasans-Maia
- Oral Surgery Department, Dentistry School, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil;
- Correspondence: ; Tel.: +55-21-981535884
| | - Rafael Seabra Louro
- Oral Surgery Department, Dentistry School, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil;
| |
Collapse
|
91
|
Copper containing silicocarnotite bioceramic with improved mechanical strength and antibacterial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111493. [PMID: 33255060 DOI: 10.1016/j.msec.2020.111493] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Accepted: 09/06/2020] [Indexed: 12/17/2022]
Abstract
Copper is well known for its multifunctional biological effects including antibacterial and angiogenic activities, while silicon-containing bioceramic has proved to possess superior biological properties to hydroxyapatite (HA). In this work, CuO was introduced to silicocarnotite (Ca5(PO4)2SiO4, CPS) to simultaneously enhance its mechanical and antibacterial properties, and its cytocompatibility was also evaluated. Results showed that CuO could significantly facilitate the densification process of CPS bioceramic through liquid-phase sintering. The bending strength of CPS with the addition of 3.0 wt% CuO improved from 29.2 MPa to 63.4 MPa after sintered at 1200 °C. Moreover, Cu-CPS bioceramics demonstrated superior in vitro antibacterial property against both S. aureus and E. coli strains by destroying their membrane integrity, and the antibacterial activity augmented with CuO content. Meanwhile, the released Cu ions from Cu-CPS bioceramics could promote the proliferation of human umbilical vein endothelial cells (HUVECs), and the in vitro cytocompatibility exhibited concentration dependence on Cu ions. These suggest that Cu-CPS bioceramics might be promising candidates for bone tissue regeneration with an ability to prevent postoperative infections.
Collapse
|
92
|
Ma L, Su W, Ran Y, Ma X, Yi Z, Chen G, Chen X, Deng Z, Tong Q, Wang X, Li X. Synthesis and characterization of injectable self-healing hydrogels based on oxidized alginate-hybrid-hydroxyapatite nanoparticles and carboxymethyl chitosan. Int J Biol Macromol 2020; 165:1164-1174. [DOI: 10.1016/j.ijbiomac.2020.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/09/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
|
93
|
Strutynska N, Livitska O, Prylutska S, Yumyna Y, Zelena P, Skivka L, Malyshenko A, Vovchenko L, Strelchuk V, Prylutskyy Y, Slobodyanik N, Ritter U. New nanostructured apatite-type (Na+,Zn2+,CO32−)-doped calcium phosphates: Preparation, mechanical properties and antibacterial activity. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128932] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
94
|
Asadi F, Forootanfar H, Ranjbar M. A facile one-step preparation of Ca 10(PO 4) 6(OH) 2/Li-BioMOFs resin nanocomposites with Glycyrrhiza glabra (licorice) root juice as green capping agent and mechanical properties study. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:1331-1339. [PMID: 33170039 DOI: 10.1080/21691401.2020.1842748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Ca10(PO4)6(OH)2/Li-BioMOFs resin nanocomposites were prepared and introduced as a new dental resin nanocomposite. Ca10(PO4)6(OH)2/Li-BioMOFs resin nanocomposites were synthesized with individual mechanical properties in the presence of lecithin as a biostabilizer. The hydrothermal synthesis of hydroxyapatite (HAp) nanostructures occurred in the presence of Glycyrrhiza glabra (liquorice) root juice that acts not only as a green capping agent but also as a reductant compound with a high steric hindrance agent. Results showed that the mechanical properties of nano-Ca10(PO4)6(OH)2 structures with a concentration of 60 ppm Li-BioMOF were increased by ∼132.5 MPa and 11.5 GPa for the flexural and Young's modulus, respectively. Based on the optical absorption ultraviolet-visible spectrum, the HAp nanocrystallites had a direct bandgap energy of 4.2 eV. The structural, morphological, and mechanical properties of the as-prepared nanoparticles were characterized with the FT-IR (Fourier-transform infra-red), UV-Vis (ultraviolet visible) spectrums, X-ray diffraction, SEM (scanning electron microscopy), and TEM (transmission electron microscopy) images, and atomic force microscopy (AFM). It is suggested that HAp structures loaded on the Li-BioMOFs are as a suitable and novel substrate which can be considered as a promising biomaterial in dental resin nanocomposites significantly improved the strength and modulus.
Collapse
Affiliation(s)
- Fahimeh Asadi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Ranjbar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.,Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
95
|
Jacobs A, Renaudin G, Forestier C, Nedelec JM, Descamps S. Biological properties of copper-doped biomaterials for orthopedic applications: A review of antibacterial, angiogenic and osteogenic aspects. Acta Biomater 2020; 117:21-39. [PMID: 33007487 DOI: 10.1016/j.actbio.2020.09.044] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
Copper is an essential trace element required for human life, and is involved in several physiological mechanisms. Today researchers have found and confirmed that Cu has biological properties which are particularly useful for orthopedic biomaterials applications such as implant coatings or biodegradable filler bone substitutes. Indeed, Cu exhibits antibacterial functions, provides angiogenic ability and favors osteogenesis; these represent major key points for ideal biomaterial integration and the healing process that follows. The antibacterial performances of copper-doped biomaterials present an interesting alternative to the massive use of prophylactic antibiotics and help to limit the development of antibiotic resistance. By stimulating blood vessel growth and new bone formation, copper contributes to the improved bio-integration of biomaterials. This review describes the bio-functional advantages offered by Cu and focuses on the antibacterial, angiogenic and osteogenic properties of Cu-doped biomaterials with potential for orthopedic applications.
Collapse
|
96
|
Interplay between surface chemistry and osteogenic behaviour of sulphate substituted nano-hydroxyapatite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111617. [PMID: 33545812 DOI: 10.1016/j.msec.2020.111617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/28/2020] [Accepted: 10/06/2020] [Indexed: 11/22/2022]
Abstract
Surface potential and chemical compositions of the bioceramics are the core of therapeutic effect and are key factors to trigger the interfacial interactions with surrounding hard and soft tissues to repair and regeneration. Ionic substitution in hydroxyapatite (Hap) lattice significantly influences the zeta potential from -16.46 ± 0.66 mV to -6.01 ± 0.68 mV as well as an average nano-rod length from ~40 nm to ~26 nm with respect to SO42- ion content. Moreover, the surface chemistry of Hap is mainly inter-related to SO42- substitution rate at PO42- site. Specifically, nano-sized feature with lowered negative surface potential influences the protein adsorption via their weak repulsive or attractive forces. Bovine serum albumin (BSA) and lysozyme (LSZ) adsorption studies confirmed the increased affinity to active binding sites of Hap's surface. Further, SO42- ion substituted Hap (SNHA) showed improved in vitro biomineralization activity and alkaline phosphatase activity. Expression of osteogenic biomarkers such as collagen I, V, osteopontin and osteocalcin were evaluated in Saos-2 and MC3T3-E1 cells. Gene expression of these markers was influenced by SO42- ion content in Hap (maximum with 10SNHA). Altogether, these data emphasizes that chemical composition and surface properties are dominant aspect in bioceramic development towards bone regeneration.
Collapse
|
97
|
Lyons JG, Plantz MA, Hsu WK, Hsu EL, Minardi S. Nanostructured Biomaterials for Bone Regeneration. Front Bioeng Biotechnol 2020; 8:922. [PMID: 32974298 PMCID: PMC7471872 DOI: 10.3389/fbioe.2020.00922] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
This review article addresses the various aspects of nano-biomaterials used in or being pursued for the purpose of promoting bone regeneration. In the last decade, significant growth in the fields of polymer sciences, nanotechnology, and biotechnology has resulted in the development of new nano-biomaterials. These are extensively explored as drug delivery carriers and as implantable devices. At the interface of nanomaterials and biological systems, the organic and synthetic worlds have merged over the past two decades, forming a new scientific field incorporating nano-material design for biological applications. For this field to evolve, there is a need to understand the dynamic forces and molecular components that shape these interactions and influence function, while also considering safety. While there is still much to learn about the bio-physicochemical interactions at the interface, we are at a point where pockets of accumulated knowledge can provide a conceptual framework to guide further exploration and inform future product development. This review is intended as a resource for academics, scientists, and physicians working in the field of orthopedics and bone repair.
Collapse
Affiliation(s)
- Joseph G. Lyons
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Mark A. Plantz
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Wellington K. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Erin L. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Silvia Minardi
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| |
Collapse
|
98
|
Gritsch L, Maqbool M, Mouriño V, Ciraldo FE, Cresswell M, Jackson PR, Lovell C, Boccaccini AR. Chitosan/hydroxyapatite composite bone tissue engineering scaffolds with dual and decoupled therapeutic ion delivery: copper and strontium. J Mater Chem B 2020; 7:6109-6124. [PMID: 31549696 DOI: 10.1039/c9tb00897g] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Therapeutic metal ions are a family of metal ions characterized by specific biological properties that could be exploited in bone tissue engineering, avoiding the use of expensive and potentially problematic growth factors and other sensitive biomolecules. In this work, we report the successful preparation and characterization of two material platforms containing therapeutic ions: a copper(ii)-chitosan derivative and a strontium-substituted hydroxyapatite. These biomaterials showed ideal ion release profiles, offering burst release of an antibacterial agent together with a more sustained release of strontium in order to achieve long-term osteogenesis. We combined copper(ii)-chitosan and strontium-hydroxyapatite into freeze-dried composite scaffolds. These scaffolds were characterized in terms of morphology, mechanical properties and bioactivity, defined here as the ability to trigger the deposition of novel calcium phosphate in contact with biological fluids. In addition, a preliminary biological characterization using cell line osteoblasts was performed. Our results highlighted that the combination of chitosan and hydroxyapatite in conjunction with copper and strontium has great potential in the design of novel scaffolds. Chitosan/HA composites can be an ideal technology for the development of tissue engineering scaffolds that deliver a complex arrays of therapeutic ions in both components of the composite, leading to tailored biological effects, from antibacterial activity, to osteogenesis and angiogenesis.
Collapse
Affiliation(s)
- Lukas Gritsch
- Institute of Biomaterials, Friedrich-Alexander-University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Liu L, Lu ST, Liu AH, Hou WB, Cao WR, Zhou C, Yin YX, Yuan KS, Liu HJ, Zhang MG, Zhang HJ. Comparison of complications in cranioplasty with various materials: a systematic review and meta-analysis. Br J Neurosurg 2020; 34:388-396. [PMID: 32233810 DOI: 10.1080/02688697.2020.1742291] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective: Meta-analysis to evaluate complications in the use of autogenous bone and bone substitutes and to compare bone substitutes, specifically HA, polyetheretherketone (PEEK) and titanium materials.Methods: Search of PubMed, Cochrane, Embase and Google scholar to identify all citations from 2010 to 2019 reporting complications regarding materials used in cranioplasty.Results: 20 of 2266 articles met the inclusion criteria, including a total of 2913 patients. The odds of overall complication were significantly higher in the autogenous bone group (n = 214/644 procedures, 33.2%) than the bone substitute groups (n = 116/436 procedures, 26.7%, CI 1.29-2.35, p < 0.05). In bone substitutes groups, there was no significant difference in overall complication rate between HA and Ti (OR, 1.2; 95% CI, 0.47-3.14, p = 0.69). PEEK has lower overall complication rates (OR, 0.51; 95% CI, 0.30-0.87, p = 0.01) and lower implant exposure rates (OR, 0.17; 95% CI, 0.06-0.53, p = 0.002) than Ti, but there was no significant difference in infection rates and postoperative hematoma rates.Conclusions: Cranioplasty is associated with high overall complication rates with the use of autologous bone grafts compared with bone substitutes. PEEK has a relatively low overall complication rates in substitutes groups, but still high infection rates and postoperative hematoma rates. Thus, autologous bone grafts should only be used selectively, and prospective long-term studies are needed to further refine a better material in cranioplasty.
Collapse
Affiliation(s)
- Liming Liu
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, China
| | - Shou-Tao Lu
- Tenth People's Hospital, Tongji University, Shanghai, China
| | - Ai-Hua Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurointerventional Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wen-Bo Hou
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, China
| | - Wen-Rui Cao
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, China
| | - Chao Zhou
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, China
| | - Yu-Xia Yin
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, China
| | - Kun-Shan Yuan
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, China
| | - Han-Jie Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ming-Guang Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hai-Jun Zhang
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, China.,Tenth People's Hospital, Tongji University, Shanghai, China.,Faculty of Medicine, Aalborg University, Alborg, Denmark
| |
Collapse
|
100
|
Mondragón E, Cowdin M, Taraballi F, Minardi S, Tasciotti E, Gregory CA, Kaunas R. Mimicking the Organic and Inorganic Composition of Anabolic Bone Enhances Human Mesenchymal Stem Cell Osteoinduction and Scaffold Mechanical Properties. Front Bioeng Biotechnol 2020; 8:753. [PMID: 32719790 PMCID: PMC7347795 DOI: 10.3389/fbioe.2020.00753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022] Open
Abstract
Engineered bone graft designs have been largely inspired by adult bone despite functionally significant differences from the composition of anabolic bone in both the mineralized and non-mineralized fractions. Specifically, anabolic bone contains hydroxyapatite with ionic substitutions that facilitate bone turnover and relatively rare collagens type VI and XII that are important for normal bone development. In this work, human mesenchymal stem cells (hMSCs) were cultured in lyophilized collagen type I scaffolds mineralized with hydroxyapatite containing Mg2+ substitutions, then induced to deposit an extracellular matrix (ECM) containing collagens VI and XII by exposure to GW9662, a PPARγ inhibitor. Delivery of GW9662 was accomplished through either Supplemented Media or via composite microspheres embedded in the scaffolds for localized delivery. Furthermore, hMSCs and scaffolds were cultured in both static and perfuse conditions to investigate the interaction between GW9662 treatment and perfusion and their effects on ECM deposition trends. Perfusion culture enhanced cell infiltration into the scaffold, deposition of collagen VI and XII, as well as osteogenic differentiation, as determined by gene expression of osteopontin, BMP2, and ALP. Furthermore, scaffold mineral density and compressive modulus were increased in response to both GW9662 treatment and perfusion after 3 weeks of culture. Local delivery of GW9662 with drug-eluting microspheres had comparable effects to systemic delivery in the perfusate. Together, these results demonstrate a strategy to create a scaffold mimicking both organic and inorganic characteristics of anabolic bone and its potential as a bone graft.
Collapse
Affiliation(s)
- Eli Mondragón
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Mitzy Cowdin
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist, Houston, TX, United States
| | - Silvia Minardi
- Center for Musculoskeletal Regeneration, Houston Methodist, Houston, TX, United States
| | - Ennio Tasciotti
- Center for Musculoskeletal Regeneration, Houston Methodist, Houston, TX, United States
| | - Carl A Gregory
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, United States
| | - Roland Kaunas
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| |
Collapse
|