51
|
Slominski AT, Kim TK, Takeda Y, Janjetovic Z, Brozyna AA, Skobowiat C, Wang J, Postlethwaite A, Li W, Tuckey RC, Jetten AM. RORα and ROR γ are expressed in human skin and serve as receptors for endogenously produced noncalcemic 20-hydroxy- and 20,23-dihydroxyvitamin D. FASEB J 2014; 28:2775-89. [PMID: 24668754 PMCID: PMC4062828 DOI: 10.1096/fj.13-242040] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/10/2014] [Indexed: 08/01/2023]
Abstract
RORα and RORγ are expressed in human skin cells that produce the noncalcemic 20-hydroxyvitamin D3 [20(OH)D3] and 20,23-dihydroxyvitamin D3 [20,23(OH)2D3]. Chinese hamster ovary (CHO) cells stably expressing a Tet-on RORα or RORγ expression vector and a ROR-responsive element (RORE)-LUC reporter, and a mammalian 2-hybrid model examining the interaction between the ligand binding domain (LBD) of RORα or RORγ with an LBD-interacting LXXLL-peptide, were used to study ROR-antagonist activities. These assays revealed that 20(OH)D3 and 20,23(OH)2D3 function as antagonists of RORα and RORγ. Moreover, 20(OH)D3 inhibited the activation of the promoter of the Bmal1 and G6pase genes, targets of RORα, and 20(OH)D3 and 20,23(OH)2D3 inhibited Il17 promoter activity in Jurkat cells overexpressing RORα or RORγ. Molecular modeling using crystal structures of the LBDs of RORα and RORγ revealed docking scores for 20(OH)D3, 20,23(OH)2D3 and 1,25(OH)2D3 similar to those of the natural ligands, predicting good binding to the receptor. Notably, 20(OH)D3, 20,23(OH)2D3, and 1,25(OH)2D3 inhibited RORE-mediated activation of a reporter in keratinocytes and melanoma cells and inhibited IL-17 production by immune cells. Our study identifies a novel signaling pathway, in which 20(OH)D3 and 20,23(OH)2D3 act as antagonists or inverse agonists of RORα and RORγ, that opens new possibilities for local (skin) or systemic regulation.-Slominski, A. T., Kim, T.-K., Takeda, Y., Janjetovic, Z., Broz˙yna, A. A., Skobowiat, C., Wang, J., Postlethwaite, A., Li, W., Tuckey, R. C., Jetten, A. M. RORα and ROR γ are expressed in human skin and serve as receptors for endogenously produced noncalcemic 20-hydroxy- and 20,23-dihydroxyvitamin D.
Collapse
MESH Headings
- ARNTL Transcription Factors/genetics
- ARNTL Transcription Factors/metabolism
- Animals
- CHO Cells
- Calcifediol/analogs & derivatives
- Calcifediol/metabolism
- Cell Line, Tumor
- Cells, Cultured
- Cricetulus
- Dihydroxycholecalciferols/metabolism
- Female
- Glucose-6-Phosphatase/antagonists & inhibitors
- Glucose-6-Phosphatase/genetics
- Humans
- Interleukin-17/genetics
- Interleukin-17/metabolism
- Jurkat Cells
- Keratinocytes/metabolism
- Melanoma/genetics
- Melanoma/metabolism
- Mice
- Mice, Inbred DBA
- Nuclear Receptor Subfamily 1, Group F, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Promoter Regions, Genetic/genetics
- Skin/metabolism
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Pathology and Laboratory Medicine, Department of Medicine, and
| | | | - Yukimasa Takeda
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | | | - Anna A Brozyna
- Department of Tumor Pathology and Pathomorphology, Oncology Center, Professor Franciszek Łukaszczyk Memorial Hospital, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | | | - Jin Wang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Arnold Postlethwaite
- Department of Medicine, and Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA; and
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Robert C Tuckey
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia, Australia
| | - Anton M Jetten
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA;
| |
Collapse
|
52
|
Slominski A, Kim TK, Zmijewski MA, Janjetovic Z, Li W, Chen J, Kusniatsova EI, Semak I, Postlethwaite A, Miller DD, Zjawiony JK, Tuckey RC. Novel vitamin D photoproducts and their precursors in the skin. DERMATO-ENDOCRINOLOGY 2014; 5:7-19. [PMID: 24494038 PMCID: PMC3897599 DOI: 10.4161/derm.23938] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/04/2013] [Accepted: 02/09/2013] [Indexed: 01/20/2023]
Abstract
Novel metabolic pathways initiated by the enzymatic action of CYP11A1 on 7DHC (7-dehydrocholesterol), ergosterol, vitamins D3 and D2 were characterized with help of chemical synthesis, UV and mass spectrometry and NMR analyses. The first pathway follows the sequence 7DHC→22(OH)7DHC → 20,22(OH)27DHC → 7DHP (7-dehydropregnenolone), which can further be metabolized by steroidogenic enzymes. The resulting 5,7-dienes can be transformed by UVB to corresponding, biologically active, secosteroids. Action of CYP11A1 on vitamin D3 and D2 produces novel hydroxyderivatives with OH added at positions C17, C20, C22, C23 and C24, some of which can be hydroxylated by CYP27B1 and/or by CYP27A1 and/ or by CYP24A1.The main products of these pathways are biologically active with a potency related to their chemical structure and the target cell type. Main products of CYP11A1-mediated metabolism on vitamin D are non-calcemic and non-toxic at relatively high doses and serve as partial agonists on the vitamin D receptor. New secosteroids are excellent candidates for therapy of fibrosing, inflammatory or hyperproliferative disorders including cancers and psoriasis.
Collapse
Affiliation(s)
- Andrzej Slominski
- Department of Pathology and Laboratory Medicine; Center for Cancer Research; University of Tennessee Health Science Center; Memphis, TN USA
| | - Tae-Kang Kim
- Department of Pathology and Laboratory Medicine; Center for Cancer Research; University of Tennessee Health Science Center; Memphis, TN USA
| | | | - Zorica Janjetovic
- Department of Pathology and Laboratory Medicine; Center for Cancer Research; University of Tennessee Health Science Center; Memphis, TN USA
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN USA
| | - Jianjun Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN USA
| | | | - Igor Semak
- Department of Biochemistry; Belarusian State University; Minsk, Belarus
| | - Arnold Postlethwaite
- Department of Medicine, Division of Connective Tissue Diseases; University of Tennessee Health Science Center; Memphis, TN USA
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN USA
| | - Jordan K Zjawiony
- Department of Pharmacognosy and Research Institute of Pharmaceutical Sciences; School of Pharmacy; University of Mississippi; University, MS USA
| | - Robert C Tuckey
- School of Chemistry and Biochemistry; University of Western Australia; Crawley, WA, Australia
| |
Collapse
|
53
|
Chen J, Wang J, Kim TK, Tieu EW, Tang EKY, Lin Z, Kovacic D, Miller DD, Postlethwaite A, Tuckey RC, Slominski AT, Li W. Novel vitamin D analogs as potential therapeutics: metabolism, toxicity profiling, and antiproliferative activity. Anticancer Res 2014; 34:2153-2163. [PMID: 24778017 PMCID: PMC4015637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
AIM To discover novel [20(OH)D3] analogs as antiproliferative therapeutics. MATERIALS AND METHODS We studied in vitro liver microsome stability, in vivo toxicity using mice, vitamin D receptor (VDR) translocation, in vitro antiproliferative effect, CYP enzyme metabolism. RESULTS 20S- and 20R(OH)D3 had reasonable half-lives of 50 min and 30 min (average) respectively in liver microsomes. They were non-hypercalcemic at a high dose of 60 μg/kg. Three new 20(OH)D3 analogs were designed, synthesized and tested. They showed higher or comparable potency for inhibition of proliferation of normal keratinocytes and in the induction of VDR translocation from cytoplasm to nucleus, compared to 1,25(OH)2D3. These new analogs demonstrated different degrees of metabolism through a range of vitamin D-metabolizing CYP enzymes. CONCLUSION Their lack of calcemic toxicity at high doses and their high biological activity suggest that this novel 20(OH)D3 scaffold may represent a promising platform for further development of therapeutically-useful agents.
Collapse
Affiliation(s)
- Jianjun Chen
- Department of Pharmaceutical Science, University of Tennessee Health Science Center, 847 Monroe Avenue, Memphis, TN 38163, U.S.A.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Slominski AT, Kim TK, Shehabi HZ, Tang EKY, Benson HAE, Semak I, Lin Z, Yates CR, Wang J, Li W, Tuckey RC. In vivo production of novel vitamin D2 hydroxy-derivatives by human placentas, epidermal keratinocytes, Caco-2 colon cells and the adrenal gland. Mol Cell Endocrinol 2014; 383:181-92. [PMID: 24382416 PMCID: PMC3997123 DOI: 10.1016/j.mce.2013.12.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/20/2013] [Indexed: 12/23/2022]
Abstract
We investigated the metabolism of vitamin D2 to hydroxyvitamin D2 metabolites ((OH)D2) by human placentas ex-utero, adrenal glands ex-vivo and cultured human epidermal keratinocytes and colonic Caco-2 cells, and identified 20(OH)D2, 17,20(OH)₂D2, 1,20(OH)₂D2, 25(OH)D2 and 1,25(OH)₂D2 as products. Inhibition of product formation by 22R-hydroxycholesterol indicated involvement of CYP11A1 in 20- and 17-hydroxylation of vitamin D2, while use of ketoconazole indicated involvement of CYP27B1 in 1α-hydroxylation of products. Studies with purified human CYP11A1 confirmed the ability of this enzyme to convert vitamin D2 to 20(OH)D2 and 17,20(OH)₂D2. In placentas and Caco-2 cells, production of 20(OH)D2 was higher than 25(OH)D2 while in human keratinocytes the production of 20(OH)D2 and 25(OH)D2 were comparable. HaCaT keratinocytes showed high accumulation of 1,20(OH)₂D2 relative to 20(OH)D2 indicating substantial CYP27B1 activity. This is the first in vivo evidence for a novel pathway of vitamin D2 metabolism initiated by CYP11A1 and modified by CYP27B1, with the product profile showing tissue- and cell-type specificity.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Pathology and Medicine, University of Tennessee HSC, Memphis, TN, USA; Division of Rheumatology and Connective Tissue Diseases of the Department of Medicine, University of Tennessee HSC, Memphis, TN, USA.
| | - Tae-Kang Kim
- Department of Pathology and Medicine, University of Tennessee HSC, Memphis, TN, USA
| | - Haleem Z Shehabi
- School of Pharmacy, CHIRI-Biosciences, Curtin University, WA, Australia
| | - Edith K Y Tang
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, Australia
| | | | - Igor Semak
- Department of Biochemistry, Belarusian State University, Minsk, Belarus
| | - Zongtao Lin
- Pharmaceutical Sciences, University of Tennessee HSC, Memphis, TN, USA
| | - Charles R Yates
- Pharmaceutical Sciences, University of Tennessee HSC, Memphis, TN, USA
| | - Jin Wang
- Pharmaceutical Sciences, University of Tennessee HSC, Memphis, TN, USA
| | - Wei Li
- Pharmaceutical Sciences, University of Tennessee HSC, Memphis, TN, USA
| | - Robert C Tuckey
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
55
|
Chen J, Slominski AT, Miller DD, Li W. Effects of sidechain length and composition on the kinetic conversion and product distribution of vitamin D analogs determined by real-time NMR. DERMATO-ENDOCRINOLOGY 2014; 5:142-9. [PMID: 24494047 PMCID: PMC3897582 DOI: 10.4161/derm.24339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/30/2013] [Accepted: 03/18/2013] [Indexed: 01/11/2023]
Abstract
Novel pregna-5, 7-dienes were synthesized and subjected to UVB irradiation to generate the corresponding pre-D intermediates, tachysterol and lumisterol analogs. The kinetics of the conversion from each of the pre-D intermediates to the corresponding novel D analogs was investigated by using real time 1H NMR measurements inside the NMR magnet. Both the length and composition of the side chains were found to affect the rate of the kinetic conversion from pre-D intermediates to the thermodynamically more stable D analogs. Compound 7cc which has both a long side chain and a tertiary alcohol moiety showed the highest conversion rate, while compound 4a-S which has a very short side chain without the tertiary alcohol had the lowest conversion rate among the 13 tested compounds. We also determined product distributions for these 5,7-dienes upon UVB irradiation followed by thermodynamic equilibration. No clear correlations between product distribution and side chain length or composition were identifiable under the current experimental conditions, suggesting there are other factors affecting the kinetics during the photochemical reactions for these 5,7-dienes. To the best of our knowledge, this is the first time the influences of side chain length and composition on the real time conversion kinetics from pre-D to D are studied. This study could serve as step-stones in future kinetic studies of novel biologically active 5,7-dienes and their corresponding D analogs under more physiologically relevant ex vivo or in vivo conditions, as well as providing important insights into optimizing yields of the desired active products during their organic syntheses.
Collapse
Affiliation(s)
- Jianjun Chen
- Department of Pharmaceutical Sciences; College of Pharmacy; University of Tennessee Health Science Center; Memphis, TN USA
| | - Andrzej T Slominski
- Department of Pathology and Laboratory Medicine and the Center for Cancer Research; University of Tennessee Health Science Center; Memphis, TN USA
| | - Duane D Miller
- Department of Pharmaceutical Sciences; College of Pharmacy; University of Tennessee Health Science Center; Memphis, TN USA
| | - Wei Li
- Department of Pharmaceutical Sciences; College of Pharmacy; University of Tennessee Health Science Center; Memphis, TN USA
| |
Collapse
|
56
|
Vitamin D controls murine and human plasmacytoid dendritic cell function. J Invest Dermatol 2013; 134:1255-1264. [PMID: 24352045 DOI: 10.1038/jid.2013.501] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/24/2013] [Accepted: 11/01/2013] [Indexed: 12/22/2022]
Abstract
Topical application of the vitamin D (VitD) analog calcipotriol is a highly effective standard treatment modality of psoriatic skin lesions. However, the immune modulatory effects of the treatment are incompletely understood. VitD is well known to induce tolerogenic responses in conventional dendritic cells (cDCs). Plasmacytoid DCs (pDCs) comprise a specialized, naturally occurring DC subset known to be important in autoimmune diseases including psoriasis. pDCs from the blood rapidly infiltrate psoriatic skin and are key to the initiation of the immune-mediated pathogenesis of the disease. We now demonstrate that pDCs express various proteins of the VitD receptor (VDR) pathway, including the VitD-metabolizing enzymes Cyp27B1 and Cyp24A1, and that VDR is transcriptionally active in pDCs. Moreover, VitD impairs the capacity of murine and human pDCs to induce T-cell proliferation and secretion of the T-helper 1 cytokine IFNγ. The inhibitory effect of VitD is dependent on the expression of the VDR in the DCs. This study demonstrates that VitD signaling can act as a natural inhibitory mechanism on both cDCs and pDCs, which may instigate the development of VitD-based therapeutic applications for psoriasis and other inflammatory skin diseases.
Collapse
|
57
|
Kim TK, Kleszczynski K, Janjetovic Z, Sweatman T, Lin Z, Li W, Reiter RJ, Fischer TW, Slominski AT. Metabolism of melatonin and biological activity of intermediates of melatoninergic pathway in human skin cells. FASEB J 2013; 27:2742-55. [PMID: 23620527 DOI: 10.1096/fj.12-224691] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Indolic and kynuric pathways of skin melatonin metabolism were monitored by liquid chromatography mass spectrometry in human keratinocytes, melanocytes, dermal fibroblasts, and melanoma cells. Production of 6-hydroxymelatonin [6(OH)M], N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK) and 5-methoxytryptamine (5-MT) was detected in a cell type-dependent fashion. The major metabolites, 6(OH)M and AFMK, were produced in all cells. Thus, in immortalized epidermal (HaCaT) keratinocytes, 6(OH)M was the major product with Vmax = 63.7 ng/10(6) cells and Km = 10.2 μM, with lower production of AFMK and 5-MT. Melanocytes, keratinocytes, and fibroblasts transformed melatonin primarily into 6(OH)M and AFMK. In melanoma cells, 6(OH)M and AFMK were produced endogenously, a process accelerated by exogenous melatonin in the case of AFMK. In addition, N-acetylserotonin was endogenously produced by normal and malignant melanocytes. Metabolites showed selective antiproliferative effects on human primary epidermal keratinocytes in vitro. In ex vivo human skin, both melatonin and AFMK-stimulated expression of involucrin and keratins-10 and keratins-14 in the epidermis, indicating their stimulatory role in building and maintaining the epidermal barrier. In summary, the metabolism of melatonin and its endogenous production is cell type-dependent and expressed in all three main cell populations of human skin. Furthermore, melatonin and its metabolite AFMK stimulate differentiation in human epidermis, indicating their key role in building the skin barrier.
Collapse
Affiliation(s)
- Tae-Kang Kim
- Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Tang EKY, Chen J, Janjetovic Z, Tieu EW, Slominski AT, Li W, Tuckey RC. Hydroxylation of CYP11A1-derived products of vitamin D3 metabolism by human and mouse CYP27B1. Drug Metab Dispos 2013; 41:1112-24. [PMID: 23454830 DOI: 10.1124/dmd.113.050955] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
CYP11A1 can hydroxylate vitamin D3 at carbons 17, 20, 22, and 23, producing a range of secosteroids which are biologically active with respect to their ability to inhibit proliferation and stimulate differentiation of various cell types, including cancer cells. As 1α-hydroxylation of the primary metabolite of CYP11A1 action, 20S-hydroxyvitamin D3 [20(OH)D3], greatly influences its properties, we examined the ability of both human and mouse CYP27B1 to 1α-hydroxylate six secosteroids generated by CYP11A1. Based on their kcat/Km values, all CYP11A1-derived metabolites are poor substrates for CYP27B1 from both species compared with 25-hydroxyvitamin D3. No hydroxylation of metabolites with a 17α-hydroxyl group was observed. 17α,20-Dihydroxyvitamin D3 acted as an inhibitor on human CYP27B1 but not the mouse enzyme. We also tested CYP27B1 activity on 20,24-, 20,25-, and 20,26-dihydroxyvitamin D3, which are products of CYP24A1 or CYP27A1 activity on 20(OH)D3. All three compounds were metabolized with higher catalytic efficiency (kcat/Km) by both mouse and human CYP27B1 than 25-hydroxyvitamin D3. CYP27B1 action on these new dihydroxy derivatives was confirmed to be 1α-hydroxylation by mass spectrometry and nuclear magnetic resonance analyses. Both 1,20,25- and 1,20,26- trihydroxyvitamin D3 were tested for their ability to inhibit melanoma (SKMEL-188) colony formation, and were significantly more active than 20(OH)D3. This study shows that CYP11A1-derived secosteroids are 1α-hydroxylated by both human and mouse CYP27B1 with low catalytic efficiency, and that the presence of a 17α-hydroxyl group completely blocks 1α-hydroxylation. In contrast, the secondary metabolites produced by subsequent hydroxylation of 20(OH)D3 at C24, C25, or C26 are very good substrates for CYP27B1.
Collapse
Affiliation(s)
- Edith K Y Tang
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia
| | | | | | | | | | | | | |
Collapse
|
59
|
Slominski A, Janjetovic Z, Tuckey RC, Nguyen MN, Bhattacharya KG, Wang J, Li W, Jiao Y, Gu W, Brown M, Postlethwaite AE. 20S-hydroxyvitamin D3, noncalcemic product of CYP11A1 action on vitamin D3, exhibits potent antifibrogenic activity in vivo. J Clin Endocrinol Metab 2013; 98:E298-303. [PMID: 23295467 PMCID: PMC3565109 DOI: 10.1210/jc.2012-3074] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT There is no effective treatment for systemic sclerosis and related fibrosing diseases. Recently the action of CYP11A1 on vitamin D(3) was shown to produce biologically active 20S-hydroxyvitamin D [20(OH)D(3)] and 20,23(OH)(2)D(3), 20,22(OH)(2)D(3), and 17,20,23(OH)(3)D(3). OBJECTIVES Because 20(OH)D(3) is noncalcemic (nontoxic) in vivo at very high doses, we evaluated its antifibrogenic activities both in vitro and in vivo. Because it is further metabolized by CYP11A1, we also tested preclinical utilities of its hydroxyderivatives, especially 20,23(OH)(2)D(3). DESIGN Human dermal fibroblasts from scleroderma and normal donors were used to test the efficiency of hydroxyvitamin D derivatives in inhibiting TGF-β1-induced collagen and hyaluronan synthesis and inhibiting cell proliferation. The in vivo activity of 20(OH)D(3) was tested using bleomycin-induced sclerosis in C57BL/6 mice. RESULTS 20(OH)D(3) and 20,23(OH)(2)D(3) inhibited TGF-β1-induced collagen and hyaluronan synthesis similarly to 1,25(OH)(2)D(3) in cultured human fibroblasts. Also, 20(OH)D(3), 20,23(OH)(2)D(3), and 1,25(OH)(2)D(3) suppressed TGF-β1-induced expression of COL1A2, COL3A1, and hyaluronan synthase-2 mRNA, indicating that they regulate these matrix components at the transcriptional level. 20(OH)D(3), 20,23(OH)(2)D(3), 20,22(OH)(2)D(3), and 17,20,23(OH)(3)D(3) inhibited proliferation of dermal fibroblasts with comparable potency with 1,25(OH)(2)D(3), with 20(OH)D(2) being less active and 1α(OH)D(3) being almost inactive. 20,23(OH)(2)D(3) at 3 μg/kg had no effect on serum Ca(++) or fibroblast growth factor-23 levels and did not cause any noticeable signs of morbidity. 20(OH)D(3) markedly suppressed fibrogenesis in mice given sc bleomycin as demonstrated by total collagen content and hematoxylin and eosin staining of skin biopsies. CONCLUSIONS 20(OH)D(3) is an excellent candidate for preclinical studies on scleroderma, with other CYP11A1-derived products of its metabolism deserving further testing for antibrogenic activity.
Collapse
Affiliation(s)
- Andrzej Slominski
- Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Tieu EW, Tang EKY, Chen J, Li W, Nguyen MN, Janjetovic Z, Slominski A, Tuckey RC. Rat CYP24A1 acts on 20-hydroxyvitamin D(3) producing hydroxylated products with increased biological activity. Biochem Pharmacol 2012; 84:1696-704. [PMID: 23041230 DOI: 10.1016/j.bcp.2012.09.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 09/27/2012] [Accepted: 09/28/2012] [Indexed: 11/18/2022]
Abstract
20-Hydroxyvitamin D(3) (20(OH)D(3)), the major product of CYP11A1 action on vitamin D(3), is biologically active and is produced in vivo. As well as potentially having important physiological actions, it is of interest as a therapeutic agent due to its lack of calcemic activity. In the current study we have examined the ability of CYP24A1, the enzyme that inactivates 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), to metabolize 20(OH)D(3). Rat CYP24A1 was expressed in Escherichia coli, purified by Ni-affinity chromatography and assayed with substrates incorporated into phospholipid vesicles which served as a model of the inner mitochondrial membrane. In this system CYP24A1 metabolized 1,25(OH)(2)D(3) with a catalytic efficiency 1.4-fold higher than that seen for 25-hydroxyvitamin D(3) (25(OH)D(3)). CYP24A1 hydroxylated 20(OH)D(3) to several dihydroxy-derivatives with the major two identified by NMR as 20,24-dihydroxyvitamin D(3) (20,24(OH)(2)D(3)) and 20,25-dihydroxyvitamin D(3) (20,25(OH)(2)D(3)). The catalytic efficiency of CYP24A1 for 20(OH)D(3) metabolism was more than 10-fold lower than for either 25(OH)D(3) or 1,25(OH)(2)D(3) and no secondary metabolites were produced. The two major products, 20,24(OH)(2)D(3) and 20,25(OH)(2)D(3), caused significantly greater inhibition of colony formation by SKMEL-188 melanoma cells than either 1,25(OH)(2)D(3) or the parent 20(OH)D(3), showing that CYP24A1 plays an activating, rather than an inactivating role on 20(OH)D(3).
Collapse
Affiliation(s)
- Elaine W Tieu
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, Australia
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Kim TK, Wang J, Janjetovic Z, Chen J, Tuckey RC, Nguyen MN, Tang EKY, Miller D, Li W, Slominski AT. Correlation between secosteroid-induced vitamin D receptor activity in melanoma cells and computer-modeled receptor binding strength. Mol Cell Endocrinol 2012; 361:143-52. [PMID: 22546549 PMCID: PMC3409337 DOI: 10.1016/j.mce.2012.04.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 04/04/2012] [Accepted: 04/09/2012] [Indexed: 11/28/2022]
Abstract
To define the interaction of novel secosteroids produced by the action of cytochrome P450scc with vitamin D receptor (VDR), we used a human melanoma line overexpressing VDR fused with enhanced green fluorescent protein (EGFP) and tested the ligand induced translocation of VDR from the cytoplasm to the nucleus. Hydroxyderivatives of vitamin D(3) with a full length (D(3)) side chain and hydroxy-secosteroids with a shortened side chain (pD) stimulated VDR translocation and inhibited proliferation, however, with different potencies. In general the D(3) were more potent than pD analogues. Molecular modeling of the binding of the secosteroids to the VDR genomic binding pocket (G-pocket) correlated well with the experimental data for VDR translocation. In contrast, docking scores for the non-genomic binding site of the VDR were poor. In conclusion, both the length of the side chain and the number and position of hydroxyl groups affect the activation of VDR by novel secosteroids.
Collapse
Affiliation(s)
- Tae-Kang Kim
- Departments of Pathology and Laboratory Medicine, Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jin Wang
- Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Zorica Janjetovic
- Departments of Pathology and Laboratory Medicine, Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jianjun Chen
- Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert C. Tuckey
- School of Biomolecular, Biomedical and Chemical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Minh N. Nguyen
- School of Biomolecular, Biomedical and Chemical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Edith K. Y. Tang
- School of Biomolecular, Biomedical and Chemical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Duane Miller
- Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Wei Li
- Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
- Corresponding author and address for reprints: Andrzej Slominski, MD/PhD, Department of Pathology, 930 Madison Avenue, Memphis, TN 38163; Tel: 901-4483741; Fax: 901-4486979; ; or Wei Li PhD, Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 847 Monroe Avenue, room 327, Memphis, TN 38163; Tel: 901-448-7532; Fax: 901-448-6828; .
| | - Andrzej T. Slominski
- Departments of Pathology and Laboratory Medicine, Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
- Division of Dermatology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Corresponding author and address for reprints: Andrzej Slominski, MD/PhD, Department of Pathology, 930 Madison Avenue, Memphis, TN 38163; Tel: 901-4483741; Fax: 901-4486979; ; or Wei Li PhD, Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 847 Monroe Avenue, room 327, Memphis, TN 38163; Tel: 901-448-7532; Fax: 901-448-6828; .
| |
Collapse
|
62
|
Slominski AT, Janjetovic Z, Kim TK, Wright AC, Grese LN, Riney SJ, Nguyen MN, Tuckey RC. Novel vitamin D hydroxyderivatives inhibit melanoma growth and show differential effects on normal melanocytes. Anticancer Res 2012; 32:3733-3742. [PMID: 22993313 PMCID: PMC3458587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
BACKGROUND/AIMS To test the activity of novel hydroxyvitamin D(3) analogs (20(OH)D(3), 20,23(OH)(2)D and 1,20(OH)(2)D(3)) on normal and malignant melanocytes in comparison to 1,25(OH)(2)D(3). MATERIALS AND METHODS Human epidermal melanocytes and human and hamster melanoma cells were used to measure effects on proliferation and colony formation in monolayer and soft agar. Cell morphology and melanogenesis were also analyzed. QPCR was used to measure gene expression. RESULTS Novel secosteroids inhibited proliferation and colony formation by melanoma cells in a similar fashion to 1,25(OH)(2)D(3), having no effect on melanogenesis. These effects were accompanied by ligand-induced translocation of VDR to the nucleus. In normal melanocytes 1α-hydroxyderivatives (1,25(OH)(2)D(3) and 1,20(OH)(2)D(3)) had stronger anti-proliferative effects than 20(OH)D(3) and 20,23(OH)(2)D(3), and inhibited dendrite formation. The cells tested expressed genes encoding VDR and enzymes that activate or inactivate vitamin D(3). CONCLUSION Novel secosteroids show potent anti-melanoma activity in vitro with 20(OH)D(3) and 20,23(OH)(2)D(3) being excellent candidates for pre-clinical testing.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Cytochrome P450scc-dependent metabolism of 7-dehydrocholesterol in placenta and epidermal keratinocytes. Int J Biochem Cell Biol 2012; 44:2003-18. [PMID: 22877869 DOI: 10.1016/j.biocel.2012.07.027] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 07/12/2012] [Accepted: 07/27/2012] [Indexed: 12/31/2022]
Abstract
The discovery that 7-dehydrocholesterol (7DHC) is an excellent substrate for cytochrome P450scc (CYP11A1) opens up new possibilities in biochemistry. To elucidate its biological significance we tested ex vivo P450scc-dependent metabolism of 7DHC by tissues expressing high and low levels of P450scc activity, placenta and epidermal keratinocytes, respectively. Incubation of human placenta fragments with 7DHC led to its conversion to 7-dehydropregnenolone (7DHP), which was inhibited by dl-aminoglutethimide, and stimulated by forskolin. Final proof for P450scc involvement was provided in isolated placental mitochondria where production of 7DHP was almost completely inhibited by 22R-hydroxycholesterol. 7DHC was metabolized by placental mitochondria at a faster rate than exogenous cholesterol, under both limiting and saturating conditions of substrate transport, consistent with higher catalytic efficiency (k(cat)/K(m)) with 7DHC as substrate than with cholesterol. Ex vivo experiments showed five 5,7-dienal intermediates with MS spectra of dihydroxy and mono-hydroxy-7DHC and retention time corresponding to 20,22(OH)(2)7DHC and 22(OH)7DHC. The chemical structure of 20,22(OH)(2)7DHC was defined by NMR. 7DHP was further metabolized by either placental fragments or placental microsomes to 7-dehydroprogesterone as defined by UV, MS and NMR, and to an additional product with a 5,7-dienal structure and MS corresponding to hydroxy-7DHP. Furthermore, epidermal keratinocytes transformed either exogenous or endogenous 7DHC to 7DHP. 7DHP inhibited keratinocytes proliferation, while the product of its pholytic transformation, pregcalciferol, lost this capability. In conclusion, tissues expressing P450scc can metabolize 7DHC to biologically active 7DHP with 22(OH)7DHC and 20,22(OH)(2)7DHC serving as intermediates, and with further metabolism to 7-dehydroprogesterone and (OH)7DHP.
Collapse
|
64
|
Slominski AT, Kim TK, Shehabi HZ, Semak I, Tang EKY, Nguyen MN, Benson HAE, Korik E, Janjetovic Z, Chen J, Yates CR, Postlethwaite A, Li W, Tuckey RC. In vivo evidence for a novel pathway of vitamin D₃ metabolism initiated by P450scc and modified by CYP27B1. FASEB J 2012; 26:3901-15. [PMID: 22683847 DOI: 10.1096/fj.12-208975] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We define previously unrecognized in vivo pathways of vitamin D(3) (D3) metabolism generating novel D3-hydroxyderivatives different from 25-hydroxyvitamin D(3) [25(OH)D3] and 1,25(OH)(2)D3. Their novel products include 20-hydroxyvitamin D(3) [20(OH)D3], 22(OH)D3, 20,23(OH)(2)D3, 20,22(OH)(2)D3, 1,20(OH)(2)D3, 1,20,23(OH)(3)D3, and 17,20,23(OH)(3)D3 and were produced by placenta, adrenal glands, and epidermal keratinocytes. We detected the predominant metabolite [20(OH)D3] in human serum with a relative concentration ∼20 times lower than 25(OH)D3. Use of inhibitors and studies performed with isolated mitochondria and purified enzymes demonstrated involvement of the steroidogenic enzyme cytochrome P450scc (CYP11A1) as well as CYP27B1 (1α-hydroxylase). In placenta and adrenal glands with high CYP11A1 expression, the predominant pathway was D3 → 20(OH)D3 → 20,23(OH)(2)D3 → 17,20,23(OH)(3)D3 with further 1α-hydroxylation, and minor pathways were D3 → 25(OH)D3 → 1,25(OH)(2)D3 and D3 → 22(OH)D3 → 20,22(OH)(2)D3. In epidermal keratinocytes, we observed higher proportions of 22(OH)D3 and 20,22(OH)(2)D3. We also detected endogenous production of 20(OH)D3, 22(OH) D3, 20,23(OH)(2)D3, 20,22(OH)(2)D3, and 17,20,23(OH)(3)D3 by immortalized human keratinocytes. Thus, we provide in vivo evidence for novel pathways of D3 metabolism initiated by CYP11A1, with the product profile showing organ/cell type specificity and being modified by CYP27B1 activity. These findings define the pathway intermediates as natural products/endogenous bioregulators and break the current dogma that vitamin D is solely activated through the sequence D3 → 25(OH)D3 → 1,25(OH)(2)D3.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Tieu EW, Li W, Chen J, Baldisseri DM, Slominski AT, Tuckey RC. Metabolism of cholesterol, vitamin D3 and 20-hydroxyvitamin D3 incorporated into phospholipid vesicles by human CYP27A1. J Steroid Biochem Mol Biol 2012; 129:163-71. [PMID: 22210453 PMCID: PMC3303980 DOI: 10.1016/j.jsbmb.2011.11.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 11/28/2011] [Accepted: 11/30/2011] [Indexed: 10/14/2022]
Abstract
CYP27A1 is a mitochondrial cytochrome P450 which can hydroxylate vitamin D3 and cholesterol at carbons 25 and 26, respectively. The product of vitamin D3 metabolism, 25-hydroxyvitamin D3, is the precursor to the biologically active hormone, 1α,25-dihydroxyvitamin D3. CYP27A1 is attached to the inner mitochondrial membrane and substrates appear to reach the active site through the membrane phase. We have therefore examined the ability of bacterially expressed and purified CYP27A1 to metabolize substrates incorporated into phospholipid vesicles which resemble the inner mitochondrial membrane. We also examined the ability of CYP27A1 to metabolize 20-hydroxyvitamin D3 (20(OH)D3), a novel non-calcemic form of vitamin D derived from CYP11A1 action on vitamin D3 which has anti-proliferative activity on keratinocytes, leukemic and myeloid cells. CYP27A1 displayed high catalytic activity towards cholesterol with a turnover number (k(cat)) of 9.8 min(-1) and K(m) of 0.49 mol/mol phospholipid (510 μM phospholipid). The K(m) value of vitamin D3 was similar for that of cholesterol, but the k(cat) was 4.5-fold lower. 20(OH)D3 was metabolized by CYP27A1 to two major products with a k(cat)/K(m) that was 2.5-fold higher than that for vitamin D3, suggesting that 20(OH)D3 could effectively compete with vitamin D3 for catalysis. NMR and mass spectrometric analyses revealed that the two major products were 20,25-dihydroxyvitamin D3 and 20,26-dihydroxyvitamin D3, in almost equal proportions. Thus, the presence of the 20-hydroxyl group on the vitamin D3 side chain enables it to be metabolized more efficiently than vitamin D3, with carbon 26 in addition to carbon 25 becoming a major site of hydroxylation. Our study reports the highest k(cat) for the 25-hydroxylation of vitamin D3 by any human cytochrome P450 suggesting that CYP27A1 might be an important contributor to the synthesis of 25-hydroxyvitamin D3, particularly in tissues where it is highly expressed.
Collapse
Affiliation(s)
- Elaine W. Tieu
- School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jianjun Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | - Andrzej T. Slominski
- Department of Pathology and Laboratory Medicine and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Robert C. Tuckey
- School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- Corresponding author. Tel.: +61 864883040; fax.: +61 864881148., Postal address: 35 Stirling Highway, Crawley, WA 6009, Australia., address:
| |
Collapse
|
66
|
Wang J, Slominski A, Tuckey RC, Janjetovic Z, Kulkarni A, Chen J, Postlethwaite AE, Miller D, Li W. 20-hydroxyvitamin D₃ inhibits proliferation of cancer cells with high efficacy while being non-toxic. Anticancer Res 2012; 32:739-746. [PMID: 22399586 PMCID: PMC3312810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
AIM To define the potential utility of 20-hydroxyvitamin D(3) (20(OH)D(3)) as a tumorostatic agent, we assessed its in vitro antiproliferative activity and its in vivo toxicity. MATERIALS AND METHODS The antitumor activity of 20(OH)D(3) was tested against breast and liver cancer cell lines using colony formation assays. To assess in vivo toxicity, mice were injected with 5-30 μg/kg 20(OH)D(3) intraperitoneally each day for 3 weeks. Blood and organ samples were collected for clinical pathology analyses. RESULTS 20(OH)D(3) displays similar tumorostatic activity towards MDA-MB-453 and MCF7 breast carcinomas, and HepG2 hepatocarcinoma, in a dose-dependent manner. This compound is not hypercalcemic, does not cause detectable toxicities in liver, kidney, or blood chemistry in mice at a dose as high as 30 μg/kg. In contrast, both 25(OH)D(3) and 1,25(OH)(2)D(3) caused severe hypercalcemia at a dose of 2 μg/kg. CONCLUSION 20(OH)D(3) possesses high efficacy for inhibiting cancer cell proliferation in vitro and is non-toxic in vivo, supporting its further development as a potential anticancer therapeutic agent.
Collapse
Affiliation(s)
- Jin Wang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Janjetovic Z, Brozyna AA, Tuckey RC, Kim TK, Nguyen MN, Jozwicki W, Pfeffer SR, Pfeffer LM, Slominski AT. High basal NF-κB activity in nonpigmented melanoma cells is associated with an enhanced sensitivity to vitamin D3 derivatives. Br J Cancer 2011; 105:1874-84. [PMID: 22095230 PMCID: PMC3251881 DOI: 10.1038/bjc.2011.458] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: Melanoma is highly resistant to current modalities of therapy, with the extent of pigmentation playing an important role in therapeutic resistance. Nuclear factor-κB (NF-κB) is constitutively activated in melanoma and can serve as a molecular target for cancer therapy and steroid/secosteroid action. Methods: Cultured melanoma cells were used for mechanistic studies on NF-κB activity, utilising immunofluorescence, western blotting, EMSA, ELISA, gene reporter, and estimated DNA synthesis assays. Formalin-fixed, paraffin-embedded specimens from melanoma patients were used for immunocytochemical analysis of NF-κB activity in situ. Results: Novel 20-hydroxyvitamin (20(OH)D3) and classical 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) secosteroids inhibited melanoma cell proliferation. Active forms of vitamin D were found to inhibit NF-κB activity in nonpigmented cells, while having no effect on pigmented cells. Treatment of nonpigmented cells with vitamin D3 derivatives inhibited NF-κB DNA binding and NF-κB-dependent reporter assays, as well as inhibited the nuclear translocation of the p65 NF-κB subunit and its accumulation in the cytoplasm. Moreover, analysis of biopsies of melanoma patients showed that nonpigmented and slightly pigmented melanomas displayed higher nuclear NF-κB p65 expression than highly pigmented melanomas. Conclusion: Classical 1,25(OH)2D3 and novel 20(OH)D3 hydroxyderivatives of vitamin D3 can target NF-κB and regulate melanoma progression in nonpigmented melanoma cells. Melanin pigmentation is associated with the resistance of melanomas to 20(OH)D3 and 1,25(OH)2D3 treatment.
Collapse
Affiliation(s)
- Z Janjetovic
- Department of Pathology and Laboratory Medicine, Center for Cancer Research, University of Tennessee Health Science Center, 930 Madison Avenue, Memphis, TN 38163, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Tuckey RC, Li W, Shehabi HZ, Janjetovic Z, Nguyen MN, Kim TK, Chen J, Howell DE, Benson HAE, Sweatman T, Baldisseri DM, Slominski A. Production of 22-hydroxy metabolites of vitamin d3 by cytochrome p450scc (CYP11A1) and analysis of their biological activities on skin cells. Drug Metab Dispos 2011; 39:1577-88. [PMID: 21677063 DOI: 10.1124/dmd.111.040071] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cytochrome P450scc (CYP11A1) can hydroxylate vitamin D(3), producing 20S-hydroxyvitamin D(3) [20(OH)D(3)] and 20S,23-dihydroxyvitamin D(3) [20,23(OH)(2)D(3)] as the major metabolites. These are biologically active, acting as partial vitamin D receptor (VDR) agonists. Minor products include 17-hydroxyvitamin D(3), 17,20-dihydroxyvitamin D(3), and 17,20,23-trihydroxyvitamin D(3). In the current study, we have further analyzed the reaction products from cytochrome P450scc (P450scc) action on vitamin D(3) and have identified two 22-hydroxy derivatives as products, 22-hydroxyvitamin D(3) [22(OH)D(3)] and 20S,22-dihydroxyvitamin D(3) [20,22(OH)(2)D(3)]. The structures of both of these derivatives were determined by NMR. P450scc could convert purified 22(OH)D(3) to 20,22(OH)(2)D(3). The 20,22(OH)(2)D(3) could also be produced from 20(OH)D(3) and was metabolized to a trihydroxyvitamin D(3) product. We compared the biological activities of these new derivatives with those of 20(OH)D(3), 20,23(OH)(2)D(3), and 1α,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)]. 1,25(OH)(2)D(3), 20(OH)D(3), 22(OH)D(3), 20,23(OH)(2)D(3), and 20,22(OH)(2)D(3) significantly inhibited keratinocyte proliferation in a dose-dependent manner. The strongest inducers of involucrin expression (a marker of keratinocyte differentiation) were 20,23(OH)(2)D(3), 20,22(OH)(2)D(3), 20(OH)D(3), and 1,25(OH)(2)D(3), with 22(OH)D(3) having a heterogeneous effect. Little or no stimulation of CYP24 mRNA expression was observed for all the analogs tested except for 1,25(OH)(2)D(3). All the compounds stimulated VDR translocation from the cytoplasm to the nucleus with 22(OH)D(3) and 20,22(OH)(2)D(3) having less effect than 1,25(OH)(2)D(3) and 20(OH)D(3). Thus, we have identified 22(OH)D(3) and 20,22(OH)(2)D(3) as products of CYP11A1 action on vitamin D(3) and shown that, like 20(OH)D(3) and 20,23(OH)(2)D(3), they are active on keratinocytes via the VDR, however, showing a degree of phenotypic heterogeneity in comparison with other P450scc-derived hydroxy metabolites of vitamin D(3).
Collapse
Affiliation(s)
- Robert C Tuckey
- School of Biomolecular, Biomedical and Chemical Sciences, M310, The University of Western Australia, Crawley, WA 6009, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Brożyna AA, Jozwicki W, Janjetovic Z, Slominski AT. Expression of vitamin D receptor decreases during progression of pigmented skin lesions. Hum Pathol 2011; 42:618-31. [PMID: 21292298 DOI: 10.1016/j.humpath.2010.09.014] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/21/2010] [Accepted: 09/22/2010] [Indexed: 01/18/2023]
Abstract
1,25-dihydroxyvitamin D3 affects proliferation, differentiation, and apoptosis and protects DNA against oxidative damage with a net tumorostatic and anticarcinogenic effect. It acts through a specific nuclear receptor that is widely distributed through the body. Although a beneficial role of vitamin D in melanoma patients has been suggested, there is lack of information on the changes in the expression pattern of vitamin D receptor during progression of pigmented lesions. Using immunohistochemistry, we analyzed the expression of vitamin D receptor in 140 samples obtained form 82 patients, including 25 benign nevi, 70 primary cutaneous melanomas, 35 metastases, 5 re-excisions, and 5 normal skin biopsies. The strongest expression was observed in normal skin that significantly decreased in melanocytic proliferations with the following order of expression: normal skin > melanocytic nevi > melanomas = metastases. The vitamin D receptor expression in skin surrounding nevi and melanoma was also significantly reduced as compared to normal skin. Tumor-infiltrating and lymph node lymphocytes retained high levels of vitamin D receptor. There was negative correlation between tumor progression and vitamin D receptor expression with a remarkable decrease of the immunoreactivity in nuclei of melanoma cells at vertical versus radial growth phases and with metastatic melanomas showing the lowest cytoplasmic receptor staining. Furthermore, lack of the receptor expression in primary melanomas and metastases was related to shorter overall patients' survival. In addition, the receptor expression decreased in melanized melanoma cells in comparison to amelanotic or poorly pigmented cells. Therefore, we propose that reduction or absence of vitamin D receptor is linked to progression of melanocytic lesions, that its lack affects survival of melanoma patients, and that melanogenesis can attenuate receptor expression. In conclusion, changes in vitamin D receptor expression pattern can serve as important variables for diagnosis, predicting clinical outcome of the disease, and/or as a guidance for novel therapy of melanomas based on use of vitamin D or its derivatives.
Collapse
Affiliation(s)
- Anna A Brożyna
- Department of Tumor Pathology and Pathomorphology, The Lukaszczyk Oncology Center, The Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz 85-796, Poland
| | | | | | | |
Collapse
|
70
|
Slominski AT, Kim TK, Janjetovic Z, Tuckey RC, Bieniek R, Yue J, Li W, Chen J, Nguyen MN, Tang EKY, Miller D, Chen TC, Holick M. 20-Hydroxyvitamin D2 is a noncalcemic analog of vitamin D with potent antiproliferative and prodifferentiation activities in normal and malignant cells. Am J Physiol Cell Physiol 2010; 300:C526-41. [PMID: 21160030 DOI: 10.1152/ajpcell.00203.2010] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
20-hydroxyvitamin D(2) [20(OH)D(2)] inhibits DNA synthesis in epidermal keratinocytes, melanocytes, and melanoma cells in a dose- and time-dependent manner. This inhibition is dependent on cell type, with keratinocytes and melanoma cells being more sensitive than normal melanocytes. The antiproliferative activity of 20(OH)D(2) is similar to that of 1,25(OH)(2)D(3) and of newly synthesized 1,20(OH)(2)D(2) but significantly higher than that of 25(OH)D(3). 20(OH)D(2) also displays tumorostatic effects. In keratinocytes 20(OH)D(2) inhibits expression of cyclins and stimulates involucrin expression. It also stimulates CYP24 expression, however, to a significantly lower degree than that by 1,25(OH)(2)D(3) or 25(OH)D(3). 20(OH)D(2) is a poor substrate for CYP27B1 with overall catalytic efficiency being 24- and 41-fold lower than for 25(OH)D(3) with the mouse and human enzymes, respectively. No conversion of 20(OH)D(2) to 1,20(OH)(2)D(2) was detected in intact HaCaT keratinocytes. 20(OH)D(2) also demonstrates anti-leukemic activity but with lower potency than 1,25(OH)(2)D(3). The phenotypic effects of 20(OH)D(2) are mediated through interaction with the vitamin D receptor (VDR) as documented by attenuation of cell proliferation after silencing of VDR, by enhancement of the inhibitory effect through stable overexpression of VDR and by the demonstration that 20(OH)D(2) induces time-dependent translocation of VDR from the cytoplasm to the nucleus at a comparable rate to that for 1,25(OH)(2)D(3). In vivo tests show that while 1,25(OH)(2)D(3) at doses as low as 0.8 μg/kg induces calcium deposits in the kidney and heart, 20(OH)D(2) is devoid of such activity even at doses as high as 4 μg/kg. Silencing of CY27B1 in human keratinocytes showed that 20(OH)D(2) does not require its transformation to 1,20(OH)(2)D(2) for its biological activity. Thus 20(OH)D(2) shows cell-type dependent antiproliferative and prodifferentiation activities through activation of VDR, while having no detectable toxic calcemic activity, and is a poor substrate for CYP27B1.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Dept. of Pathology and Laboratory Medicine, Center for Cancer Research, Univ. of Tennessee Health Science Center, 930 Madison Ave., RM525, Memphis, TN 38163, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Tang EKY, Li W, Janjetovic Z, Nguyen MN, Wang Z, Slominski A, Tuckey RC. Purified mouse CYP27B1 can hydroxylate 20,23-dihydroxyvitamin D3, producing 1alpha,20,23-trihydroxyvitamin D3, which has altered biological activity. Drug Metab Dispos 2010; 38:1553-9. [PMID: 20554701 DOI: 10.1124/dmd.110.034389] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
20,23-Dihydroxyvitamin D(3) [20,23(OH)(2)D(3)] is a biologically active metabolite produced by the action of cytochrome P450scc (CYP11A1) on vitamin D(3). It inhibits keratinocyte proliferation, stimulates differentiation, and inhibits nuclear factor-kappaB activity, working as a vitamin D receptor agonist. We have tested the ability of purified mouse 25-hydroxyvitamin D(3) 1alpha-hydroxylase (CYP27B1) to add a 1alpha-hydroxyl group to this vitamin D analog and determined whether this altered its biological activity. 20,23(OH)(2)D(3) incorporated into phospholipid vesicles was converted to a single product by CYP27B1, confirmed to be 1alpha,20,23-trihydroxyvitamin D(3) [1,20,23(OH)(3)D(3)] by mass spectrometry and NMR. The 20,23(OH)(2)D(3) was a relatively poor substrate for CYP27B1 compared with the normal substrate, 25-hydroxyvitamin D(3), displaying a 5-fold higher K(m) and 8-fold lower k(cat) value. Both 20,23(OH)(2)D(3) and 1,20,23(OH)(3)D(3) decreased neonatal human epidermal keratinocyte proliferation, showing significant effects at a lower concentration (0.1 nM) than that seen for 1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] at 24 h of treatment. Both compounds also decreased cell biomass relative to that of control cells, measured by staining with sulforhodamine B. They caused little stimulation of the expression of the vitamin D receptor at the mRNA level compared with the 30-fold induction observed with the same concentration (100 nM) of 1,25(OH)(2)D(3) at 24 h. Addition of a 1alpha-hydroxyl group to 20,23(OH)(2)D(3) greatly enhanced its ability to stimulate the expression of the CYP24 gene but not to the extent seen with 1,25(OH)(2)D(3). This study shows that purified CYP27B1 can add a 1alpha-hydroxyl group to 20,23(OH)(2)D(3) with the product showing altered biological activity, especially for the stimulation of CYP24 gene expression.
Collapse
Affiliation(s)
- Edith K Y Tang
- School of Biomolecular and Chemical Sciences, The University of Western Australia, Crawley, WA, Australia
| | | | | | | | | | | | | |
Collapse
|
72
|
Slominski AT, Janjetovic Z, Fuller BE, Zmijewski MA, Tuckey RC, Nguyen MN, Sweatman T, Li W, Zjawiony J, Miller D, Chen TC, Lozanski G, Holick MF. Products of vitamin D3 or 7-dehydrocholesterol metabolism by cytochrome P450scc show anti-leukemia effects, having low or absent calcemic activity. PLoS One 2010; 5:e9907. [PMID: 20360850 PMCID: PMC2845617 DOI: 10.1371/journal.pone.0009907] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 02/26/2010] [Indexed: 12/22/2022] Open
Abstract
Background Cytochrome P450scc metabolizes vitamin D3 to 20-hydroxyvitamin D3 (20(OH)D3) and 20,23(OH)2D3, as well as 1-hydroxyvitamin D3 to 1α,20-dihydroxyvitamin D3 (1,20(OH)2D3). It also cleaves the side chain of 7-dehydrocholesterol producing 7-dehydropregnenolone (7DHP), which can be transformed to 20(OH)7DHP. UVB induces transformation of the steroidal 5,7-dienes to pregnacalciferol (pD) and a lumisterol-like compounds (pL). Methods and Findings To define the biological significance of these P450scc-initiated pathways, we tested the effects of their 5,7-diene precursors and secosteroidal products on leukemia cell differentiation and proliferation in comparison to 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). These secosteroids inhibited proliferation and induced erythroid differentiation of K562 human chronic myeloid and MEL mouse leukemia cells with 20(OH)D3 and 20,23(OH)2D3 being either equipotent or slightly less potent than 1,25(OH)2D3, while 1,20(OH)2D3, pD and pL compounds were slightly or moderately less potent. The compounds also inhibited proliferation and induced monocytic differentiation of HL-60 promyelocytic and U937 promonocytic human leukemia cells. Among them 1,25(OH)2D3 was the most potent, 20(OH)D3, 20,23(OH)2D3 and 1,20(OH)2D3 were less active, and pD and pL compounds were the least potent. Since it had been previously proven that secosteroids without the side chain (pD) have no effect on systemic calcium levels we performed additional testing in rats and found that 20(OH)D3 had no calcemic activity at concentration as high as 1 µg/kg, whereas, 1,20(OH)2D3 was slightly to moderately calcemic and 1,25(OH)2D3 had strong calcemic activity. Conclusions We identified novel secosteroids that are excellent candidates for anti-leukemia therapy with 20(OH)D3 deserving special attention because of its relatively high potency and lack of calcemic activity.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|