51
|
Kuhn M, Firth-Clark S, Tosco P, Mey ASJS, Mackey M, Michel J. Assessment of Binding Affinity via Alchemical Free-Energy Calculations. J Chem Inf Model 2020; 60:3120-3130. [DOI: 10.1021/acs.jcim.0c00165] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Maximilian Kuhn
- Cresset, New Cambridge House, Bassingbourn Road, Litlington SG8 0SS, Cambridgeshire, U.K
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Stuart Firth-Clark
- Cresset, New Cambridge House, Bassingbourn Road, Litlington SG8 0SS, Cambridgeshire, U.K
| | - Paolo Tosco
- Cresset, New Cambridge House, Bassingbourn Road, Litlington SG8 0SS, Cambridgeshire, U.K
| | - Antonia S. J. S. Mey
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Mark Mackey
- Cresset, New Cambridge House, Bassingbourn Road, Litlington SG8 0SS, Cambridgeshire, U.K
| | - Julien Michel
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
52
|
Jakubec D, Vondrášek J. Efficient Estimation of Absolute Binding Free Energy for a Homeodomain-DNA Complex from Nonequilibrium Pulling Simulations. J Chem Theory Comput 2020; 16:2034-2041. [PMID: 32208691 DOI: 10.1021/acs.jctc.0c00006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Estimation of binding free energies is one of the central aims of simulations of biomolecular complexes. We explore the accuracy and efficiency of setups based on nonequilibrium pulling simulations applied to the estimation of binding affinities of DNA-binding proteins. Absolute binding free energies are calculated over a range of temperatures and compared to results obtained previously using an equilibrium method. We show that realistic binding affinities can be obtained with the presented nonequilibrium approach, which also entails lower computational requirements. Errors of the binding free energy estimates are investigated and are shown to be comparable to those observed previously. Bounds are provided on the convergence of the errors with respect to the number of pulling simulations performed and with respect to the applied pull rate.
Collapse
Affiliation(s)
- David Jakubec
- Bioinformatics Group, Institute of Organic Chemistry and Biochemistry of the CAS, 166 10 Praha 6, Czech Republic.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 128 43 Praha 2, Czech Republic
| | - Jiří Vondrášek
- Bioinformatics Group, Institute of Organic Chemistry and Biochemistry of the CAS, 166 10 Praha 6, Czech Republic
| |
Collapse
|
53
|
Hahn DF, Zarotiadis RA, Hünenberger PH. The Conveyor Belt Umbrella Sampling (CBUS) Scheme: Principle and Application to the Calculation of the Absolute Binding Free Energies of Alkali Cations to Crown Ethers. J Chem Theory Comput 2020; 16:2474-2493. [DOI: 10.1021/acs.jctc.9b00998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David F. Hahn
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Rhiannon A. Zarotiadis
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Philippe H. Hünenberger
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
54
|
Besançon C, Guillot A, Blaise S, Dauchez M, Belloy N, Prévoteau-Jonquet J, Baud S. Umbrella Visualization: A method of analysis dedicated to glycan flexibility with UnityMol. Methods 2020; 173:94-104. [PMID: 31302178 PMCID: PMC7128144 DOI: 10.1016/j.ymeth.2019.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/09/2019] [Accepted: 07/09/2019] [Indexed: 01/17/2023] Open
Abstract
N-glycosylation is a post-translational modification heavily impacting protein functions. Some alterations of glycosylation, such as sialic acid hydrolysis, are related to protein dysfunction. Because of their high flexibility and the many reactive groups of the glycan chains, studying glycans with in vitro methods is a challenging task. Molecular dynamics is a useful tool and probably the only one in biology able to overcome this problem and gives access to conformational information through exhaustive sampling. To better decipher the impact of N-glycans, the analysis and visualization of their influence over time on protein structure is a prerequisite. We developed the Umbrella Visualization, a graphical method that assigns the glycan intrinsic flexibility during a molecular dynamics trajectory. The density plot generated by this method brought relevant informations regarding glycans dynamics and flexibility, but needs further development in order to integrate an accurate description of the protein topology and its interactions. We propose here to transform this analysis method into a visualization mode in UnityMol. UnityMol is a molecular editor, viewer and prototyping platform, coded in C#. The new representation of glycan chains presented in this study takes into account both the main positions adopted by each antenna of a glycan and their statistical relevance. By displaying the collected data on the protein surface, one is then able to investigate the protein/glycan interactions.
Collapse
Affiliation(s)
- Camille Besançon
- Université de Reims Champagne Ardenne, CNRS, MEDyC UMR 7369, 51097 Reims, France.
| | - Alexandre Guillot
- Université de Reims Champagne Ardenne, CNRS, MEDyC UMR 7369, 51097 Reims, France
| | - Sébastien Blaise
- Université de Reims Champagne Ardenne, CNRS, MEDyC UMR 7369, 51097 Reims, France
| | - Manuel Dauchez
- Université de Reims Champagne Ardenne, CNRS, MEDyC UMR 7369, 51097 Reims, France; Université de Reims Champagne Ardenne, Plateau de Modélisation Moléculaire Multi-Echelle (P3M), Maison de la Simulation de Champagne Ardenne (MaSCA), 51097 Reims, France
| | - Nicolas Belloy
- Université de Reims Champagne Ardenne, CNRS, MEDyC UMR 7369, 51097 Reims, France; Université de Reims Champagne Ardenne, Plateau de Modélisation Moléculaire Multi-Echelle (P3M), Maison de la Simulation de Champagne Ardenne (MaSCA), 51097 Reims, France
| | | | - Stéphanie Baud
- Université de Reims Champagne Ardenne, CNRS, MEDyC UMR 7369, 51097 Reims, France; Université de Reims Champagne Ardenne, Plateau de Modélisation Moléculaire Multi-Echelle (P3M), Maison de la Simulation de Champagne Ardenne (MaSCA), 51097 Reims, France
| |
Collapse
|
55
|
Hahn DF, König G, Hünenberger PH. Overcoming Orthogonal Barriers in Alchemical Free Energy Calculations: On the Relative Merits of λ-Variations, λ-Extrapolations, and Biasing. J Chem Theory Comput 2020; 16:1630-1645. [DOI: 10.1021/acs.jctc.9b00853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- David F. Hahn
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Gerhard König
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Philippe H. Hünenberger
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
56
|
Armacost KA, Riniker S, Cournia Z. Novel Directions in Free Energy Methods and Applications. J Chem Inf Model 2020; 60:1-5. [DOI: 10.1021/acs.jcim.9b01174] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Kira A. Armacost
- Computational and Structural Chemistry, MRL, Merck & Co., Inc. West Point, Pennsylvania 19486, United States
| | - Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Zoe Cournia
- Biomedical Research Foundation Academy of Athens, Soranou Ephessiou 4, 11527 Athens, Greece
| |
Collapse
|
57
|
Moldovean SN, Chiş V. Molecular Dynamics Simulations Applied to Structural and Dynamical Transitions of the Huntingtin Protein: A Review. ACS Chem Neurosci 2020; 11:105-120. [PMID: 31841621 DOI: 10.1021/acschemneuro.9b00561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Over the recent years, Huntington's disease (HD) has become widely discussed in the scientific literature especially because at the mutant level there are several contradictions regarding the aggregation mechanism. The specific role of the physiological huntingtin protein remains unknown, due to the lack of characterization of its entire crystallographic structure, making the experimental and theoretical research even harder when taking into consideration its involvement in multiple biological functions and its high affinity for different interacting partners. Different types of models, containing fewer (not more than 35 Qs) polyglutamine residues for the WT structure and above 35 Qs for the mutants, were subjected to classical or advanced MD simulations to establish the proteins' structural stability by evaluating their conformational changes. Outside the polyQ tract, there are two other regions of interest (the N17 domain and the polyP rich domain) considered to be essential for the aggregation kinetics at the mutant level. The polymerization process is considered to be dependent on the polyQ length. As the polyQ tract's dimension increases, the structures present more β-sheet conformations. Contrarily, it is also considered that the aggregation stability is not necessarily dependent on the number of Qs, while the initial stage of the aggregation seed might play the decisive role. A general assumption regarding the polyP domain is that it might preserve the polyQ structures soluble by acting as an antagonist for β-sheet formation.
Collapse
Affiliation(s)
| | - Vasile Chiş
- Babeş-Bolyai University, Faculty of Physics, Kogălniceanu 1, RO-400084 Cluj-Napoca, Romania
| |
Collapse
|
58
|
Cui D, Zhang BW, Tan Z, Levy RM. Ligand Binding Thermodynamic Cycles: Hysteresis, the Locally Weighted Histogram Analysis Method, and the Overlapping States Matrix. J Chem Theory Comput 2019; 16:67-79. [PMID: 31743019 DOI: 10.1021/acs.jctc.9b00740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Free energy perturbation (FEP) simulations have been widely applied to obtain predictions of the relative binding free energy for a series of congeneric ligands binding to the same receptor, which is an essential component for the lead optimization process in computer-aided drug discovery. In the case of several congeneric ligands forming a perturbation map involving a closed thermodynamic cycle, the summation of the estimated free energy change along each edge in the cycle using Bennett acceptance ratio (BAR) usually will deviate from zero due to systematic and random errors, which is the hysteresis of cycle closure. In this work, the advanced reweighting techniques binless weighted histogram analysis method (UWHAM) and locally weighted histogram analysis method (LWHAM) are applied to provide statistical estimators of the free energy change along each edge in order to eliminate the hysteresis effect. As an example, we analyze a closed thermodynamic cycle involving four congeneric ligands which bind to HIV-1 integrase, a promising target which has emerged for antiviral therapy. We demonstrate that, compared with FEP and BAR, more accurate and hysteresis-free estimates of free energy differences can be achieved by using UWHAM to find a single estimate of the density of states based on all of the data in the cycle. Furthermore, by comparison of LWHAM results obtained from the inclusion of different numbers of neighboring states with UWHAM estimation involving all the states, we show how to determine the optimal neighborhood size in the LWHAM analysis to balance the trade-offs between computational cost and accuracy of the free energy prediction. Even with the smallest neighborhood, LWHAM can improve the BAR free energy estimates using the same input data as BAR. We introduce an overlapping states matrix that is constructed by using the global jump formula of LWHAM and plot its heat map. The heat map provides a quantitative measure of the overlap between pairs of alchemical/thermodynamic states. We explain how to identify and improve the FEP calculations along the edges that most likely cause large systematic errors by using the heat map of the overlapping states matrix and by comparing the BAR and UWHAM estimates of the free energy change.
Collapse
Affiliation(s)
- Di Cui
- Center for Biophysics and Computational Biology, Department of Chemistry, and Institute for Computational Molecular Science , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - Bin W Zhang
- Center for Biophysics and Computational Biology, Department of Chemistry, and Institute for Computational Molecular Science , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - Zhiqiang Tan
- Department of Statistics , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Ronald M Levy
- Center for Biophysics and Computational Biology, Department of Chemistry, and Institute for Computational Molecular Science , Temple University , Philadelphia , Pennsylvania 19122 , United States
| |
Collapse
|
59
|
Perez CP, Elmore DE, Radhakrishnan ML. Computationally Modeling Electrostatic Binding Energetics in a Crowded, Dynamic Environment: Physical Insights from a Peptide–DNA System. J Phys Chem B 2019; 123:10718-10734. [DOI: 10.1021/acs.jpcb.9b09478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
60
|
Ibarra A, Bartlett GJ, Hegedüs Z, Dutt S, Hobor F, Horner KA, Hetherington K, Spence K, Nelson A, Edwards TA, Woolfson DN, Sessions RB, Wilson AJ. Predicting and Experimentally Validating Hot-Spot Residues at Protein-Protein Interfaces. ACS Chem Biol 2019; 14:2252-2263. [PMID: 31525028 PMCID: PMC6804253 DOI: 10.1021/acschembio.9b00560] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/16/2019] [Indexed: 01/02/2023]
Abstract
Protein-protein interactions (PPIs) are vital to all biological processes. These interactions are often dynamic, sometimes transient, typically occur over large topographically shallow protein surfaces, and can exhibit a broad range of affinities. Considerable progress has been made in determining PPI structures. However, given the above properties, understanding the key determinants of their thermodynamic stability remains a challenge in chemical biology. An improved ability to identify and engineer PPIs would advance understanding of biological mechanisms and mutant phenotypes and also provide a firmer foundation for inhibitor design. In silico prediction of PPI hot-spot amino acids using computational alanine scanning (CAS) offers a rapid approach for predicting key residues that drive protein-protein association. This can be applied to all known PPI structures; however there is a trade-off between throughput and accuracy. Here we describe a comparative analysis of multiple CAS methods, which highlights effective approaches to improve the accuracy of predicting hot-spot residues. Alongside this, we introduce a new method, BUDE Alanine Scanning, which can be applied to single structures from crystallography and to structural ensembles from NMR or molecular dynamics data. The comparative analyses facilitate accurate prediction of hot-spots that we validate experimentally with three diverse targets: NOXA-B/MCL-1 (an α-helix-mediated PPI), SIMS/SUMO, and GKAP/SHANK-PDZ (both β-strand-mediated interactions). Finally, the approach is applied to the accurate prediction of hot-spot residues at a topographically novel Affimer/BCL-xL protein-protein interface.
Collapse
Affiliation(s)
- Amaurys
A. Ibarra
- School
of Biochemistry, University of Bristol, Medical Sciences Building, University
Walk, Bristol BS8 1TD, U.K.
| | - Gail J. Bartlett
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Zsöfia Hegedüs
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
- Astbury
Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Som Dutt
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
- Astbury
Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Fruzsina Hobor
- Astbury
Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
- School
of Molecular and Cellular Biology, University
of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Katherine A. Horner
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
- Astbury
Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Kristina Hetherington
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
- Astbury
Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Kirstin Spence
- Astbury
Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
- School
of Molecular and Cellular Biology, University
of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Adam Nelson
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
- Astbury
Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Thomas A. Edwards
- Astbury
Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
- School
of Molecular and Cellular Biology, University
of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Derek N. Woolfson
- School
of Biochemistry, University of Bristol, Medical Sciences Building, University
Walk, Bristol BS8 1TD, U.K.
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, U.K.
| | - Richard B. Sessions
- School
of Biochemistry, University of Bristol, Medical Sciences Building, University
Walk, Bristol BS8 1TD, U.K.
- BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, U.K.
| | - Andrew J. Wilson
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
- Astbury
Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| |
Collapse
|
61
|
Application of the Movable Type Free Energy Method to the Caspase-Inhibitor BindingAffinity Study. Int J Mol Sci 2019; 20:ijms20194850. [PMID: 31569580 PMCID: PMC6801467 DOI: 10.3390/ijms20194850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 11/16/2022] Open
Abstract
Many studies have provided evidence suggesting that caspases not only contribute to the neurodegeneration associated with Alzheimer’s disease (AD) but also play essential roles in promoting the underlying pathology of this disease. Studies regarding the caspase inhibition draw researchers’ attention through time due to its therapeutic value in the treatment of AD. In this work, we apply the “Movable Type” (MT) free energy method, a Monte Carlo sampling method extrapolating the binding free energy by simulating the partition functions for both free-state and bound-state protein and ligand configurations, to the caspase-inhibitor binding affinity study. Two test benchmarks are introduced to examine the robustness and sensitivity of the MT method concerning the caspase inhibition complexing. The first benchmark employs a large-scale test set including more than a hundred active inhibitors binding to caspase-3. The second benchmark includes several smaller test sets studying the relative binding free energy differences for minor structural changes at the caspase-inhibitor interaction interfaces. Calculation results show that the RMS errors for all test sets are below 1.5 kcal/mol compared to the experimental binding affinity values, demonstrating good performance in simulating the caspase-inhibitor complexing. For better understanding the protein-ligand interaction mechanism, we then take a closer look at the global minimum binding modes and free-state ligand conformations to study two pairs of caspase-inhibitor complexes with (1) different caspase targets binding to the same inhibitor, and (2) different polypeptide inhibitors targeting the same caspase target. By comparing the contact maps at the binding site of different complexes, we revealed how small structural changes affect the caspase-inhibitor interaction energies. Overall, this work provides a new free energy approach for studying the caspase inhibition, with structural insight revealed for both free-state and bound-state molecular configurations.
Collapse
|
62
|
Galamba N, Paiva A, Barreiros S, Simões P. Solubility of Polar and Nonpolar Aromatic Molecules in Subcritical Water: The Role of the Dielectric Constant. J Chem Theory Comput 2019; 15:6277-6293. [DOI: 10.1021/acs.jctc.9b00505] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nuno Galamba
- Centre of Chemistry and Biochemistry and Biosystems and Integrative Sciences Institute, Faculty of Sciences of the University of Lisbon, C8, Campo Grande, 1749-016 Lisbon, Portugal
| | - Alexandre Paiva
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Susana Barreiros
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Pedro Simões
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
63
|
Jia X. Solvation Free Energy Calculations: The Combination between the Implicitly Polarized Fixed‐charge Model and the Reference Potential Strategy. J Comput Chem 2019; 40:2801-2809. [PMID: 31433076 DOI: 10.1002/jcc.26055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/27/2019] [Accepted: 08/04/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Xiangyu Jia
- NYU Shanghai, 1555 Century Avenue Shanghai 200122 China
- NYU‐ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North Shanghai 200127 China
| |
Collapse
|
64
|
Bailleul S, Rogge SMJ, Vanduyfhuys L, Van Speybroeck V. Insight into the Role of Water on the Methylation of Hexamethylbenzene in H‐SAPO‐34 from First Principle Molecular Dynamics Simulations. ChemCatChem 2019. [DOI: 10.1002/cctc.201900618] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Simon Bailleul
- Center for Molecular Modeling (CMM)Ghent University Technologiepark 46 Zwijnaarde B-9052 Belgium
| | - Sven M. J. Rogge
- Center for Molecular Modeling (CMM)Ghent University Technologiepark 46 Zwijnaarde B-9052 Belgium
| | - Louis Vanduyfhuys
- Center for Molecular Modeling (CMM)Ghent University Technologiepark 46 Zwijnaarde B-9052 Belgium
| | - Veronique Van Speybroeck
- Center for Molecular Modeling (CMM)Ghent University Technologiepark 46 Zwijnaarde B-9052 Belgium
| |
Collapse
|
65
|
Flood E, Boiteux C, Lev B, Vorobyov I, Allen TW. Atomistic Simulations of Membrane Ion Channel Conduction, Gating, and Modulation. Chem Rev 2019; 119:7737-7832. [DOI: 10.1021/acs.chemrev.8b00630] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Emelie Flood
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Céline Boiteux
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Bogdan Lev
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Igor Vorobyov
- Department of Physiology & Membrane Biology/Department of Pharmacology, University of California, Davis, 95616, United States
| | - Toby W. Allen
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
66
|
Wang E, Sun H, Wang J, Wang Z, Liu H, Zhang JZH, Hou T. End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. Chem Rev 2019; 119:9478-9508. [DOI: 10.1021/acs.chemrev.9b00055] [Citation(s) in RCA: 578] [Impact Index Per Article: 115.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ercheng Wang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huiyong Sun
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Junmei Wang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhe Wang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hui Liu
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - John Z. H. Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- NYU−ECNU Center for Computational Chemistry, NYU Shanghai, Shanghai 200122, China
- Department of Chemistry, New York University, New York, New York 10003, United States
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Tingjun Hou
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
67
|
Post M, Wolf S, Stock G. Principal component analysis of nonequilibrium molecular dynamics simulations. J Chem Phys 2019; 150:204110. [PMID: 31153204 DOI: 10.1063/1.5089636] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Principal component analysis (PCA) represents a standard approach to identify collective variables {xi} = x, which can be used to construct the free energy landscape ΔG(x) of a molecular system. While PCA is routinely applied to equilibrium molecular dynamics (MD) simulations, it is less obvious as to how to extend the approach to nonequilibrium simulation techniques. This includes, e.g., the definition of the statistical averages employed in PCA as well as the relation between the equilibrium free energy landscape ΔG(x) and the energy landscapes ΔG(x) obtained from nonequilibrium MD. As an example for a nonequilibrium method, "targeted MD" is considered which employs a moving distance constraint to enforce rare transitions along some biasing coordinate s. The introduced bias can be described by a weighting function P(s), which provides a direct relation between equilibrium and nonequilibrium data, and thus establishes a well-defined way to perform PCA on nonequilibrium data. While the resulting distribution P(x) and energy ΔG∝lnP will not reflect the equilibrium state of the system, the nonequilibrium energy landscape ΔG(x) may directly reveal the molecular reaction mechanism. Applied to targeted MD simulations of the unfolding of decaalanine, for example, a PCA performed on backbone dihedral angles is shown to discriminate several unfolding pathways. Although the formulation is in principle exact, its practical use depends critically on the choice of the biasing coordinate s, which should account for a naturally occurring motion between two well-defined end-states of the system.
Collapse
Affiliation(s)
- Matthias Post
- Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Steffen Wolf
- Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Gerhard Stock
- Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| |
Collapse
|
68
|
Peters LDM, Dietschreit JCB, Kussmann J, Ochsenfeld C. Calculating free energies from the vibrational density of states function: Validation and critical assessment. J Chem Phys 2019; 150:194111. [DOI: 10.1063/1.5079643] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Laurens D. M. Peters
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
- Center for Integrated Protein Science (CIPSM) at the Department of Chemistry, University of Munich (LMU), Butenandtstr. 5–13, D-81377 München, Germany
| | - Johannes C. B. Dietschreit
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
- Center for Integrated Protein Science (CIPSM) at the Department of Chemistry, University of Munich (LMU), Butenandtstr. 5–13, D-81377 München, Germany
| | - Jörg Kussmann
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
- Center for Integrated Protein Science (CIPSM) at the Department of Chemistry, University of Munich (LMU), Butenandtstr. 5–13, D-81377 München, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
- Center for Integrated Protein Science (CIPSM) at the Department of Chemistry, University of Munich (LMU), Butenandtstr. 5–13, D-81377 München, Germany
| |
Collapse
|
69
|
Hossain S, Kabedev A, Parrow A, Bergström CAS, Larsson P. Molecular simulation as a computational pharmaceutics tool to predict drug solubility, solubilization processes and partitioning. Eur J Pharm Biopharm 2019; 137:46-55. [PMID: 30771454 PMCID: PMC6434319 DOI: 10.1016/j.ejpb.2019.02.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/05/2019] [Accepted: 02/13/2019] [Indexed: 01/12/2023]
Abstract
In this review we will discuss how computational methods, and in particular classical molecular dynamics simulations, can be used to calculate solubility of pharmaceutically relevant molecules and systems. To the extent possible, we focus on the non-technical details of these calculations, and try to show also the added value of a more thorough and detailed understanding of the solubilization process obtained by using computational simulations. Although the main focus is on classical molecular dynamics simulations, we also provide the reader with some insights into other computational techniques, such as the COSMO-method, and also discuss Flory-Huggins theory and solubility parameters. We hope that this review will serve as a valuable starting point for any pharmaceutical researcher, who has not yet fully explored the possibilities offered by computational approaches to solubility calculations.
Collapse
Affiliation(s)
- Shakhawath Hossain
- Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden; Swedish Drug Delivery Forum (SDDF), Uppsala University, Sweden
| | - Aleksei Kabedev
- Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden
| | - Albin Parrow
- Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden; Swedish Drug Delivery Forum (SDDF), Uppsala University, Sweden
| | - Per Larsson
- Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden; Swedish Drug Delivery Forum (SDDF), Uppsala University, Sweden.
| |
Collapse
|
70
|
Hahn DF, Hünenberger PH. Alchemical Free-Energy Calculations by Multiple-Replica λ-Dynamics: The Conveyor Belt Thermodynamic Integration Scheme. J Chem Theory Comput 2019; 15:2392-2419. [PMID: 30821973 DOI: 10.1021/acs.jctc.8b00782] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A new method is proposed to calculate alchemical free-energy differences based on molecular dynamics (MD) simulations, called the conveyor belt thermodynamic integration (CBTI) scheme. As in thermodynamic integration (TI), K replicas of the system are simulated at different values of the alchemical coupling parameter λ. The number K is taken to be even, and the replicas are equally spaced on a forward-turn-backward-turn path, akin to a conveyor belt (CB) between the two physical end-states; and as in λ-dynamics (λD), the λ-values associated with the individual systems evolve in time along the simulation. However, they do so in a concerted fashion, determined by the evolution of a single dynamical variable Λ of period 2π controlling the advance of the entire CB. Thus, a change of Λ is always associated with K/2 equispaced replicas moving forward and K/2 equispaced replicas moving backward along λ. As a result, the effective free-energy profile of the replica system along Λ is periodic of period 2 πK-1, and the magnitude of its variations decreases rapidly upon increasing K, at least as K-1 in the limit of large K. When a sufficient number of replicas is used, these variations become small, which enables a complete and quasi-homogeneous coverage of the λ-range by the replica system, without application of any biasing potential. If desired, a memory-based biasing potential can still be added to further homogenize the sampling, the preoptimization of which is computationally inexpensive. The final free-energy profile along λ is calculated similarly to TI, by binning of the Hamiltonian λ-derivative as a function of λ considering all replicas simultaneously, followed by quadrature integration. The associated quadrature error can be kept very low owing to the continuous and quasi-homogeneous λ-sampling. The CBTI scheme can be viewed as a continuous/deterministic/dynamical analog of the Hamiltonian replica-exchange/permutation (HRE/HRP) schemes or as a correlated multiple-replica analog of the λD or λ-local elevation umbrella sampling (λ-LEUS) schemes. Compared to TI, it shares the advantage of the latter schemes in terms of enhanced orthogonal sampling, i.e. the availability of variable-λ paths to circumvent conformational barriers present at specific λ-values. Compared to HRE/HRP, it permits a deterministic and continuous sampling of the λ-range, is expected to be less sensitive to possible artifacts of the thermo- and barostating schemes, and bypasses the need to carefully preselect a λ-ladder and a swapping-attempt frequency. Compared to λ-LEUS, it eliminates (or drastically reduces) the dead time associated with the preoptimization of a biasing potential. The goal of this article is to provide the mathematical/physical formulation of the proposed CBTI scheme, along with an initial application of the method to the calculation of the hydration free energy of methanol.
Collapse
Affiliation(s)
- David F Hahn
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 2 , 8093 Zürich , Switzerland
| | - Philippe H Hünenberger
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 2 , 8093 Zürich , Switzerland
| |
Collapse
|
71
|
Garate JA, Bernardin A, Escalona Y, Yanez C, English NJ, Perez-Acle T. Orientational and Folding Thermodynamics via Electric Dipole Moment Restraining. J Phys Chem B 2019; 123:2599-2608. [PMID: 30831028 DOI: 10.1021/acs.jpcb.8b09374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The projection of molecular processes onto a small set of relevant descriptors, the so-called reaction coordinates or collective variables (CVs), is a technique nowadays routinely employed by the biomolecular simulation community. In this work, we implemented two CVs to manipulate the orientation (i.e., angle) (μ⃗a) and magnitude (|μ⃗|) of the electric dipole moment. In doing so, we studied the thermodynamics of water orientation under the application of external voltages and the folding of two polypeptides at zero-field conditions. The projection of the free-energy [potential of mean force (PMF)] along water orientation defined an upper limit of around 0.3 V for irrelevant thermodynamic effects. On the other hand, sufficiently strong μ⃗a restraints applied on 12-alanine (Ala12) triggered structural effects because of the alignment of local dipoles; for lower restraints, a full-body rotation is achieved. The manipulation of |μ⃗| produced strong perturbations on the secondary structure of Ala12, promoting an enhanced sampling to its configurational space. Rigorous free-energy calculations in the form of 2-D PMFs for deca-alanine showed the utility of |μ⃗| as a reaction coordinate to study folding in small α helices. As a whole, we propose that the manipulation of both components of the dipole moment, μ⃗a and |μ⃗|, provides thermodynamics insights into the structural conformation and stability of biomolecules. These new CVs are implemented in the Colvars module, available for NAMD and LAMMPS.
Collapse
Affiliation(s)
- Jose Antonio Garate
- Centro Interdisciplinario de Neurociencia de Valparaiso , Universidad de Valparaiso , Pasaje Harrington 287 , Playa Ancha, Valparaiso 2381850 , Chile
| | - Alejandro Bernardin
- Centro Interdisciplinario de Neurociencia de Valparaiso , Universidad de Valparaiso , Pasaje Harrington 287 , Playa Ancha, Valparaiso 2381850 , Chile.,Computational Biology Lab , Fundacion Ciencia & Vida , Avenida Zanartu 1482, Nunoa , Santiago 7780272 , Chile
| | - Yerko Escalona
- Institute for Molecular Modeling and Simulation , Muthgasse 18 , Vienna 1190 , Austria
| | - Carlos Yanez
- Computational Biology Lab , Fundacion Ciencia & Vida , Avenida Zanartu 1482, Nunoa , Santiago 7780272 , Chile
| | - Niall J English
- School of Chemical and Bioprocess Engineering , University College Dublin , Belfield, Dublin 4 , Ireland
| | - Tomas Perez-Acle
- Centro Interdisciplinario de Neurociencia de Valparaiso , Universidad de Valparaiso , Pasaje Harrington 287 , Playa Ancha, Valparaiso 2381850 , Chile.,Computational Biology Lab , Fundacion Ciencia & Vida , Avenida Zanartu 1482, Nunoa , Santiago 7780272 , Chile
| |
Collapse
|
72
|
Jakubec D, Vondrášek J. Can All-Atom Molecular Dynamics Simulations Quantitatively Describe Homeodomain-DNA Binding Equilibria? J Chem Theory Comput 2019; 15:2635-2648. [PMID: 30807142 DOI: 10.1021/acs.jctc.8b01144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We systematically investigate the applicability of a molecular dynamics-based setup for the calculations of standard binding free energies of biologically relevant protein-DNA complexes. The free energies are extracted from a potential of mean force calculated using umbrella sampling simulations. Two protein-DNA systems derived from a homeodomain transcription factor complex are studied in order to investigate the binding of both disordered and globular proteins. Free energies and trajectories obtained using two modern molecular mechanical force fields are compared to each other and to experimental data. The temperature dependence of the calculated standard binding free energies is investigated by performing all simulations over a range of temperatures. We show that the values of standard binding free energies obtained from these simulations are overestimated compared to experimental results. Significant differences are observed between the two protein-DNA systems and between the two force fields, which are explained by different propensities to form inter- and intramolecular contacts. The number of protein-DNA contacts increases with increasing temperature, in agreement with the experimentally known temperature dependence of enthalpies of binding. However, conclusions about the temperature dependence of the standard binding free energies cannot be made with confidence, as the differences among the values are on the order of statistical uncertainty.
Collapse
Affiliation(s)
- David Jakubec
- Bioinformatics Group, Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , 166 10 Praha 6, Czech Republic.,Department of Physical and Macromolecular Chemistry, Faculty of Science , Charles University , 128 43 Praha 2, Czech Republic
| | - Jiří Vondrášek
- Bioinformatics Group, Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , 166 10 Praha 6, Czech Republic
| |
Collapse
|
73
|
Li Z, Huang Y, Wu Y, Chen J, Wu D, Zhan CG, Luo HB. Absolute Binding Free Energy Calculation and Design of a Subnanomolar Inhibitor of Phosphodiesterase-10. J Med Chem 2019; 62:2099-2111. [PMID: 30689375 DOI: 10.1021/acs.jmedchem.8b01763] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Accurate prediction of absolute protein-ligand binding free energy could considerably enhance the success rate of structure-based drug design but is extremely challenging and time-consuming. Free energy perturbation (FEP) has been proven reliable but is limited to prediction of relative binding free energies of similar ligands (with only minor structural differences) in binding with a same drug target in practical drug design applications. Herein, a Gaussian algorithm-enhanced FEP (GA-FEP) protocol has been developed to enhance the FEP simulation performance, enabling to efficiently carry out the FEP simulations on vanishing the whole ligand and, thus, predict the absolute binding free energies (ABFEs). Using the GA-FEP protocol, the FEP simulations for the ABFE calculation (denoted as GA-FEP/ABFE) can achieve a satisfactory accuracy for both structurally similar and diverse ligands in a dataset of more than 100 receptor-ligand systems. Further, our GA-FEP/ABFE-guided lead optimization against phosphodiesterase-10 led to the discovery of a subnanomolar inhibitor (IC50 = 0.87 nM, ∼2000-fold improvement in potency) with cocrystal confirmation.
Collapse
Affiliation(s)
- Zhe Li
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou 510006 , P.R. China.,Department of Pharmaceutical Sciences, College of Pharmacy , University of Kentucky , 789 South Limestone Street , Lexington , Kentucky 40536 , United States
| | - Yiyou Huang
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou 510006 , P.R. China
| | - Yinuo Wu
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou 510006 , P.R. China
| | - Jingyi Chen
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou 510006 , P.R. China
| | - Deyan Wu
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou 510006 , P.R. China
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Kentucky , 789 South Limestone Street , Lexington , Kentucky 40536 , United States
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou 510006 , P.R. China
| |
Collapse
|
74
|
Zhang P, Shen L, Yang W. Solvation Free Energy Calculations with Quantum Mechanics/Molecular Mechanics and Machine Learning Models. J Phys Chem B 2019; 123:901-908. [PMID: 30557020 PMCID: PMC6448400 DOI: 10.1021/acs.jpcb.8b11905] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
For exploration of chemical and biological systems, the combined quantum mechanics and molecular mechanics (QM/MM) and machine learning (ML) models have been developed recently to achieve high accuracy and efficiency for molecular dynamics (MD) simulations. Despite its success on reaction free energy calculations, how to identify new configurations on insufficiently sampled regions during MD and how to update the current ML models with the growing database on the fly are both very important but still challenging. In this article, we apply the QM/MM ML method to solvation free energy calculations and address these two challenges. We employ three approaches to detect new data points and introduce the gradient boosting algorithm to reoptimize efficiently the ML model during ML-based MD sampling. The solvation free energy calculations on several typical organic molecules demonstrate that our developed method provides a systematic, robust, and efficient way to explore new chemistry using ML-based QM/MM MD simulations.
Collapse
Affiliation(s)
- Pan Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Lin Shen
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Weitao Yang
- Department of Chemistry and Department of Physics, Duke University, Durham, NC 27708, United States
- Key laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006, P.R.China
| |
Collapse
|
75
|
Zanette C, Bannan CC, Bayly CI, Fass J, Gilson MK, Shirts MR, Chodera JD, Mobley DL. Toward Learned Chemical Perception of Force Field Typing Rules. J Chem Theory Comput 2019; 15:402-423. [PMID: 30512951 PMCID: PMC6467725 DOI: 10.1021/acs.jctc.8b00821] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular mechanics force fields define how the energy and forces in a molecular system are computed from its atomic positions, thus enabling the study of such systems through computational methods like molecular dynamics and Monte Carlo simulations. Despite progress toward automated force field parametrization, considerable human expertise is required to develop or extend force fields. In particular, human input has long been required to define atom types, which encode chemically unique environments that determine which parameters will be assigned. However, relying on humans to establish atom types is suboptimal. Human-created atom types are often developed without statistical justification, leading to over- or under-fitting of data. Human-created types are also difficult to extend in a systematic and consistent manner when new chemistries must be modeled or new data becomes available. Finally, human effort is not scalable when force fields must be generated for new (bio)polymers, compound classes, or materials. To remedy these deficiencies, our long-term goal is to replace human specification of atom types with an automated approach, based on rigorous statistics and driven by experimental and/or quantum chemical reference data. In this work, we describe novel methods that automate the discovery of appropriate chemical perception: SMARTY allows for the creation of atom types, while SMIRKY goes further by automating the creation of fragment (nonbonded, bonds, angles, and torsions) types. These approaches enable the creation of move sets in atom or fragment type space, which are used within a Monte Carlo optimization approach. We demonstrate the power of these new methods by automating the rediscovery of human defined atom types (SMARTY) or fragment types (SMIRKY) in existing small molecule force fields. We assess these approaches using several molecular data sets, including one which covers a diverse subset of the DrugBank database.
Collapse
Affiliation(s)
- Camila Zanette
- Department of Pharmaceutical Sciences, University of California, Irvine
| | | | | | - Josh Fass
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY 10065
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Michael K. Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego
| | - Michael R. Shirts
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309
| | - John D. Chodera
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - David L. Mobley
- Department of Pharmaceutical Sciences, University of California, Irvine
- Department of Chemistry, University of California, Irvine
| |
Collapse
|
76
|
Awasthi S, Nair NN. Exploring high‐dimensional free energy landscapes of chemical reactions. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1398] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Shalini Awasthi
- Department of Chemistry Indian Institute of Technology Kanpur Uttar Pradesh India
| | - Nisanth N. Nair
- Department of Chemistry Indian Institute of Technology Kanpur Uttar Pradesh India
| |
Collapse
|
77
|
Grajciar L, Heard CJ, Bondarenko AA, Polynski MV, Meeprasert J, Pidko EA, Nachtigall P. Towards operando computational modeling in heterogeneous catalysis. Chem Soc Rev 2018; 47:8307-8348. [PMID: 30204184 PMCID: PMC6240816 DOI: 10.1039/c8cs00398j] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Indexed: 12/19/2022]
Abstract
An increased synergy between experimental and theoretical investigations in heterogeneous catalysis has become apparent during the last decade. Experimental work has extended from ultra-high vacuum and low temperature towards operando conditions. These developments have motivated the computational community to move from standard descriptive computational models, based on inspection of the potential energy surface at 0 K and low reactant concentrations (0 K/UHV model), to more realistic conditions. The transition from 0 K/UHV to operando models has been backed by significant developments in computer hardware and software over the past few decades. New methodological developments, designed to overcome part of the gap between 0 K/UHV and operando conditions, include (i) global optimization techniques, (ii) ab initio constrained thermodynamics, (iii) biased molecular dynamics, (iv) microkinetic models of reaction networks and (v) machine learning approaches. The importance of the transition is highlighted by discussing how the molecular level picture of catalytic sites and the associated reaction mechanisms changes when the chemical environment, pressure and temperature effects are correctly accounted for in molecular simulations. It is the purpose of this review to discuss each method on an equal footing, and to draw connections between methods, particularly where they may be applied in combination.
Collapse
Affiliation(s)
- Lukáš Grajciar
- Department of Physical and Macromolecular Chemistry
, Faculty of Science
, Charles University in Prague
,
128 43 Prague 2
, Czech Republic
.
;
;
| | - Christopher J. Heard
- Department of Physical and Macromolecular Chemistry
, Faculty of Science
, Charles University in Prague
,
128 43 Prague 2
, Czech Republic
.
;
;
| | - Anton A. Bondarenko
- TheoMAT group
, ITMO University
,
Lomonosova 9
, St. Petersburg
, 191002
, Russia
| | - Mikhail V. Polynski
- TheoMAT group
, ITMO University
,
Lomonosova 9
, St. Petersburg
, 191002
, Russia
| | - Jittima Meeprasert
- Inorganic Systems Engineering group
, Department of Chemical Engineering
, Faculty of Applied Sciences
, Delft University of Technology
,
Van der Maasweg 9
, 2629 HZ Delft
, The Netherlands
.
| | - Evgeny A. Pidko
- TheoMAT group
, ITMO University
,
Lomonosova 9
, St. Petersburg
, 191002
, Russia
- Inorganic Systems Engineering group
, Department of Chemical Engineering
, Faculty of Applied Sciences
, Delft University of Technology
,
Van der Maasweg 9
, 2629 HZ Delft
, The Netherlands
.
| | - Petr Nachtigall
- Department of Physical and Macromolecular Chemistry
, Faculty of Science
, Charles University in Prague
,
128 43 Prague 2
, Czech Republic
.
;
;
| |
Collapse
|
78
|
Wolf S, Stock G. Targeted Molecular Dynamics Calculations of Free Energy Profiles Using a Nonequilibrium Friction Correction. J Chem Theory Comput 2018; 14:6175-6182. [DOI: 10.1021/acs.jctc.8b00835] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Steffen Wolf
- Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Gerhard Stock
- Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| |
Collapse
|
79
|
Loeffler HH, Bosisio S, Duarte Ramos Matos G, Suh D, Roux B, Mobley DL, Michel J. Reproducibility of Free Energy Calculations across Different Molecular Simulation Software Packages. J Chem Theory Comput 2018; 14:5567-5582. [PMID: 30289712 DOI: 10.1021/acs.jctc.8b00544] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alchemical free energy calculations are an increasingly important modern simulation technique to calculate free energy changes on binding or solvation. Contemporary molecular simulation software such as AMBER, CHARMM, GROMACS, and SOMD include support for the method. Implementation details vary among those codes, but users expect reliability and reproducibility, i.e., for a given molecular model and set of force field parameters, comparable free energy differences should be obtained within statistical bounds regardless of the code used. Relative alchemical free energy (RAFE) simulation is increasingly used to support molecule discovery projects, yet the reproducibility of the methodology has been less well tested than its absolute counterpart. Here we present RAFE calculations of hydration free energies for a set of small organic molecules and demonstrate that free energies can be reproduced to within about 0.2 kcal/mol with the aforementioned codes. Absolute alchemical free energy simulations have been carried out as a reference. Achieving this level of reproducibility requires considerable attention to detail and package-specific simulation protocols, and no universally applicable protocol emerges. The benchmarks and protocols reported here should be useful for the community to validate new and future versions of software for free energy calculations.
Collapse
Affiliation(s)
- Hannes H Loeffler
- Science & Technology Facilities Council , Daresbury, Warrington WA4 4AD , United Kingdom
| | - Stefano Bosisio
- EaStCHEM School of Chemistry , University of Edinburgh , David Brewster Road , Edinburgh EH9 3FJ , United Kingdom
| | | | - Donghyuk Suh
- University of Chicago , Chicago , Illinois 60637 , United States
| | - Benoit Roux
- University of Chicago , Chicago , Illinois 60637 , United States
| | - David L Mobley
- Departments of Pharmaceutical Sciences and Chemistry , University of California , Irvine , California 92697 , United States
| | - Julien Michel
- EaStCHEM School of Chemistry , University of Edinburgh , David Brewster Road , Edinburgh EH9 3FJ , United Kingdom
| |
Collapse
|
80
|
Markthaler D, Kraus H, Hansen N. Overcoming Convergence Issues in Free-Energy Calculations of Amide-to-Ester Mutations in the Pin1-WW Domain. J Chem Inf Model 2018; 58:2305-2318. [DOI: 10.1021/acs.jcim.8b00581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel Markthaler
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Hamzeh Kraus
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, D-70569 Stuttgart, Germany
| |
Collapse
|
81
|
Melvin RL, Xiao J, Berenhaut KS, Godwin RC, Salsbury FR. Using correlated motions to determine sufficient sampling times for molecular dynamics. Phys Rev E 2018; 98:023307. [PMID: 30253618 PMCID: PMC6325644 DOI: 10.1103/physreve.98.023307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Indexed: 06/08/2023]
Abstract
Here we present a time-dependent correlation method that provides insight into how long a system takes to grow into its equal-time (Pearson) correlation. We also show a usage of an extant time-lagged correlation method that indicates the time for parts of a system to become decorrelated, relative to equal-time correlation. Given a completed simulation (or set of simulations), these tools estimate (i) how long of a simulation of the same system would be sufficient to observe the same correlated motions, (ii) if patterns of observed correlated motions indicate events beyond the timescale of the simulation, and (iii) how long of a simulation is needed to observe these longer timescale events. We view this method as a decision-support tool that will aid researchers in determining necessary sampling times. In principle, this tool is extendable to any multidimensional time series data with a notion of correlated fluctuations; however, here we limit our discussion to data from molecular-dynamics simulations.
Collapse
Affiliation(s)
- Ryan L. Melvin
- Department of Physics and Department of Mathematics and Statistics, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, North Carolina 27109, USA
| | - Jiajie Xiao
- Department of Physics and Department of Computer Science, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, North Carolina 27109, USA
| | - Kenneth S. Berenhaut
- Department of Mathematics and Statistics, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, North Carolina 27109, USA
| | - Ryan C. Godwin
- Department of Physics, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, North Carolina 27109, USA
| | | |
Collapse
|
82
|
Steinmann C, Olsson MA, Ryde U. Relative Ligand-Binding Free Energies Calculated from Multiple Short QM/MM MD Simulations. J Chem Theory Comput 2018; 14:3228-3237. [PMID: 29768915 DOI: 10.1021/acs.jctc.8b00081] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have devised a new efficient approach to compute combined quantum mechanical (QM) and molecular mechanical (MM, i.e. QM/MM) ligand-binding relative free energies. Our method employs the reference-potential approach with free-energy perturbation both at the MM level (between the two ligands) and from MM to QM/MM (for each ligand). To ensure that converged results are obtained for the MM → QM/MM perturbations, explicit QM/MM molecular dynamics (MD) simulations are performed with two intermediate mixed states. To speed up the calculations, we utilize the fact that the phase space can be extensively sampled at the MM level. Therefore, we run many short QM/MM MD simulations started from snapshots of the MM simulations, instead of a single long simulation. As a test case, we study the binding of nine cyclic carboxylate ligands to the octa-acid deep cavitand. Only the ligand is in the QM system, treated with the semiempirical PM6-DH+ method. We show that for eight of the ligands, we obtain well converged results with short MD simulations (1-15 ps). However, in one case, the convergence is slower (∼50 ps) owing to a mismatch between the conformational preferences of the MM and QM/MM potentials. We test the effect of initial minimization, the need of equilibration, and how many independent simulations are needed to reach a certain precision. The results show that the present approach is about four times faster than using standard MM → QM/MM free-energy perturbations with the same accuracy and precision.
Collapse
Affiliation(s)
- Casper Steinmann
- Department of Chemistry and Bioscience , Aalborg University , Frederik Bajers Vej 7H , DK-9220 Aalborg , Denmark.,Department of Theoretical Chemistry , Lund University , Chemical Centre , P.O. Box 124, SE-221 00 Lund , Sweden
| | - Martin A Olsson
- Department of Theoretical Chemistry , Lund University , Chemical Centre , P.O. Box 124, SE-221 00 Lund , Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry , Lund University , Chemical Centre , P.O. Box 124, SE-221 00 Lund , Sweden
| |
Collapse
|
83
|
Bansal N, Zheng Z, Song LF, Pei J, Merz KM. The Role of the Active Site Flap in Streptavidin/Biotin Complex Formation. J Am Chem Soc 2018; 140:5434-5446. [PMID: 29607642 DOI: 10.1021/jacs.8b00743] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Obtaining a detailed description of how active site flap motion affects substrate or ligand binding will advance structure-based drug design (SBDD) efforts on systems including the kinases, HSP90, HIV protease, ureases, etc. Through this understanding, we will be able to design better inhibitors and better proteins that have desired functions. Herein we address this issue by generating the relevant configurational states of a protein flap on the molecular energy landscape using an approach we call MTFlex-b and then following this with a procedure to estimate the free energy associated with the motion of the flap region. To illustrate our overall workflow, we explored the free energy changes in the streptavidin/biotin system upon introducing conformational flexibility in loop3-4 in the biotin unbound ( apo) and bound ( holo) state. The free energy surfaces were created using the Movable Type free energy method, and for further validation, we compared them to potential of mean force (PMF) generated free energy surfaces using MD simulations employing the FF99SBILDN and FF14SB force fields. We also estimated the free energy thermodynamic cycle using an ensemble of closed-like and open-like end states for the ligand unbound and bound states and estimated the binding free energy to be approximately -16.2 kcal/mol (experimental -18.3 kcal/mol). The good agreement between MTFlex-b in combination with the MT method with experiment and MD simulations supports the effectiveness of our strategy in obtaining unique insights into the motions in proteins that can then be used in a range of biological and biomedical applications.
Collapse
Affiliation(s)
- Nupur Bansal
- Department of Chemistry and Department of Biochemistry and Molecular Biology , Michigan State University , 578 South Shaw Lane , East Lansing , Michigan 48824 , United States
| | - Zheng Zheng
- Department of Chemistry and Department of Biochemistry and Molecular Biology , Michigan State University , 578 South Shaw Lane , East Lansing , Michigan 48824 , United States
| | - Lin Frank Song
- Department of Chemistry and Department of Biochemistry and Molecular Biology , Michigan State University , 578 South Shaw Lane , East Lansing , Michigan 48824 , United States
| | - Jun Pei
- Department of Chemistry and Department of Biochemistry and Molecular Biology , Michigan State University , 578 South Shaw Lane , East Lansing , Michigan 48824 , United States
| | - Kenneth M Merz
- Department of Chemistry and Department of Biochemistry and Molecular Biology , Michigan State University , 578 South Shaw Lane , East Lansing , Michigan 48824 , United States.,Institute for Cyber Enabled Research , Michigan State University , 567 Wilson Road , East Lansing , Michigan 48824 , United States
| |
Collapse
|
84
|
Awasthi S, Gupta S, Tripathi R, Nair NN. Mechanism and Kinetics of Aztreonam Hydrolysis Catalyzed by Class-C β-Lactamase: A Temperature-Accelerated Sliced Sampling Study. J Phys Chem B 2018; 122:4299-4308. [DOI: 10.1021/acs.jpcb.8b01287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shalini Awasthi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Shalini Gupta
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Ravi Tripathi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Nisanth N. Nair
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
85
|
Giese TJ, York DM. A GPU-Accelerated Parameter Interpolation Thermodynamic Integration Free Energy Method. J Chem Theory Comput 2018; 14:1564-1582. [PMID: 29357243 PMCID: PMC5849537 DOI: 10.1021/acs.jctc.7b01175] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There has been a resurgence of interest in free energy methods motivated by the performance enhancements offered by molecular dynamics (MD) software written for specialized hardware, such as graphics processing units (GPUs). In this work, we exploit the properties of a parameter-interpolated thermodynamic integration (PI-TI) method to connect states by their molecular mechanical (MM) parameter values. This pathway is shown to be better behaved for Mg2+ → Ca2+ transformations than traditional linear alchemical pathways (with and without soft-core potentials). The PI-TI method has the practical advantage that no modification of the MD code is required to propagate the dynamics, and unlike with linear alchemical mixing, only one electrostatic evaluation is needed (e.g., single call to particle-mesh Ewald) leading to better performance. In the case of AMBER, this enables all the performance benefits of GPU-acceleration to be realized, in addition to unlocking the full spectrum of features available within the MD software, such as Hamiltonian replica exchange (HREM). The TI derivative evaluation can be accomplished efficiently in a post-processing step by reanalyzing the statistically independent trajectory frames in parallel for high throughput. We also show how one can evaluate the particle mesh Ewald contribution to the TI derivative evaluation without needing to perform two reciprocal space calculations. We apply the PI-TI method with HREM on GPUs in AMBER to predict p Ka values in double stranded RNA molecules and make comparison with experiments. Convergence to under 0.25 units for these systems required 100 ns or more of sampling per window and coupling of windows with HREM. We find that MM charges derived from ab initio QM/MM fragment calculations improve the agreement between calculation and experimental results.
Collapse
Affiliation(s)
- Timothy J. Giese
- Laboratory for Biomolecular Simulation Research, Center for Integrative Proteomics Research, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8087, United States
| | - Darrin M. York
- Laboratory for Biomolecular Simulation Research, Center for Integrative Proteomics Research, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8087, United States
| |
Collapse
|
86
|
Sidky H, Colón YJ, Helfferich J, Sikora BJ, Bezik C, Chu W, Giberti F, Guo AZ, Jiang X, Lequieu J, Li J, Moller J, Quevillon MJ, Rahimi M, Ramezani-Dakhel H, Rathee VS, Reid DR, Sevgen E, Thapar V, Webb MA, Whitmer JK, de Pablo JJ. SSAGES: Software Suite for Advanced General Ensemble Simulations. J Chem Phys 2018; 148:044104. [DOI: 10.1063/1.5008853] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Hythem Sidky
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Yamil J. Colón
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Institute for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Julian Helfferich
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Steinbuch Center for Computing, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Benjamin J. Sikora
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Cody Bezik
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Weiwei Chu
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Federico Giberti
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Ashley Z. Guo
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Xikai Jiang
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Joshua Lequieu
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Jiyuan Li
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Joshua Moller
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Michael J. Quevillon
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Mohammad Rahimi
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Hadi Ramezani-Dakhel
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | - Vikramjit S. Rathee
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Daniel R. Reid
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Emre Sevgen
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Vikram Thapar
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Michael A. Webb
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Institute for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Jonathan K. Whitmer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Juan J. de Pablo
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Institute for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| |
Collapse
|
87
|
Daskalakis V, Papadatos S. The Photosystem II Subunit S under Stress. Biophys J 2018; 113:2364-2372. [PMID: 29211990 DOI: 10.1016/j.bpj.2017.09.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/29/2017] [Accepted: 09/29/2017] [Indexed: 01/08/2023] Open
Abstract
Nonphotochemical quenching is the protective mechanism against overexcitation of photosystem II, triggered by excess ΔpH in photosynthetic membranes. The light-harvesting complexes (LHCs), the de-epoxidation of violaxanthin to zeaxanthin, and the photosystem II subunit S (PsbS) work in synergy for an optimized multilevel response. Understanding the fine details of this synergy has proven challenging to scientific research. Here, we employ large-scale, all-atom molecular simulations and beyond experimental insight, we proceed a step further in identifying the PsbS dynamics that could possibly be associated with this synergy. For the first time, to our knowledge, we probe the distinct behavior of PsbS under ΔpH that probes the details of the potential dimer-to-monomer transition, and in a violaxanthin/zeaxanthin-rich membrane, at an all-atom resolution. We propose that the lumen-exposed residues, threonine 162 and glutamic acid 173, form stabilizing hydrogen bonds between the PsbS monomers only at high lumen pH, whereas at low pH (excess ΔpH) this interaction is lost, and leads to higher flexibility of the protein and potentially to the dimer-to-monomer transition. Lastly, we discuss how conformational changes under the presence of ΔpH/zeaxanthin are related to the PsbS role in the current nonphotochemical quenching model in the literature. For the latter, we probe a PsbS-monomeric LHCII association. The association is proposed to potentially alter the monomeric LHCII sensitivity to ΔpH by changing the pKa values of interacting LHCII residues. This serves as an example where protonation-ligation events enhance protein-protein interactions fundamental to many life processes.
Collapse
Affiliation(s)
- Vangelis Daskalakis
- Department of Environmental Science and Technology, Cyprus University of Technology, Limassol, Cyprus.
| | - Sotiris Papadatos
- Department of Environmental Science and Technology, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
88
|
Boonstra S, Onck PR, van der Giessen E. Computation of Hemagglutinin Free Energy Difference by the Confinement Method. J Phys Chem B 2017; 121:11292-11303. [PMID: 29151344 PMCID: PMC5742479 DOI: 10.1021/acs.jpcb.7b09699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/15/2017] [Indexed: 11/28/2022]
Abstract
Hemagglutinin (HA) mediates membrane fusion, a crucial step during influenza virus cell entry. How many HAs are needed for this process is still subject to debate. To aid in this discussion, the confinement free energy method was used to calculate the conformational free energy difference between the extended intermediate and postfusion state of HA. Special care was taken to comply with the general guidelines for free energy calculations, thereby obtaining convergence and demonstrating reliability of the results. The energy that one HA trimer contributes to fusion was found to be 34.2 ± 3.4kBT, similar to the known contributions from other fusion proteins. Although computationally expensive, the technique used is a promising tool for the further energetic characterization of fusion protein mechanisms. Knowledge of the energetic contributions per protein, and of conserved residues that are crucial for fusion, aids in the development of fusion inhibitors for antiviral drugs.
Collapse
Affiliation(s)
- Sander Boonstra
- Micromechanics of Materials,
Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Patrick R. Onck
- Micromechanics of Materials,
Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Erik van der Giessen
- Micromechanics of Materials,
Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
89
|
Cournia Z, Allen B, Sherman W. Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations. J Chem Inf Model 2017; 57:2911-2937. [PMID: 29243483 DOI: 10.1021/acs.jcim.7b00564] [Citation(s) in RCA: 412] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Accurate in silico prediction of protein-ligand binding affinities has been a primary objective of structure-based drug design for decades due to the putative value it would bring to the drug discovery process. However, computational methods have historically failed to deliver value in real-world drug discovery applications due to a variety of scientific, technical, and practical challenges. Recently, a family of approaches commonly referred to as relative binding free energy (RBFE) calculations, which rely on physics-based molecular simulations and statistical mechanics, have shown promise in reliably generating accurate predictions in the context of drug discovery projects. This advance arises from accumulating developments in the underlying scientific methods (decades of research on force fields and sampling algorithms) coupled with vast increases in computational resources (graphics processing units and cloud infrastructures). Mounting evidence from retrospective validation studies, blind challenge predictions, and prospective applications suggests that RBFE simulations can now predict the affinity differences for congeneric ligands with sufficient accuracy and throughput to deliver considerable value in hit-to-lead and lead optimization efforts. Here, we present an overview of current RBFE implementations, highlighting recent advances and remaining challenges, along with examples that emphasize practical considerations for obtaining reliable RBFE results. We focus specifically on relative binding free energies because the calculations are less computationally intensive than absolute binding free energy (ABFE) calculations and map directly onto the hit-to-lead and lead optimization processes, where the prediction of relative binding energies between a reference molecule and new ideas (virtual molecules) can be used to prioritize molecules for synthesis. We describe the critical aspects of running RBFE calculations, from both theoretical and applied perspectives, using a combination of retrospective literature examples and prospective studies from drug discovery projects. This work is intended to provide a contemporary overview of the scientific, technical, and practical issues associated with running relative binding free energy simulations, with a focus on real-world drug discovery applications. We offer guidelines for improving the accuracy of RBFE simulations, especially for challenging cases, and emphasize unresolved issues that could be improved by further research in the field.
Collapse
Affiliation(s)
- Zoe Cournia
- Biomedical Research Foundation, Academy of Athens , 4 Soranou Ephessiou, 11527 Athens, Greece
| | - Bryce Allen
- Silicon Therapeutics , 300 A Street, Boston, Massachusetts 02210, United States
| | - Woody Sherman
- Silicon Therapeutics , 300 A Street, Boston, Massachusetts 02210, United States
| |
Collapse
|
90
|
Jandova Z, Trosanova Z, Weisova V, Oostenbrink C, Hritz J. Free energy calculations on the stability of the 14-3-3ζ protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:442-450. [PMID: 29203375 DOI: 10.1016/j.bbapap.2017.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/31/2017] [Accepted: 11/25/2017] [Indexed: 01/08/2023]
Abstract
Mutations of cysteine are often introduced to e.g. avoid formation of non-physiological inter-molecular disulfide bridges in in-vitro experiments, or to maintain specificity in labeling experiments. Alanine or serine is typically preferred, which usually do not alter the overall protein stability, when the original cysteine was surface exposed. However, selecting the optimal mutation for cysteines in the hydrophobic core of the protein is more challenging. In this work, the stability of selected Cys mutants of 14-3-3ζ was predicted by free-energy calculations and the obtained data were compared with experimentally determined stabilities. Both the computational predictions as well as the experimental validation point at a significant destabilization of mutants C94A and C94S. This destabilization could be attributed to the formation of hydrophobic cavities and a polar solvation of a hydrophilic side chain. A L12E, M78K double mutant was further studied in terms of its reduced dimerization propensity. In contrast to naïve expectations, this double mutant did not lead to the formation of strong salt bridges, which was rationalized in terms of a preferred solvation of the ionic species. Again, experiments agreed with the calculations by confirming the monomerization of the double mutants. Overall, the simulation data is in good agreement with experiments and offers additional insight into the stability and dimerization of this important family of regulatory proteins.
Collapse
Affiliation(s)
- Zuzana Jandova
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Zuzana Trosanova
- CEITEC-MU, Masaryk University, Kamenice 753/5, Bohunice, Brno, Czech Republic
| | - Veronika Weisova
- CEITEC-MU, Masaryk University, Kamenice 753/5, Bohunice, Brno, Czech Republic
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Jozef Hritz
- CEITEC-MU, Masaryk University, Kamenice 753/5, Bohunice, Brno, Czech Republic.
| |
Collapse
|
91
|
Demuynck R, Rogge SMJ, Vanduyfhuys L, Wieme J, Waroquier M, Van Speybroeck V. Efficient Construction of Free Energy Profiles of Breathing Metal-Organic Frameworks Using Advanced Molecular Dynamics Simulations. J Chem Theory Comput 2017; 13:5861-5873. [PMID: 29131647 PMCID: PMC5729547 DOI: 10.1021/acs.jctc.7b01014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
In order to reliably
predict and understand the breathing behavior
of highly flexible metal–organic frameworks from thermodynamic
considerations, an accurate estimation of the free energy difference
between their different metastable states is a prerequisite. Herein,
a variety of free energy estimation methods are thoroughly tested
for their ability to construct the free energy profile as a function
of the unit cell volume of MIL-53(Al). The methods comprise free energy
perturbation, thermodynamic integration, umbrella sampling, metadynamics,
and variationally enhanced sampling. A series of molecular dynamics
simulations have been performed in the frame of each of the five methods
to describe structural transformations in flexible materials with
the volume as the collective variable, which offers a unique opportunity
to assess their computational efficiency. Subsequently, the most efficient
method, umbrella sampling, is used to construct an accurate free energy
profile at different temperatures for MIL-53(Al) from first principles
at the PBE+D3(BJ) level of theory. This study yields insight into
the importance of the different aspects such as entropy contributions
and anharmonic contributions on the resulting free energy profile.
As such, this thorough study provides unparalleled insight in the
thermodynamics of the large structural deformations of flexible materials.
Collapse
Affiliation(s)
- Ruben Demuynck
- Center for Molecular Modeling (CMM), Ghent University , Technologiepark 903, B-9052 Zwijnaarde, Belgium
| | - Sven M J Rogge
- Center for Molecular Modeling (CMM), Ghent University , Technologiepark 903, B-9052 Zwijnaarde, Belgium
| | - Louis Vanduyfhuys
- Center for Molecular Modeling (CMM), Ghent University , Technologiepark 903, B-9052 Zwijnaarde, Belgium
| | - Jelle Wieme
- Center for Molecular Modeling (CMM), Ghent University , Technologiepark 903, B-9052 Zwijnaarde, Belgium
| | - Michel Waroquier
- Center for Molecular Modeling (CMM), Ghent University , Technologiepark 903, B-9052 Zwijnaarde, Belgium
| | - Veronique Van Speybroeck
- Center for Molecular Modeling (CMM), Ghent University , Technologiepark 903, B-9052 Zwijnaarde, Belgium
| |
Collapse
|
92
|
Chen Z, Cox BD, Garnier-Amblard EC, McBrayer TR, Coats SJ, Schinazi RF, Amblard F. Synthesis and anti-HCV activity of a series of β-d-2'-deoxy-2'-dibromo nucleosides and their corresponding phosphoramidate prodrugs. Bioorg Med Chem Lett 2017; 27:5296-5299. [PMID: 29066308 DOI: 10.1016/j.bmcl.2017.10.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/17/2022]
Abstract
Several β-d-2'-deoxy-2'-substituted nucleoside analogs have displayed potent and selective anti-HCV activities and some of them have reached human clinical trials. In that regard, we report herein the synthesis of a series of 2'-deoxy,2'-dibromo substituted U, C, G and A nucleosides 10a-d and their corresponding phosphoramidate prodrugs 13a-d. The synthesized nucleosides 10a-d and prodrugs 13a-d were evaluated for their inhibitory activity against HCV as well as cellular toxicity. The results showed that the most potent compound was prodrug 13a, which exhibited micromolar inhibitory activity (EC50 = 1.5 ± 0.8 µM) with no observed toxicity. In addition, molecular modeling and free energy perturbation calculations for the 5'-triphosphate formed from 13a and related 2'-modified nucleotides are discussed.
Collapse
Affiliation(s)
- Zhe Chen
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, School of Medicine, Atlanta, GA 30322, United States
| | - Bryan D Cox
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, School of Medicine, Atlanta, GA 30322, United States
| | | | | | | | - Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, School of Medicine, Atlanta, GA 30322, United States.
| | - Franck Amblard
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, School of Medicine, Atlanta, GA 30322, United States.
| |
Collapse
|
93
|
Anderson RL, Bray DJ, Ferrante AS, Noro MG, Stott IP, Warren PB. Dissipative particle dynamics: Systematic parametrization using water-octanol partition coefficients. J Chem Phys 2017; 147:094503. [DOI: 10.1063/1.4992111] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - David J. Bray
- STFC Hartree Centre, Scitech Daresbury, Warrington WA4 4AD, United Kingdom
| | - Andrea S. Ferrante
- Novidec Ltd., 3 Brook Hey, Parkgate, Neston CH64 6TH, United Kingdom
- Ferrante Scientific Ltd., 5 Croft Lane, Bromborough CH62 2BX, United Kingdom
| | - Massimo G. Noro
- Unilever R&D Port Sunlight, Quarry Road East, Bebington CH63 3JW, United Kingdom
| | - Ian P. Stott
- Unilever R&D Port Sunlight, Quarry Road East, Bebington CH63 3JW, United Kingdom
| | - Patrick B. Warren
- Unilever R&D Port Sunlight, Quarry Road East, Bebington CH63 3JW, United Kingdom
| |
Collapse
|
94
|
Zinovjev K, Tuñón I. Reaction coordinates and transition states in enzymatic catalysis. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1329] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Kirill Zinovjev
- Departament de Química FísicaUniversitat de València Valencia Spain
| | - Iñaki Tuñón
- Departament de Química FísicaUniversitat de València Valencia Spain
| |
Collapse
|
95
|
Caro MA, Lopez-Acevedo O, Laurila T. Redox Potentials from Ab Initio Molecular Dynamics and Explicit Entropy Calculations: Application to Transition Metals in Aqueous Solution. J Chem Theory Comput 2017; 13:3432-3441. [DOI: 10.1021/acs.jctc.7b00314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Miguel A. Caro
- Department
of Electrical Engineering and Automation, Aalto University, 02150 Espoo, Finland
- COMP
Centre of Excellence in Computational Nanoscience, Department of Applied
Physics, Aalto University, Espoo, 02150Finland
| | - Olga Lopez-Acevedo
- COMP
Centre of Excellence in Computational Nanoscience, Department of Applied
Physics, Aalto University, Espoo, 02150Finland
- Departamento
de Ciencias Básicas, Universidad de Medellín, 050026 Medellín, Colombia
| | - Tomi Laurila
- Department
of Electrical Engineering and Automation, Aalto University, 02150 Espoo, Finland
| |
Collapse
|
96
|
Sequence statistics of tertiary structural motifs reflect protein stability. PLoS One 2017; 12:e0178272. [PMID: 28552940 PMCID: PMC5446159 DOI: 10.1371/journal.pone.0178272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/10/2017] [Indexed: 11/19/2022] Open
Abstract
The Protein Data Bank (PDB) has been a key resource for learning general rules of sequence-structure relationships in proteins. Quantitative insights have been gained by defining geometric descriptors of structure (e.g., distances, dihedral angles, solvent exposure, etc.) and observing their distributions and sequence preferences. Here we argue that as the PDB continues to grow, it may become unnecessary to reduce structure into a set of elementary descriptors. Instead, it could be possible to deduce quantitative sequence-structure relationships in the context of precisely-defined complex structural motifs by mining the PDB for closely matching backbone geometries. To validate this idea, we turned to the the task of predicting changes in protein stability upon amino-acid substitution—a difficult problem of broad significance. We defined non-contiguous tertiary motifs (TERMs) around a protein site of interest and extracted sequence preferences from ensembles of closely-matching substructures in the PDB to predict mutational stability changes at the site, ΔΔGm. We demonstrate that these ensemble statistics predict ΔΔGm on par with state-of-the-art statistical and machine-learning methods on large thermodynamic datasets, and outperform these, along with a leading structure-based modeling approach, when tested in the context of unbiased diverse mutations. Further, we show that the performance of the TERM-based method is directly related to the amount of available relevant structural data, automatically improving with the growing PDB. This enables a means of estimating prediction accuracy. Our results clearly demonstrate that: 1) statistics of non-contiguous structural motifs in the PDB encode fundamental sequence-structure relationships related to protein thermodynamic stability, and 2) the PDB is now large enough that such statistics are already useful in practice, with their accuracy expected to continue increasing as the database grows. These observations suggest new ways of using structural data towards addressing problems of computational structural biology.
Collapse
|
97
|
Sidler D, Cristòfol-Clough M, Riniker S. Efficient Round-Trip Time Optimization for Replica-Exchange Enveloping Distribution Sampling (RE-EDS). J Chem Theory Comput 2017; 13:3020-3030. [PMID: 28510459 DOI: 10.1021/acs.jctc.7b00286] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Replica-exchange enveloping distribution sampling (RE-EDS) allows the efficient estimation of free-energy differences between multiple end-states from a single molecular dynamics (MD) simulation. In EDS, a reference state is sampled, which can be tuned by two types of parameters, i.e., smoothness parameters(s) and energy offsets, such that all end-states are sufficiently sampled. However, the choice of these parameters is not trivial. Replica exchange (RE) or parallel tempering is a widely applied technique to enhance sampling. By combining EDS with the RE technique, the parameter choice problem could be simplified and the challenge shifted toward an optimal distribution of the replicas in the smoothness-parameter space. The choice of a certain replica distribution can alter the sampling efficiency significantly. In this work, global round-trip time optimization (GRTO) algorithms are tested for the use in RE-EDS simulations. In addition, a local round-trip time optimization (LRTO) algorithm is proposed for systems with slowly adapting environments, where a reliable estimate for the round-trip time is challenging to obtain. The optimization algorithms were applied to RE-EDS simulations of a system of nine small-molecule inhibitors of phenylethanolamine N-methyltransferase (PNMT). The energy offsets were determined using our recently proposed parallel energy-offset (PEOE) estimation scheme. While the multistate GRTO algorithm yielded the best replica distribution for the ligands in water, the multistate LRTO algorithm was found to be the method of choice for the ligands in complex with PNMT. With this, the 36 alchemical free-energy differences between the nine ligands were calculated successfully from a single RE-EDS simulation 10 ns in length. Thus, RE-EDS presents an efficient method for the estimation of relative binding free energies.
Collapse
Affiliation(s)
- Dominik Sidler
- Laboratory of Physical Chemistry, ETH Zürich , Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | | | - Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zürich , Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
98
|
Abstract
Binding free energy calculations based on molecular simulations provide predicted affinities for biomolecular complexes. These calculations begin with a detailed description of a system, including its chemical composition and the interactions among its components. Simulations of the system are then used to compute thermodynamic information, such as binding affinities. Because of their promise for guiding molecular design, these calculations have recently begun to see widespread applications in early-stage drug discovery. However, many hurdles remain in making them a robust and reliable tool. In this review, we highlight key challenges of these calculations, discuss some examples of these challenges, and call for the designation of standard community benchmark test systems that will help the research community generate and evaluate progress. In our view, progress will require careful assessment and evaluation of new methods, force fields, and modeling innovations on well-characterized benchmark systems, and we lay out our vision for how this can be achieved.
Collapse
Affiliation(s)
- David L Mobley
- Department of Pharmaceutical Sciences and Department of Chemistry, University of California, Irvine, California 92697;
| | - Michael K Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences and Center for Drug Discovery Innovation, University of California, San Diego, La Jolla, California 92093;
| |
Collapse
|
99
|
Rimas Z, Taraskin SN. A single-walker approach for studying quasi-nonergodic systems. Sci Rep 2017; 7:2242. [PMID: 28533539 PMCID: PMC5440385 DOI: 10.1038/s41598-017-01704-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/30/2017] [Indexed: 11/09/2022] Open
Abstract
The jump-walking Monte-Carlo algorithm is revisited and updated to study the equilibrium properties of systems exhibiting quasi-nonergodicity. It is designed for a single processing thread as opposed to currently predominant algorithms for large parallel processing systems. The updated algorithm is tested on the Ising model and applied to the lattice-gas model for sorption in aerogel at low temperatures, when dynamics of the system is critically slowed down. It is demonstrated that the updated jump-walking simulations are able to produce equilibrium isotherms which are typically hidden by the hysteresis effect characteristic of the standard single-flip simulations.
Collapse
Affiliation(s)
- Zilvinas Rimas
- Sidney Sussex College and Department of Chemistry, University of Cambridge, Cambridge, UK.
| | - Sergei N Taraskin
- St. Catharine's College and Department of Chemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
100
|
Sidler D, Schwaninger A, Riniker S. Replica exchange enveloping distribution sampling (RE-EDS): A robust method to estimate multiple free-energy differences from a single simulation. J Chem Phys 2017; 145:154114. [PMID: 27782485 DOI: 10.1063/1.4964781] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In molecular dynamics (MD) simulations, free-energy differences are often calculated using free energy perturbation or thermodynamic integration (TI) methods. However, both techniques are only suited to calculate free-energy differences between two end states. Enveloping distribution sampling (EDS) presents an attractive alternative that allows to calculate multiple free-energy differences in a single simulation. In EDS, a reference state is simulated which "envelopes" the end states. The challenge of this methodology is the determination of optimal reference-state parameters to ensure equal sampling of all end states. Currently, the automatic determination of the reference-state parameters for multiple end states is an unsolved issue that limits the application of the methodology. To resolve this, we have generalised the replica-exchange EDS (RE-EDS) approach, introduced by Lee et al. [J. Chem. Theory Comput. 10, 2738 (2014)] for constant-pH MD simulations. By exchanging configurations between replicas with different reference-state parameters, the complexity of the parameter-choice problem can be substantially reduced. A new robust scheme to estimate the reference-state parameters from a short initial RE-EDS simulation with default parameters was developed, which allowed the calculation of 36 free-energy differences between nine small-molecule inhibitors of phenylethanolamine N-methyltransferase from a single simulation. The resulting free-energy differences were in excellent agreement with values obtained previously by TI and two-state EDS simulations.
Collapse
Affiliation(s)
- Dominik Sidler
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Arthur Schwaninger
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|