51
|
Pracht P, Grant DF, Grimme S. Comprehensive Assessment of GFN Tight-Binding and Composite Density Functional Theory Methods for Calculating Gas-Phase Infrared Spectra. J Chem Theory Comput 2020; 16:7044-7060. [PMID: 33054183 DOI: 10.1021/acs.jctc.0c00877] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Vibrational spectroscopy is a valuable and widely used analytical tool for the characterization of chemical substances. We investigate the performance of semiempirical quantum mechanical GFN tight-binding and force-field methods for the calculation of gas-phase infrared spectra in comparison to experiment and low-cost (B3LYP-3c) density functional theory. A data set of 7247 experimental references was used to evaluate method performance based on automatic spectra comparison. Various quantitative spectral similarity measures were employed for the comparison between theory and experiment and for determining empirical scaling factors. It is shown that the scaling of atomic masses provides an accurate yet simple alternative to standard global frequency scaling in density functional theory (DFT) and semiempirical calculations. Furthermore, the method performance for 58 exemplary transition metal complexes was investigated. The efficient DFT composite method B3LYP-3c, that was introduced in the course of this work, was found to be excellently suited for general IR spectra calculations. The GFN1- and GFN2-xTB tight-binding methods clearly outperformed the PMx competitors. Conformational changes were investigated for a subset of the data and are found to have a mediocre strong influence on the simulated spectra suggesting that the corresponding elaborate sampling steps may be neglected in automated compound identification workflows.
Collapse
Affiliation(s)
- Philipp Pracht
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115 Bonn, Germany
| | - David F Grant
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06268, United States
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115 Bonn, Germany
| |
Collapse
|
52
|
Chortani S, Edziri H, Manachou M, Al-Ghamdi YO, Almalki SG, Alqurashi YE, Ben Jannet H, Romdhane A. Novel 1,3,4-oxadiazole linked benzopyrimidinones conjugates: Synthesis, DFT study and antimicrobial evaluation. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128357] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
53
|
Boyko M, Hlukhyy V, Jin H, Dums J, Fässler TF. Extracting [Pd@Sn
9
]
4–
and [Rh@Pb
9
]
4–
Clusters from their Binary Alloys Using “
Metal Scissors”. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Marina Boyko
- Department of Chemistry Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Viktor Hlukhyy
- Department of Chemistry Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Hanpeng Jin
- Department of Chemistry Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Jasmin Dums
- Department of Chemistry Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Thomas F. Fässler
- Department of Chemistry Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| |
Collapse
|
54
|
Bahçeli S, Sarıkaya EK, Dereli Ö, Özturan FP. Spectroscopic and DFT study on molecular structure of 1-(o-tolyl)thiourea molecule. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
55
|
de Castro JS, Rodrigues CHP, Bruni AT. In Silico Infrared Characterization of Synthetic Cannabinoids by Quantum Chemistry and Chemometrics. J Chem Inf Model 2020; 60:2100-2114. [PMID: 32118417 DOI: 10.1021/acs.jcim.9b00871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The concept of forensic sciences as mere trace analysis has been modified by the idea of forensic intelligence, which entails applying data to make decisions within the investigative process. Many countries are engaged in combating drug trafficking and drug use because they are related to public health and safety issues. Prohibiting the consumption of traditional drugs has led new psychoactive substances (NPSs) to emerge. NPSs consist of compounds that resemble the initially banned substance and which aim to mimic the traditional drug recreational effects while circumventing drug legislation. For example, synthetic cannabinoids are sprayed on herbal products to reproduce the cannabis recreational effects. According to the United Nations Office on Drugs and Crime (UNODC), the toxic effects of synthetic cannabis types are unknown, and harm and fatalities associated with the use of these drugs have been reported. Information on the characterization related to these species is lacking. The rate at which NPSs appear poses a significant challenge because employing conventional methods to understand the characteristics of these compounds may require time and be costly. This work uses in silico practices as an alternative to understand how NPSs related to cannabis behave. We apply quantum chemistry methods to evaluate several synthetic cannabinoids recognized in forensic samples. More specifically, we generate infrared spectra that can be employed as a benchmark for NPSs. We apply a multivariate classification to evaluate the results. We conclude that in silico methods are an alternative that provide information about the spectra of undetected substances. This information can help to identify new drugs, to increase knowledge about them, and to feed information procedures.
Collapse
Affiliation(s)
- Jade Simões de Castro
- Departamento de Quı́mica, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Avenida Bandeirantes, 3900, Vila Monte Alegre, Ribeirão Preto, SP, Brazil, 14040-901.,Instituto Nacional de Ciência e Tecnologia Forense (INCT Forense). Avenida Bandeirantes, 3900, Vila Monte Alegre, Ribeirão Preto, SP, Brazil, 14040-901
| | - Caio Henrique Pinke Rodrigues
- Departamento de Quı́mica, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Avenida Bandeirantes, 3900, Vila Monte Alegre, Ribeirão Preto, SP, Brazil, 14040-901.,Instituto Nacional de Ciência e Tecnologia Forense (INCT Forense). Avenida Bandeirantes, 3900, Vila Monte Alegre, Ribeirão Preto, SP, Brazil, 14040-901
| | - Aline Thaís Bruni
- Departamento de Quı́mica, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Avenida Bandeirantes, 3900, Vila Monte Alegre, Ribeirão Preto, SP, Brazil, 14040-901.,Instituto Nacional de Ciência e Tecnologia Forense (INCT Forense). Avenida Bandeirantes, 3900, Vila Monte Alegre, Ribeirão Preto, SP, Brazil, 14040-901
| |
Collapse
|
56
|
Pekparlak A, Tamer Ö, Kanmazalp S, Berber N, Arslan M, Avcı D, Dege N, Tarcan E, Atalay Y. Synthesis, crystal structure, spectroscopic (FT-IR, 1H and 13C NMR) and nonlinear optical properties of a novel potential HIV-1 protease inhibitor. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
57
|
Schöttner L, Erker S, Schlesinger R, Koch N, Nefedov A, Hofmann OT, Wöll C. Doping-Induced Electron Transfer at Organic/Oxide Interfaces: Direct Evidence from Infrared Spectroscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2020; 124:4511-4516. [PMID: 32140201 PMCID: PMC7050012 DOI: 10.1021/acs.jpcc.9b08768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Charge transfer at organic/inorganic interfaces critically influences the properties of molecular adlayers. Although for metals such charge transfers are well documented by experimental and theoretical results, in the case of semiconductors, clear and direct evidence for a transfer of electrons or holes from oxides with their typically high ionization energy is missing. Here, we present data from infrared reflection-absorption spectroscopy demonstrating that despite a high ionization energy, electrons are transferred from ZnO into a prototype strong molecular electron acceptor, hexafluoro-tetracyano-naphthoquinodimethane (F6-TCNNQ). Because there are no previous studies of this type, the interpretation of the pronounced vibrational red shifts observed in the experiment was aided by a thorough theoretical analysis using density functional theory. The calculations reveal that two mechanisms govern the pronounced vibrational band shifts of the adsorbed molecules: electron transfer into unoccupied molecular levels of the organic acceptor and also the bonding between the surface Zn atoms and the peripheral cyano groups. These combined experimental data and the theoretical analysis provide the so-far missing evidence of interfacial electron transfer from high ionization energy inorganic semiconductors to molecular acceptors and indicates that n-doping of ZnO plays a crucial role.
Collapse
Affiliation(s)
- L. Schöttner
- Karlsruhe
Institute of Technology, Institute of Functional
Interfaces, Hermann-von-Helmholtz-Platz
1, 76344 Eggenstein-Leopoldshafen, Germany
| | - S. Erker
- Graz
University of Technology, NAWI Graz, Petersgasse 16, 8010 Graz, Austria
| | - R. Schlesinger
- Humboldt
Universität zu Berlin, Institut für
Physik & IRIS Adlershof, Brook-Taylor-Straße 6, 12489 Berlin, Germany
| | - N. Koch
- Humboldt
Universität zu Berlin, Institut für
Physik & IRIS Adlershof, Brook-Taylor-Straße 6, 12489 Berlin, Germany
| | - A. Nefedov
- Karlsruhe
Institute of Technology, Institute of Functional
Interfaces, Hermann-von-Helmholtz-Platz
1, 76344 Eggenstein-Leopoldshafen, Germany
| | - O. T. Hofmann
- Graz
University of Technology, NAWI Graz, Petersgasse 16, 8010 Graz, Austria
| | - C. Wöll
- Karlsruhe
Institute of Technology, Institute of Functional
Interfaces, Hermann-von-Helmholtz-Platz
1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
58
|
Affiliation(s)
- Yong Zhang
- School of Physics and Astronomy, Sun Yat-sen University,
Zhuhai 519082, China
- Laboratory for Space Research, Faculty of Science, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
59
|
Pyrazolo[1,5-a][1,3,5]triazin-2-thioxo-4-ones derivatives as thymidine phosphorylase inhibitors: Structure, drug-like calculations and quantitative structure-activity relationships (QSAR) modeling. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
60
|
Palivec V, Kopecký V, Jungwirth P, Bouř P, Kaminský J, Martinez-Seara H. Simulation of Raman and Raman optical activity of saccharides in solution. Phys Chem Chem Phys 2020; 22:1983-1993. [DOI: 10.1039/c9cp05682c] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
All conformers and anomeric forms of sugars in solutions together with the surrounding waters need to be averaged for reliable simulations of vibrational spectra.
Collapse
Affiliation(s)
- Vladimír Palivec
- Institute of Organic Chemistry and Biochemistry
- Czech Academy of Sciences
- Prague 6
- Czech Republic
| | - Vladimír Kopecký
- Institute of Physics
- Faculty of Mathematics and Physics
- Charles University
- Prague 2
- Czech Republic
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry
- Czech Academy of Sciences
- Prague 6
- Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry
- Czech Academy of Sciences
- Prague 6
- Czech Republic
| | - Jakub Kaminský
- Institute of Organic Chemistry and Biochemistry
- Czech Academy of Sciences
- Prague 6
- Czech Republic
- Gilead Sciences & IOCB Research Center
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry
- Czech Academy of Sciences
- Prague 6
- Czech Republic
| |
Collapse
|
61
|
Shipp JD, Carson H, Spall SJP, Parker SC, Chekulaev D, Jones N, Mel'nikov MY, Robertson CC, Meijer AJHM, Weinstein JA. Sterically hindered Re- and Mn-CO 2 reduction catalysts for solar energy conversion. Dalton Trans 2020; 49:4230-4243. [PMID: 32104876 DOI: 10.1039/d0dt00252f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Novel molecular Re and Mn tricarbonyl complexes bearing a bipyridyl ligand functionalised with sterically hindering substituents in the 6,6'-position, [M(HPEAB)(CO)3(X)] (M/X = Re/Cl, Mn/Br; HPEAB = 6,6'-{N-(4-hexylphenyl)-N(ethyl)-amido}-2,2'-bipyridine) have been synthesised, fully characterised including by single crystal X-ray crystallography, and their propensity to act as catalysts for the electrochemical and photochemical reduction of CO2 has been established. Controlled potential electrolysis showed that the catalysts are effective for electrochemical CO2-reduction, yielding CO as the product (in MeCN for the Re-complex, in 95 : 5 (v/v) MeCN : H2O mixture for the Mn-complex). The recyclability of the catalysts was demonstrated through replenishment of CO2 within solution. The novel catalysts had similar reduction potentials to previously reported complexes of similar structure, and results of the foot-of-the-wave analysis showed comparable maximum turnover rates, too. The tentative mechanisms for activation of the pre-catalysts were proposed on the basis of IR-spectroelectrochemical data aided by DFT calculations. It is shown that the typical dimerisation of the Mn-catalyst was prevented by incorporation of sterically hindering groups, whilst the Re-catalyst undergoes the usual mechanism following chloride ion loss. No photochemical CO2 reduction was observed for the rhenium complex in the presence of a sacrificial donor (triethylamine), which was attributed to the short triplet excited state lifetime (3.6 ns), insufficient for diffusion-controlled electron transfer. Importantly, [Mn(HPEAB)(CO)3Br] can act as a CO2 reduction catalyst when photosensitised by a zinc porphyrin under red light irradiation (λ > 600 nm) in MeCN : H2O (95 : 5); there has been only one reported example of photoactivating Mn-catalysts with porphyrins in this manner. Thus, this work demonstrates the wide utility of sterically protected Re- and Mn-diimine carbonyl catalysts, where the rate and yield of CO-production can be adjusted based on the metal centre and catalytic conditions, with the advantage of suppressing unwanted side-reactions through steric protection of the vacant coordination site.
Collapse
Affiliation(s)
- James D Shipp
- Department of Chemistry, University of Sheffield, S3 7HF, UK.
| | - Heather Carson
- Department of Chemistry, University of Sheffield, S3 7HF, UK.
| | | | - Simon C Parker
- Department of Chemistry, University of Sheffield, S3 7HF, UK.
| | | | - Natalie Jones
- Department of Chemistry, University of Sheffield, S3 7HF, UK.
| | | | | | | | | |
Collapse
|
62
|
Yao F, Gong N, Fang W, Men Z. Spectroscopic evidence of a particular intermolecular interaction in iodomethane–ethanol mixtures: the cooperative effect of halogen bonding, hydrogen bonding, and the solvent effect. Phys Chem Chem Phys 2020; 22:5702-5710. [DOI: 10.1039/c9cp05886a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The particular intermolecular interaction of an iodomethane–ethanol mixture is revealed by NIR, Raman, DFT calculation, and 2D correlation analysis.
Collapse
Affiliation(s)
- Fei Yao
- School of Science, Changchun University of Science and Technology
- Changchun
- China
| | - Nan Gong
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory
- College of Physics
- Jilin University
- Changchun 130012
- China
| | - Wenhui Fang
- School of Science, Changchun University of Science and Technology
- Changchun
- China
| | - Zhiwei Men
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory
- College of Physics
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
63
|
Wei WM, Dong FQ, Zheng RH, Yang X, Fang WJ, Qin YD. Theoretical study of the mechanism of Pd(II)-catalyzed nucleophilic addition initiated by aminopalladation. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.112638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
64
|
Bakowies D. Estimating Systematic Error and Uncertainty in Ab Initio Thermochemistry: II. ATOMIC(hc) Enthalpies of Formation for a Large Set of Hydrocarbons. J Chem Theory Comput 2019; 16:399-426. [DOI: 10.1021/acs.jctc.9b00974] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dirk Bakowies
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, Klingelbergstr. 80, CH 4056 Basel, Switzerland
| |
Collapse
|
65
|
Ben Abdallah MA, Bacchi A, Parisini A, Canossa S, Mazzeo PP, Bergamonti L, Kamoun S. X-ray, optical, vibrational, electrical, and DFT study of the polymorphic structure of ethylenediammonium bis iodate α-C2H10N2(IO3)2 and β-C2H10N2(IO3)2. Struct Chem 2019. [DOI: 10.1007/s11224-019-01317-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
66
|
Munshi MU, Martens J, Berden G, Oomens J. Protoisomerization of Indigo and Isoindigo Dyes Confirmed by Gas-Phase Infrared Ion Spectroscopy. J Phys Chem A 2019; 123:8226-8233. [PMID: 31490692 PMCID: PMC6767361 DOI: 10.1021/acs.jpca.9b06858] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
![]()
Gas-phase
infrared multiple-photon dissociation (IRMPD) spectra
are recorded for the protonated dye molecules indigo and isoindigo
by using a quadrupole ion trap (QIT) mass spectrometer coupled to
the free electron laser for infrared experiments (FELIX). From their
fingerprint IR spectra (600—1800 cm–1) and
comparison with quantum-chemical calculations at the density functional
level of theory (B3LYP/6-31++G(d,p)), we derive their structures.
We focus particularly on the question of whether trans-to-cis isomerization occurs upon protonation and
transfer to the gas phase. The trans-configuration
is energetically favored in the neutral forms of the dyes in solution
and in the gas phase. Instead, the cis-isomer is
lower in energy for the protonated forms of both species, but indigo
is also notorious for not undergoing double-bond trans-to-cis isomerization, in contrast to many other
conjugated systems. The IR spectra suggest that protoisomerization
from trans to cis indeed occurs
for both dyes. To estimate the extent of isomerization, on-resonance
kinetics are measured on diagnostic and common vibrational frequencies
to determine the ratio of cis-to-trans isomers. We find ratios of 65–70% cis and
30–35% trans for indigo versus 75–80% cis and 20–25% trans for isoindigo.
Transition-state calculations for the isomerization reactions have
been carried out, which indeed suggest a lower barrier for protonated
isoindigo, qualitatively explaining the more efficient isomerization.
Collapse
Affiliation(s)
- Musleh Uddin Munshi
- Institute for Molecules and Materials, FELIX Laboratory , Radboud University , Toernooiveld 7 , 6525 ED Nijmegen , The Netherlands
| | - Jonathan Martens
- Institute for Molecules and Materials, FELIX Laboratory , Radboud University , Toernooiveld 7 , 6525 ED Nijmegen , The Netherlands
| | - Giel Berden
- Institute for Molecules and Materials, FELIX Laboratory , Radboud University , Toernooiveld 7 , 6525 ED Nijmegen , The Netherlands
| | - Jos Oomens
- Institute for Molecules and Materials, FELIX Laboratory , Radboud University , Toernooiveld 7 , 6525 ED Nijmegen , The Netherlands.,University of Amsterdam , Science Park 904 , 1098XH Amsterdam , The Netherlands
| |
Collapse
|
67
|
Witzel BJL, Klein W, Dums JV, Boyko M, Fässler TF. Metallo‐Käfige für Metall‐Anionen: Hochgeladene [Co@Ge
9
]
5−
‐ und [Ru@Sn
9
]
6−
‐Cluster mit sphärisch eingelagerten Co
−
‐ und Ru
2−
‐ Anionen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Benedikt J. L. Witzel
- Department Chemie Technische Universität München Lichtenbergstraße 4 85747 Garching Deutschland
| | - Wilhelm Klein
- Department Chemie Technische Universität München Lichtenbergstraße 4 85747 Garching Deutschland
| | - Jasmin V. Dums
- Department Chemie Technische Universität München Lichtenbergstraße 4 85747 Garching Deutschland
| | - Marina Boyko
- Department Chemie Technische Universität München Lichtenbergstraße 4 85747 Garching Deutschland
| | - Thomas F. Fässler
- Department Chemie Technische Universität München Lichtenbergstraße 4 85747 Garching Deutschland
| |
Collapse
|
68
|
Witzel BJL, Klein W, Dums JV, Boyko M, Fässler TF. Metallocages for Metal Anions: Highly Charged [Co@Ge 9 ] 5- and [Ru@Sn 9 ] 6- Clusters Featuring Spherically Encapsulated Co 1- and Ru 2- Anions. Angew Chem Int Ed Engl 2019; 58:12908-12913. [PMID: 31298780 PMCID: PMC6771791 DOI: 10.1002/anie.201907127] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Indexed: 11/06/2022]
Abstract
Endohedral clusters count as molecular models for intermetallic compounds-a class of compounds in which bonding principles are scarcely understood. Herein we report soluble cluster anions with the highest charges on a single cluster to date. The clusters reflect the close analogy between intermetalloid clusters and corresponding coordination polyhedra in intermetallic compounds. We now establish Raman spectroscopy as a reliable probe to assign for the first time the presence of discrete, endohedrally filled clusters in intermetallic phases. The ternary precursor alloys with nominal compositions "K5 Co1.2 Ge9 " and "K4 Ru3 Sn7 " exhibit characteristic bonding modes originating from metal atoms in the center of polyhedral clusters, thus revealing that filled clusters are present in these alloys. We report also on the structural characterization of [Co@Ge9 ]5- (1a) and [Ru@Sn9 ]6- (2a) obtained from solutions of the respective alloys.
Collapse
Affiliation(s)
- Benedikt J. L. Witzel
- Department ChemieTechnische Universität MünchenLichtenbergstrasse 485747GarchingGermany
| | - Wilhelm Klein
- Department ChemieTechnische Universität MünchenLichtenbergstrasse 485747GarchingGermany
| | - Jasmin V. Dums
- Department ChemieTechnische Universität MünchenLichtenbergstrasse 485747GarchingGermany
| | - Marina Boyko
- Department ChemieTechnische Universität MünchenLichtenbergstrasse 485747GarchingGermany
| | - Thomas F. Fässler
- Department ChemieTechnische Universität MünchenLichtenbergstrasse 485747GarchingGermany
| |
Collapse
|
69
|
Bailleul S, Yarulina I, Hoffman AEJ, Dokania A, Abou-Hamad E, Chowdhury AD, Pieters G, Hajek J, De Wispelaere K, Waroquier M, Gascon J, Van Speybroeck V. A Supramolecular View on the Cooperative Role of Brønsted and Lewis Acid Sites in Zeolites for Methanol Conversion. J Am Chem Soc 2019; 141:14823-14842. [PMID: 31464134 PMCID: PMC6753656 DOI: 10.1021/jacs.9b07484] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A systematic molecular level and spectroscopic investigation is presented to show the cooperative role of Brønsted acid and Lewis acid sites in zeolites for the conversion of methanol. Extra-framework alkaline-earth metal containing species and aluminum species decrease the number of Brønsted acid sites, as protonated metal clusters are formed. A combined experimental and theoretical effort shows that postsynthetically modified ZSM-5 zeolites, by incorporation of extra-framework alkaline-earth metals or by demetalation with dealuminating agents, contain both mononuclear [MOH]+ and double protonated binuclear metal clusters [M(μ-OH)2M]2+ (M = Mg, Ca, Sr, Ba, and HOAl). The metal in the extra-framework clusters has a Lewis acid character, which is confirmed experimentally and theoretically by IR spectra of adsorbed pyridine. The strength of the Lewis acid sites (Mg > Ca > Sr > Ba) was characterized by a blue shift of characteristic IR peaks, thus offering a tool to sample Lewis acidity experimentally. The incorporation of extra-framework Lewis acid sites has a substantial influence on the reactivity of propene and benzene methylations. Alkaline-earth Lewis acid sites yield increased benzene methylation barriers and destabilization of typical aromatic intermediates, whereas propene methylation routes are less affected. The effect on the catalytic function is especially induced by the double protonated binuclear species. Overall, the extra-framework metal clusters have a dual effect on the catalytic function. By reducing the number of Brønsted acid sites and suppressing typical catalytic reactions in which aromatics are involved, an optimal propene selectivity and increased lifetime for methanol conversion over zeolites is obtained. The combined experimental and theoretical approach gives a unique insight into the nature of the supramolecular zeolite catalyst for methanol conversion which can be meticulously tuned by subtle interplay of Brønsted and Lewis acid sites.
Collapse
Affiliation(s)
- Simon Bailleul
- Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 46 , B-9052 Zwijnaarde , Belgium
| | - Irina Yarulina
- King Abdullah University of Science and Technology , KAUST Catalysis Center, Advanced Catalytic Materials , Thuwal 23955-6900 , Saudi Arabia
| | - Alexander E J Hoffman
- Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 46 , B-9052 Zwijnaarde , Belgium
| | - Abhay Dokania
- King Abdullah University of Science and Technology , KAUST Catalysis Center, Advanced Catalytic Materials , Thuwal 23955-6900 , Saudi Arabia
| | - Edy Abou-Hamad
- King Abdullah University of Science and Technology (KAUST) , Core Laboratories , Thuwal , Saudi Arabia
| | - Abhishek Dutta Chowdhury
- King Abdullah University of Science and Technology , KAUST Catalysis Center, Advanced Catalytic Materials , Thuwal 23955-6900 , Saudi Arabia
| | - Giovanni Pieters
- Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 46 , B-9052 Zwijnaarde , Belgium
| | - Julianna Hajek
- Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 46 , B-9052 Zwijnaarde , Belgium
| | - Kristof De Wispelaere
- Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 46 , B-9052 Zwijnaarde , Belgium
| | - Michel Waroquier
- Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 46 , B-9052 Zwijnaarde , Belgium
| | - Jorge Gascon
- King Abdullah University of Science and Technology , KAUST Catalysis Center, Advanced Catalytic Materials , Thuwal 23955-6900 , Saudi Arabia
| | - Veronique Van Speybroeck
- Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 46 , B-9052 Zwijnaarde , Belgium
| |
Collapse
|
70
|
A facile and label-free SERS approach for inspection of fipronil in chicken eggs using SiO 2@Au core/shell nanoparticles. Talanta 2019; 207:120324. [PMID: 31594576 DOI: 10.1016/j.talanta.2019.120324] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 01/10/2023]
Abstract
Fipronil is a phenylpyrazole insecticide commonly used in agriculture and residential applications. In this paper, we reported a novel label-free surface-enhanced Raman spectroscopy (SERS) method for detection of fipronil residues in chicken eggs (mostly accumulated on the egg membrane). We fabricated the SERS substrates composed of the SiO2@Au core/shell nanoparticles and probed the contamination of fipronil residue on the egg membrane. The identification of the characteristic Raman bands of fipronil was achieved with the aid of density functional theory (DFT) calculation, with which we could analyzed the trace amount of fipronil in a quantitative way. As such, this work may provide a practical solution to quick inspection of fipronil contamination in chicken eggs or other foods.
Collapse
|
71
|
He H, Yao G, Ma Y, Feng N, Zhou S, Huang Q. Experimental and Theoretical Study of the Raman Spectra of Ganoderic Acid T. J STRUCT CHEM+ 2019. [DOI: 10.1134/s0022476619090051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
72
|
Noriega L, Díaz A, Limón D, Castro ME, Caballero NA, Ramírez RE, Perez-Aguilar JM, Melendez FJ. Inhibitory mechanism of 17β-aminoestrogens in the formation of Aβ aggregates. J Mol Model 2019; 25:229. [PMID: 31321557 DOI: 10.1007/s00894-019-4128-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/07/2019] [Indexed: 12/01/2022]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder associated with the aggregation of the amyloid-beta peptide (Aβ) into large oligomers and fibrils that damage healthy brain cells. The predominant peptide fragments in the plaques are mainly formed by the Aβ1-40 and Aβ1-42 peptides, albeit the eleven-residue Aβ25-35 segment is largely used in biological studies because it retains the neurotoxic properties of the longer Aβ peptides. Recent studies indicate that treatment with therapeutic steroid hormones reduces the progress of the disease in AD models. Particularly, treatment with 17β-aminoestrogens (AEs) has shown a significant alleviation of the AD development by inhibiting oxidative stress and neuronal death. Yet, the mechanism by which the AE molecules exhibit their beneficial effects remains speculative. To shed light into the molecular mechanism of inhibition of the AD development by AEs, we investigated the possibility of direct interaction with the Aβ25-35 peptide. First, we calculate various interacting electronic properties of three AE derivatives as follows: prolame, butolame, and pentolame by performing DFT calculations. To account for the polymorphic nature of the Aβ aggregates, we considered four different Aβ25-35 systems extracted from AD relevant fibril structures. From the calculation of different electron density properties, specific interacting loci were identified that guided the construction and optimization of various complexes. Interestingly, the results suggest a similar inhibitory mechanism based on the direct interaction between the AEs and the M35 residue that seems to be general and independent of the polymorphic properties of the Aβ aggregates. Our analysis of the complex formation provides a structural framework for understanding the AE therapeutic properties in the molecular inhibitory mechanism of Aβ aggregation.
Collapse
Affiliation(s)
- Lisset Noriega
- Laboratorio de Química Teórica, Centro de Investigación. Depto. de Fisicoquímica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edif 105-I, San Claudio y 22 Sur, Ciudad Universitaria, Col. San Manuel, 72570, Puebla, Mexico
| | - Alfonso Díaz
- Departamento de Farmacia, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 14 Sur, Col. San Manuel, 72570, Puebla, Mexico
| | - Daniel Limón
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 14 Sur, Col. San Manuel, 72570, Puebla, Mexico
| | - María Eugenia Castro
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Complejo de Ciencias, ICUAP, Edif. IC8, 22 Sur y San Claudio, Ciudad Universitaria, 72570, Puebla, Mexico
| | - Norma A Caballero
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, San Claudio y 14 Sur, Ciudad Universitaria, Col. San Manuel, 72570, Puebla, Mexico
| | - Ramsés E Ramírez
- Departamento de Fisicomatemáticas, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edif 105-I, San Claudio y 22 Sur, Ciudad Universitaria, Col. San Manuel, 72570, Puebla, Mexico
| | - Jose Manuel Perez-Aguilar
- Laboratorio de Química Teórica, Centro de Investigación. Depto. de Fisicoquímica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edif 105-I, San Claudio y 22 Sur, Ciudad Universitaria, Col. San Manuel, 72570, Puebla, Mexico.
| | - Francisco J Melendez
- Laboratorio de Química Teórica, Centro de Investigación. Depto. de Fisicoquímica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edif 105-I, San Claudio y 22 Sur, Ciudad Universitaria, Col. San Manuel, 72570, Puebla, Mexico.
| |
Collapse
|
73
|
Tsaturyan AA, Budnyk AP, Ramalingan C. DFT Study of the CNS Ligand Effect on the Geometry, Spin-State, and Absorption Spectrum in Ruthenium, Iron, and Cobalt Quaterpyridine Complexes. ACS OMEGA 2019; 4:10991-11003. [PMID: 31460197 PMCID: PMC6647971 DOI: 10.1021/acsomega.9b00921] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/12/2019] [Indexed: 06/10/2023]
Abstract
Geometry parameters, total energy of the system in different spin states, harmonic vibrational frequencies, and absorption spectra were computed for a range of mononuclear quaterpyridine Ru(II), Fe(III/II), and Co(III/II) complexes with two axial ambidentate CNS ligands by using density functional theory (DFT) and time-dependent DFT calculations. Both structural and electronic properties were found to be correlating with the type of the binding atom in the CNS ligand (isomerization differs by 4-13 kcal·mol-1). The N-bonding of CNS ligands is energetically favored. It was also found that the low spin (LS) state is the ground state for both Ru(II) and Co(III) complexes regardless of the CNS arrangement. The other complexes are the high-spin (HS) ground-state ones with the only exception of the S-bonded CNS isomer of the Fe(III) complex. The dependencies of energy differences between the HS and LS states versus C demonstrated stabilization of the HS state with an increasing amount of the exact exchange admixture (C) for iron and cobalt complexes. An opposite behavior was observed for ruthenium complexes. The best match in harmonic vibrational frequencies between the experimental and calculated values has been reached at C = 0.15 for all the complexes. The absorption profile of the Fe(II) complex with the alternatively bonded CNS ligands strongly depends on the angle between them. The light-harvesting efficiency of the Fe(II) complexes is very similar (∼0.4) and sufficiently close to that of the Ru(II) complexes. The iron-based coordination compounds are considered as a prospective dye for dye-sensitized solar cells. The results of calculations were completed with experimental reference data, thus providing a systematic compendium for practical use.
Collapse
Affiliation(s)
- Arshak A. Tsaturyan
- Institute
of Physical and Organic Chemistry, Southern
Federal University, Stachki
Av. 194/2, 344090 Rostov-on-Don, Russian Federation
| | - Andriy P. Budnyk
- Southern
Scientific Center, Russian Academy of Sciences, 41 Chehova str, 344006 Rostov-on-Don, Russian
Federation
| | - Chennan Ramalingan
- Department
of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil 626 126 Tamil Nadu, India
| |
Collapse
|
74
|
Besrour H, Tangour B, Linguerri R, Hochlaf M. Encapsulation of anticancer drug doxorubicin inside dendritic macromolecular cavities: First-principles benchmarks. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 217:278-287. [PMID: 30952094 DOI: 10.1016/j.saa.2019.03.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/24/2019] [Indexed: 06/09/2023]
Abstract
By using first-principles approaches based on Density Functional Theory, we explore the possibility of using dendritic macromolecular structures as carriers of the doxorubicin anticancer drug. In particular, we consider macromolecular cavities of different sizes composed of phenylene-, thiophene-, phenyl-cored thiophen- and thioazole-based dendrimers. The comparison between the optimized molecular geometries of the monomers and of the host-guest complexes reveals that only slight structural changes are observed in doxorubicin upon complexation. Also, the encapsulation energies for the host-guest complexes suggest that these systems are of potential use for pharmacology applications in vivo. The interaction of the guest doxorubicin with the macromolecular cavities exploits different types of weak intermolecular forces including σ, π and hydrogen bond interactions. The electronic structure of these complexes is discussed, with particular emphasis placed on the role of the charge distribution and the nature of the frontier molecular orbitals in the encapsulation process. Spectroscopic properties of these complexes are derived to facilitate their detection in laboratory and in vivo. These include IR vibrational frequencies, absorption wavelengths and relative oscillator strengths for the main transitions in the UV-Vis spectrum.
Collapse
Affiliation(s)
- Hatem Besrour
- Université de Tunis Al Manar, Research Unit of Modeling in Fundamental Sciences and Didactic Team of Theoretical Chemistry, Tunis 1060, Tunisia
| | - Bahoueddine Tangour
- Université de Tunis Al Manar, Research Unit of Modeling in Fundamental Sciences and Didactic Team of Theoretical Chemistry, Tunis 1060, Tunisia
| | - Roberto Linguerri
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France
| | - Majdi Hochlaf
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France.
| |
Collapse
|
75
|
Bowlan P, Powell M, Perriot R, Martinez E, Kober EM, Cawkwell MJ, McGrane S. Probing ultrafast shock-induced chemistry in liquids using broad-band mid-infrared absorption spectroscopy. J Chem Phys 2019; 150:204503. [DOI: 10.1063/1.5092242] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Pamela Bowlan
- Physical Chemistry and Applied Spectroscopy, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Michael Powell
- Shock and Detonation Physics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Maurice J. Zucrow Laboratory, Mechanical Engineering Department, Purdue University, 500 Allison Rd., West Lafayette, Indiana 47907, USA
| | - Romain Perriot
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Enrique Martinez
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Edward M. Kober
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - M. J. Cawkwell
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Shawn McGrane
- Shock and Detonation Physics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
76
|
Synthesis, spectroscopic characterization, thermal, XRD crystal structure, the PLATON structural analysis, and theoretical studies of a new 1,2,4-triazolo-[1,5-a]pyrimidines derivatives. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.01.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
77
|
Böhnke H, Röttger K, Ingle RA, Marroux HJB, Bohnsack M, Schwalb NK, Orr-Ewing AJ, Temps F. Electronic Relaxation Dynamics of UV-Photoexcited 2-Aminopurine-Thymine Base Pairs in Watson-Crick and Hoogsteen Conformations. J Phys Chem B 2019; 123:2904-2914. [PMID: 30875228 DOI: 10.1021/acs.jpcb.9b02361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fluorescent analogue 2-aminopurine (2AP) of the canonical nucleobase adenine (6-aminopurine) base-pairs with thymine (T) without disrupting the helical structure of DNA. It therefore finds frequent use in molecular biology for probing DNA and RNA structures and conformational dynamics. However, detailed understanding of the processes responsible for fluorescence quenching remains largely elusive on a fundamental level. Although attempts have been made to ascribe decreased excited-state lifetimes to intrastrand charge-transfer and stacking interactions, possible influences from dynamic interstrand H-bonding have been widely ignored. Here, we investigate the electronic relaxation of UV-excited 2AP·T in Watson-Crick (WC) and Hoogsteen (HS) conformations. Although the WC conformation features slowed-down, monomer-like electronic relaxation in τ ∼ 1.6 ns toward ground-state recovery and triplet formation, the dynamics associated with 2AP·T in the HS motif exhibit faster deactivation in τ ∼ 70 ps. As recent research has revealed abundant transient interstrand H-bonding in the Hoogsteen motif for duplex DNA, the established model for dynamic fluorescence quenching may need to be revised in the light of our results. The underlying supramolecular photophysical mechanisms are discussed in terms of a proposed excited-state double-proton transfer as an efficient deactivation channel for recovery of the HS species in the electronic ground state.
Collapse
Affiliation(s)
- Hendrik Böhnke
- Institute of Physical Chemistry , Christian-Albrechts-University Kiel , Olshausenstr. 40 , 24098 Kiel , Germany
| | - Katharina Röttger
- Institute of Physical Chemistry , Christian-Albrechts-University Kiel , Olshausenstr. 40 , 24098 Kiel , Germany.,School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , U.K
| | - Rebecca A Ingle
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , U.K
| | - Hugo J B Marroux
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , U.K
| | - Mats Bohnsack
- Institute of Physical Chemistry , Christian-Albrechts-University Kiel , Olshausenstr. 40 , 24098 Kiel , Germany
| | - Nina K Schwalb
- Institute of Physical Chemistry , Christian-Albrechts-University Kiel , Olshausenstr. 40 , 24098 Kiel , Germany
| | - Andrew J Orr-Ewing
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , U.K
| | - Friedrich Temps
- Institute of Physical Chemistry , Christian-Albrechts-University Kiel , Olshausenstr. 40 , 24098 Kiel , Germany
| |
Collapse
|
78
|
Yao G, Ma Y, Muhammad M, Huang Q. Understanding the infrared and Raman spectra of ganoderic acid A: An experimental and DFT study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 210:372-380. [PMID: 30502725 DOI: 10.1016/j.saa.2018.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/18/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Ganoderic Acids (GAs) are the major medicinal compounds in Ganoderma lucidum used as traditional Chinese medicine since ancient times. Ganoderic acid A (GAA) is the first discovered ganoderic acids reported in the literature, which is also one of most abundant triterpenoids of Ganoderma lucidum. Especially, GAA has been extensively investigated in recent decades for its positive medicinal activities. However, the vibrational properties of GAs have rarely been studied or reported. In this work, we focused on the typical GAA and studied the infrared (IR) and Raman spectra based on both experiments and DFT calculations. As such, we could not only achieve the assignments of the vibrational modes, but also from the IR and Raman spectra, we found that the spectral region from 1500 cm-1 to 1800 cm-1 is particularly useful for distinguishing different types of GAs. In addition, its dehydrogenated derivative ganoderenic acid A (GOA) was also studied, which could be identified due to its spectral feature of strong IR and Raman bands around 1620 cm-1. This work therefore may facilitate the application of IR and Raman spectroscopies in the inspection and quality control of Ganoderma lucidum.
Collapse
Affiliation(s)
- Guohua Yao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yuhan Ma
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science & Technology of China, Hefei 230026, China; College of Life Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Muhammad Muhammad
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science & Technology of China, Hefei 230026, China
| | - Qing Huang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science & Technology of China, Hefei 230026, China; College of Life Science, Anhui Science and Technology University, Fengyang 233100, China.
| |
Collapse
|
79
|
Theoretical/experimental investigation and antimutagenic effect of the oxidovanadium(IV) baicalin coordination complex. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.12.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
80
|
Ben Abdallah MA, Bacchi A, Parisini A, Mazzeo PP, Terenziani F, Marchiò L, Kamoun S. Structure, vibrational, electrical and optical study of [C2H10N2] (IO3)2·4HIO3. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.10.098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
81
|
Mielczarek DC, Nait Saidi C, Paricaud P, Catoire L. Generalized Prediction of Enthalpies of Formation Using DLPNO-CCSD(T) Ab Initio Calculations for Molecules Containing the Elements H, C, N, O, F, S, Cl, Br. J Comput Chem 2019; 40:768-793. [DOI: 10.1002/jcc.25763] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/11/2018] [Accepted: 11/13/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Detlev Conrad Mielczarek
- l'Unité Chimie & Procédés (UCP); ENSTA ParisTech; 828 Boulevard des Maréchaux, Palaiseau 92120 France
| | - Chourouk Nait Saidi
- l'Unité Chimie & Procédés (UCP); ENSTA ParisTech; 828 Boulevard des Maréchaux, Palaiseau 92120 France
| | - Patrice Paricaud
- l'Unité Chimie & Procédés (UCP); ENSTA ParisTech; 828 Boulevard des Maréchaux, Palaiseau 92120 France
| | - Laurent Catoire
- l'Unité Chimie & Procédés (UCP); ENSTA ParisTech; 828 Boulevard des Maréchaux, Palaiseau 92120 France
| |
Collapse
|
82
|
Mitxelena I, Piris M, Ugalde JM. Advances in approximate natural orbital functional theory. ADVANCES IN QUANTUM CHEMISTRY 2019. [DOI: 10.1016/bs.aiq.2019.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
83
|
Willms JA, Vidic J, Barthelmes J, Steinmetz V, Bredow T, Maître P, Engeser M. Probing the gas-phase structure of charge-tagged intermediates of a proline catalyzed aldol reaction – vibrational spectroscopy distinguishes oxazolidinone from enamine species. Phys Chem Chem Phys 2019; 21:2578-2586. [DOI: 10.1039/c8cp04905j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Charge-tagging enables the detection of reaction intermediates which are probed by IRMPD spectroscopy in combination with theory.
Collapse
Affiliation(s)
- J. Alexander Willms
- Kekulé-Institute of Organic Chemistry and Biochemistry
- University of Bonn
- D-53121 Bonn
- Germany
| | - Jandro Vidic
- Mulliken Center for Theoretical Chemistry
- Institute of Physical und Theoretical Chemistry
- University of Bonn
- D-53115 Bonn
- Germany
| | - Janosch Barthelmes
- Kekulé-Institute of Organic Chemistry and Biochemistry
- University of Bonn
- D-53121 Bonn
- Germany
| | - Vincent Steinmetz
- Laboratoire de Chimie Physique
- Université Paris-Sud
- CNRS, Université Paris-Saclay
- Orsay
- France
| | - Thomas Bredow
- Mulliken Center for Theoretical Chemistry
- Institute of Physical und Theoretical Chemistry
- University of Bonn
- D-53115 Bonn
- Germany
| | - Philippe Maître
- Laboratoire de Chimie Physique
- Université Paris-Sud
- CNRS, Université Paris-Saclay
- Orsay
- France
| | - Marianne Engeser
- Kekulé-Institute of Organic Chemistry and Biochemistry
- University of Bonn
- D-53121 Bonn
- Germany
| |
Collapse
|
84
|
The Astrochemistry Implications of Quantum Chemical Normal Modes Vibrational Analysis. GALAXIES 2018. [DOI: 10.3390/galaxies6040123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Understanding the molecular vibrations underlying each of the unknown infrared emission (UIE) bands (such as those found at 3.3, 3.4, 3.5, 6.2, 6.9, 7.7, 11.3, 15.8, 16.4, 18.9 μ m) observed in or towards astronomical objects is a vital link to uncover the molecular identity of their carriers. This is usually done by customary classifications of normal-mode frequencies such as stretching, deformation, rocking, wagging, skeletal mode, etc. A large literature on this subject exists and since 1952 ambiguities in classifications of normal modes via this empirical approach were pointed out by Morino and Kuchitsu New ways of interpretation and analyzing vibrational spectra were sought within the theoretical framework of quantum chemistry. Many of these methods cannot easily be applied to the large, complex molecular systems which are one of the key research interests of astrochemistry. In considering this demand, a simple and new method of analyzing and classifying the normal mode vibrational motions of molecular systems was introduced. This approach is a fully quantitative method of analysis of normal-mode displacement vector matrices and classification of the characteristic frequencies (fundamentals) underlying the observed IR bands. Outcomes of applying such an approach show some overlap with customary empirical classifications, usually at short wavelengths. It provides a quantitative breakdown of a complex vibration (at longer wavelengths) into the contributed fragments such as their aromatic or aliphatic components. In addition, in molecular systems outside the classical models of chemical bonds and structures where the empirical approach cannot be applied, this quantitative method enables an interpretation of vibrational motion(s) underlying the IR bands. As a result, further modifications in the structures (modeling) and the generation of the IR spectra (simulating) of the UIE carriers, initiated by proposing a PAH model, can be implemented in an efficient way. Here fresh results on the vibrational origin of the spectacular UIE bands based on astrochemistry molecular models, explored through the lens of the quantitative method applied to thousands of different vibrational motion matrices are discussed. These results are important in the context of protoplanetary nebulae and planetary nebulae where various molecular species have been uncovered despite their harsh environments.
Collapse
|
85
|
Othmani H, Ben Said R, Terzi N, Jaidane NE, Mogren Al Mogren M, Elmarghany A, Hochlaf M. Structural, energetic and spectroscopic characterisation of 5-fluorouracil anticarcinogenic drug isomers, tautomers and ions. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1548715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- H. Othmani
- Laboratoire de Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, Champs-sur-Marne, France
- Faculté des Sciences de Tunis, Laboratoire de Spectroscopie Atomique, Moléculaire et Applications-LSAMA, Université de Tunis El-Manar, Tunis, Tunisia
| | - R. Ben Said
- Department of Chemistry, College of Science & Arts at Al-Rass, Qassim University, Al-Rass, Kingdom of Saudi Arabia
- Unité de recherche Physico-Chimie des Matériaux à l’Etat Condensé, Département de Chimie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - N. Terzi
- Faculté des Sciences de Tunis, Laboratoire de Spectroscopie Atomique, Moléculaire et Applications-LSAMA, Université de Tunis El-Manar, Tunis, Tunisia
| | - N.-E. Jaidane
- Faculté des Sciences de Tunis, Laboratoire de Spectroscopie Atomique, Moléculaire et Applications-LSAMA, Université de Tunis El-Manar, Tunis, Tunisia
| | - M. Mogren Al Mogren
- Chemistry Department, Faculty of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - A. Elmarghany
- Chemistry Department, Faculty of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
- Faculty of Science, Suez University, Suez, Egypt
| | - M. Hochlaf
- Laboratoire de Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, Champs-sur-Marne, France
| |
Collapse
|
86
|
Pekparlak A, Tamer Ö, Kanmazalp S, Berber N, Arslan M, Avcı D, Dege N, Tarcan E, Atalay Y. Crystal structure, spectroscopic (FT-IR, 1 H and 13 C NMR) characterization and density functional theory calculations on Ethyl 2-(dichloromethyl)-4-methyl-1-phenyl-6-thioxo-1,6-dihydropyrimidine-5-carboxylate. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.06.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
87
|
Grigorenko BL, Khrenova MG, Nemukhin AV. Amide-imide tautomerization in the glutamine side chain in enzymatic and photochemical reactions in proteins. Phys Chem Chem Phys 2018; 20:23827-23836. [PMID: 30202846 DOI: 10.1039/c8cp04817g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Amide-imide tautomerization presents a pervasive class of chemical transformations in organic chemistry of natural compounds. In this Perspective, we describe two distinctively different protein systems, in which the amide-imide tautomerization in the glutamine side chain takes place in enzymatic or photochemical reactions. First, hydrolysis of guanosine triphosphate (GTP) catalyzed by the Ras-GAP protein complex suggests the occurrence of the imide tautomer of glutamine in reaction intermediates. Second, photoexcitation of flavin-binding protein domains (BLUFs) initiates a chain of reactions in the chromophore-binding pocket, including amide-imide tautomerization of glutamine. Mechanisms of these reactions at the atomic level have been revealed in quantum mechanics/molecular mechanics (QM/MM) simulations. To reinforce conclusions on the critical role of amide-imide tautomerization of glutamine in these reactions we describe results of new quantum chemistry and QM/MM calculations for relevant molecular model systems. We reexamine results of the recent IR spectroscopy studies of BLUF domains, which provide experimental evidences of Gln tautomerization in proteins. We also propose to validate the glutamine-assisted mechanism of enzymatic GTP hydrolysis by using IR spectroscopy in a proper range of wavenumbers.
Collapse
Affiliation(s)
- Bella L Grigorenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russian Federation.
| | | | | |
Collapse
|
88
|
Angulo B, Herrerías CI, Hormigón Z, Mayoral JA, Salvatella L. Copper-catalyzed cyclopropanation reaction of but-2-ene. J Mol Model 2018; 24:195. [PMID: 29974250 DOI: 10.1007/s00894-018-3737-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
Abstract
The mechanism of the copper(I)-catalyzed cyclopropanation reaction for methyl diazoacetate with both (Z)- and (E)-but-2-ene stereoisomers has been studied using the 6-311++G(d,p) basis set by means of M06-2X and O3LYP functionals. According to both methods, the rate-limiting step is the formation of a copper-carbene intermediate, formed by association between methyl diazoacetate and bis(acetonitrile)-copper(I) ion with the concomitant extrusion of dinitrogen. Cis/trans diastereoselectivity for the cyclopropanation reaction of a 1,2-disubstituted alkene ((Z)-but-2-ene) has been theoretically studied for the first time through the proper location of transition states on the potential-energy surface with the O3LYP method, since no transition structures could be found with the M06-2X functional due to the extreme flatness of the potential-energy surface. The calculated stereoselectivities involving two acetonitrile ligands or one dichloromethane molecule show qualitative agreement with experimental data. This study allows attributing the origin of the selectivity to steric interactions between the ligands of the catalyst system and the olefin substituents. The comparison between the corresponding activation barriers for the direct insertion step shows a higher reactivity for the Z stereoisomer of but-2-ene, consistently with the larger reactant destabilization through steric interactions.
Collapse
Affiliation(s)
- Beatriz Angulo
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, E-50009, Zaragoza, Spain
| | - Clara I Herrerías
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, E-50009, Zaragoza, Spain
| | - Zoel Hormigón
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, E-50009, Zaragoza, Spain
| | - José Antonio Mayoral
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, E-50009, Zaragoza, Spain
| | - Luis Salvatella
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, E-50009, Zaragoza, Spain.
| |
Collapse
|
89
|
Palafox MA. DFT computations on vibrational spectra: Scaling procedures to improve the wavenumbers. PHYSICAL SCIENCES REVIEWS 2018. [DOI: 10.1515/psr-2017-0184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The performance of ab initio and density functional theory (DFT) methods in calculating the vibrational wavenumbers in the isolated state was analyzed. To correct the calculated values, several scaling procedures were described in detail. The two linear scaling equation (TLSE) procedure leads to the lowest error and it is recommended for scaling. A comprehensive compendium of the main scale factors and scaling equations available to date for a good accurate prediction of the wavenumbers was also shown. Examples of each case were presented, with special attention to the benzene and uracil molecules and to some of their derivatives. Several DFT methods and basis sets were used. After scaling, the X3LYP/DFT method leads to the lowest error in these molecules. The B3LYP method appears closely in accuracy, and it is also recommended to be used. The accuracy of the results in the solid state was shown and several additional corrections are presented.
Collapse
|
90
|
Insights into the bonding between tributylphosphine chalcogenides and zinc(II). Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2245-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
91
|
Adam N, Trumm M, Smith VC, MacGillivray RTA, Panak PJ. Incorporation of transuranium elements: coordination of Cm(iii) to human serum transferrin. Dalton Trans 2018; 47:14612-14620. [DOI: 10.1039/c8dt02915f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structure determination of Cm(iii)-transferrin by a combined spectroscopic and theoretical approach gives insight into the biochemical behaviour of incorporated actinides.
Collapse
Affiliation(s)
- Nicole Adam
- Karlsruhe Institute of Technology (KIT)
- Campus North
- Institute for Nuclear Waste Disposal (INE)
- 76021 Karlsruhe
- Germany
| | - Michael Trumm
- Karlsruhe Institute of Technology (KIT)
- Campus North
- Institute for Nuclear Waste Disposal (INE)
- 76021 Karlsruhe
- Germany
| | - Val C. Smith
- University of British Columbia
- Department of Biochemistry and Molecular Biology and Centre for Blood Research
- Vancouver
- Canada
| | - Ross T. A. MacGillivray
- University of British Columbia
- Department of Biochemistry and Molecular Biology and Centre for Blood Research
- Vancouver
- Canada
| | - Petra J. Panak
- Karlsruhe Institute of Technology (KIT)
- Campus North
- Institute for Nuclear Waste Disposal (INE)
- 76021 Karlsruhe
- Germany
| |
Collapse
|
92
|
Khrenova MG, Kulakova AM, Nemukhin AV. Competition between two cysteines in covalent binding of biliverdin to phytochrome domains. Org Biomol Chem 2018; 16:7518-7529. [DOI: 10.1039/c8ob02262c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this work, we disclose a mechanism of competing chemical reactions of protein assembly for a bacterial phytochrome using modern methods of molecular modeling.
Collapse
Affiliation(s)
- Maria G. Khrenova
- Department of Chemistry
- Lomonosov Moscow State University
- Moscow
- Russian Federation
- Federal Research Center of Biotechnology
| | - Anna M. Kulakova
- Department of Chemistry
- Lomonosov Moscow State University
- Moscow
- Russian Federation
| | - Alexander V. Nemukhin
- Department of Chemistry
- Lomonosov Moscow State University
- Moscow
- Russian Federation
- Emanuel Institute of Biochemical Physics
| |
Collapse
|
93
|
Böhnke H, Röttger K, Ingle RA, Marroux HJB, Bohnsack M, Orr-Ewing AJ, Temps F. Efficient intersystem crossing in 2-aminopurine riboside probed by femtosecond time-resolved transient vibrational absorption spectroscopy. Phys Chem Chem Phys 2018; 20:20033-20042. [DOI: 10.1039/c8cp02664e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The photophysical dynamics of 2-aminopurine, a fluorescent analogue of the canonical nucleobase adenine, has been studied by femtosecond transient vibrational absorption spectroscopy.
Collapse
Affiliation(s)
- Hendrik Böhnke
- Institute of Physical Chemistry
- Christian-Albrechts-University Kiel
- 24098 Kiel
- Germany
| | - Katharina Röttger
- Institute of Physical Chemistry
- Christian-Albrechts-University Kiel
- 24098 Kiel
- Germany
- School of Chemistry
| | | | | | - Mats Bohnsack
- Institute of Physical Chemistry
- Christian-Albrechts-University Kiel
- 24098 Kiel
- Germany
| | | | - Friedrich Temps
- Institute of Physical Chemistry
- Christian-Albrechts-University Kiel
- 24098 Kiel
- Germany
| |
Collapse
|
94
|
Chan B. Use of Low-Cost Quantum Chemistry Procedures for Geometry Optimization and Vibrational Frequency Calculations: Determination of Frequency Scale Factors and Application to Reactions of Large Systems. J Chem Theory Comput 2017; 13:6052-6060. [DOI: 10.1021/acs.jctc.7b00721] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bun Chan
- Graduate School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
| |
Collapse
|
95
|
Batista J, Cruz J, Doriguetto A, Torres C, de Almeida E, Camps I. Synthesis, characterization and theoretical study in gaseous and solid phases of the imine 4-Acetyl-N-(4-methoxybenzylidene)aniline. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.06.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
96
|
Adonin SA, Gorokh ID, Novikov AS, Abramov PA, Sokolov MN, Fedin VP. Halogen Contacts-Induced Unusual Coloring in BiIII
Bromide Complex: Anion-to-Cation Charge Transfer via Br⋅⋅⋅Br Interactions. Chemistry 2017; 23:15612-15616. [DOI: 10.1002/chem.201703747] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Sergey A. Adonin
- Nikolaev Institute of Inorganic Chemistry SB RAS; Lavrentieva St. 3 630090 Novosibirsk Russia
- Novosibirsk State University; Pirogova St.2 630090 Novosibirsk Russia
| | - Igor D. Gorokh
- Novosibirsk State University; Pirogova St.2 630090 Novosibirsk Russia
| | - Alexander S. Novikov
- Institute of Chemistry; Saint Petersburg State University; Universitetskaya Nab. 7/9 199034 Saint Petersburg Russia
| | - Pavel A. Abramov
- Nikolaev Institute of Inorganic Chemistry SB RAS; Lavrentieva St. 3 630090 Novosibirsk Russia
- Novosibirsk State University; Pirogova St.2 630090 Novosibirsk Russia
| | - Maxim N. Sokolov
- Nikolaev Institute of Inorganic Chemistry SB RAS; Lavrentieva St. 3 630090 Novosibirsk Russia
- Novosibirsk State University; Pirogova St.2 630090 Novosibirsk Russia
| | - Vladimir P. Fedin
- Nikolaev Institute of Inorganic Chemistry SB RAS; Lavrentieva St. 3 630090 Novosibirsk Russia
- Novosibirsk State University; Pirogova St.2 630090 Novosibirsk Russia
| |
Collapse
|
97
|
Katari M, Nicol E, Steinmetz V, van der Rest G, Carmichael D, Frison G. Improved Infrared Spectra Prediction by DFT from a New Experimental Database. Chemistry 2017; 23:8414-8423. [DOI: 10.1002/chem.201700340] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Indexed: 11/11/2022]
Affiliation(s)
| | - Edith Nicol
- LCM, CNRS; Ecole Polytechnique; Université Paris-Saclay; 91128 Palaiseau France
| | - Vincent Steinmetz
- Laboratoire de Chimie Physique; Université Paris Sud, CNRS; 91405 Orsay France
| | | | - Duncan Carmichael
- LCM, CNRS; Ecole Polytechnique; Université Paris-Saclay; 91128 Palaiseau France
| | - Gilles Frison
- LCM, CNRS; Ecole Polytechnique; Université Paris-Saclay; 91128 Palaiseau France
| |
Collapse
|
98
|
Záliš S, Hunter BM, Gray HB, Vlček A. Electronic Structures of Reduced and Superreduced Ir2(1,8-diisocyanomenthane)4n+ Complexes. Inorg Chem 2017; 56:2874-2883. [DOI: 10.1021/acs.inorgchem.6b03001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stanislav Záliš
- J. Heyrovský
Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova
3, 182 23 Prague, Czech Republic
| | - Bryan M. Hunter
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Harry B. Gray
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Antonín Vlček
- J. Heyrovský
Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova
3, 182 23 Prague, Czech Republic
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
99
|
Anisimova TB, Kinzhalov MA, Guedes da Silva MFC, Novikov AS, Kukushkin VY, Pombeiro AJL, Luzyanin KV. Addition of N-nucleophiles to gold(iii)-bound isocyanides leading to short-lived gold(iii) acyclic diaminocarbene complexes. NEW J CHEM 2017. [DOI: 10.1039/c7nj00529f] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Addition of hydrazone to gold(iii)–isocyanides led to the generation of rare short-lived gold(iii) acyclic diaminocarbene complexes.
Collapse
Affiliation(s)
- Tatyana B. Anisimova
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisbon
- Portugal
| | | | | | | | | | - Armando J. L. Pombeiro
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisbon
- Portugal
| | - Konstantin V. Luzyanin
- Saint Petersburg State University
- Saint Petersburg 199034
- Russian Federation
- Department of Chemistry
- University of Liverpool
| |
Collapse
|
100
|
Červinka C, Beran GJO. Ab initio thermodynamic properties and their uncertainties for crystalline α-methanol. Phys Chem Chem Phys 2017; 19:29940-29953. [DOI: 10.1039/c7cp06605h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To investigate the performance of quasi-harmonic electronic structure methods for modeling molecular crystals at finite temperatures and pressures, thermodynamic properties are calculated for the low-temperature α polymorph of crystalline methanol and their computational uncertainties are analyzed.
Collapse
Affiliation(s)
- Ctirad Červinka
- Department of Physical Chemistry
- University of Chemistry and Technology Prague
- CZ-166 28 Prague 6
- Czech Republic
| | | |
Collapse
|