51
|
Abstract
Cell-penetrating peptides (CPPs), in particular TATp, have been widely used for intracellular delivery of various cargoes, both in vitro and in vivo. Modifications of nanoparticles with CPPs require either covalent or noncovalent approach. Here we describe various methods to attach CPP, such as TATp to surface of nanocarriers (such as liposomes and micelles), loading with drug or DNA and characterization of same for in vitro and in vivo applications. Due to nonselectivity of CPPs and wide distribution in nontarget areas, method for preparation of "smart" nanocarrier with hidden TATp function is also described.
Collapse
Affiliation(s)
- Rupa Sawant
- Research Associate Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | | |
Collapse
|
52
|
Argyros O, Serginson M, Miller A, Steinke J, Thanou M. DNA and RNA delivery to the lungs using polymers. J Drug Deliv Sci Technol 2011. [DOI: 10.1016/s1773-2247(11)50050-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
53
|
Günther M, Lipka J, Malek A, Gutsch D, Kreyling W, Aigner A. Polyethylenimines for RNAi-mediated gene targeting in vivo and siRNA delivery to the lung. Eur J Pharm Biopharm 2010; 77:438-49. [PMID: 21093588 DOI: 10.1016/j.ejpb.2010.11.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 11/03/2010] [Accepted: 11/11/2010] [Indexed: 12/01/2022]
Abstract
RNA interference (RNAi) is a promising strategy to inhibit the expression of pathologically relevant genes, which show aberrant (over-)expression, e.g. in tumors or other pathologies. The induction of RNAi relies on small interfering RNAs (siRNAs), which trigger the specific mRNA degradation. Their instability and poor delivery into target tissues including the lung, however, so far severely limits the therapeutic use of siRNAs and requires the development of nanoscale delivery systems. Polyethylenimines (PEIs) are synthetic polymers, which are able to form non-covalent complexes with siRNAs. These nanoscale complexes ('nanoplexes') allow the protection of siRNAs from nucleolytic degradation, their efficient cellular uptake through endocytosis and intracellular release through the 'proton sponge effect'. Chemical modifications of PEIs as well as the coupling of cell/tissue-specific ligands are promising approaches to increase the biocompatibility, specificity and efficacy of PEI-based nanoparticles. This review article gives a comprehensive overview of pre-clinical in vivo studies on the PEI-mediated delivery of therapeutic siRNAs in various animal models. It discusses the chemical properties of PEIs and PEI modifications, and their influences on siRNA knockdown efficacy, on adverse effects of the polymer or the nanoplex and on siRNA biodistribution in vivo. Beyond systemic application, PEI-based complexation allows the local siRNA application to the lung. Biodistribution studies demonstrate cellular uptake of PEI-complexed, but not of naked siRNAs in the lung with little systemic availability of the siRNAs, indicating the usefulness of this approach for the targeting of genes, which are pathologically relevant in lung tumors or lung metastases. Taken together, (i) PEI and PEI derivatives may represent an efficient delivery platform for siRNAs, (ii) siRNA-mediated induction of RNAi is a promising approach for the knockdown of pathologically relevant genes, and (iii) when sufficiently addressing biocompatibility issues, the locoregional delivery of PEI/siRNA complexes may become an attractive therapeutic strategy for the treatment of lung diseases with little systemic side effects.
Collapse
Affiliation(s)
- Melanie Günther
- Institute of Pharmacology, Philipps-University, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
54
|
Shi Q, Zhang XL, Dai KR, Benderdour M, Fernandes JC. siRNA therapy for cancer and non-lethal diseases such as arthritis and osteoporosis. Expert Opin Biol Ther 2010; 11:5-16. [DOI: 10.1517/14712598.2010.532483] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
55
|
Sawant RR, Torchilin VP. Multifunctionality of lipid-core micelles for drug delivery and tumour targeting. Mol Membr Biol 2010; 27:232-46. [DOI: 10.3109/09687688.2010.516276] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
56
|
Buse J, El-Aneed A. Properties, engineering and applications of lipid-based nanoparticle drug-delivery systems: current research and advances. Nanomedicine (Lond) 2010; 5:1237-60. [DOI: 10.2217/nnm.10.107] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Lipid-based drug-delivery systems have evolved from micro- to nano-scale, enhancing the efficacy and therapeutic applications of these delivery systems. Production of lipid-based pharmaceutical nanoparticles is categorized into top-down (fragmentation of particulate material to reduce its average total dimensions) and bottom-up (amalgamation of molecules through chemical interactions creating particles of greater size) production methods. Selection of the appropriate method depends on the physiochemical properties of individual entities within the nanoparticles. The production method also influences the type of nanoparticle formulations being produced. Liposomal formulations and solid-core micelles are the most widely utilized lipid-based nanoparticles, with surface modifications improving their therapeutic outcomes through the production of long-circulating, tissue-targeted and/or pH-sensitive nanoparticles. More recently, solid lipid nanoparticles have been engineered to reduce toxicity toward mammalian cells, while multifunctional lipid-based nanoparticles (i.e., hybrid lipid nanoparticles) have been formulated to simultaneously perform therapeutic and diagnostic functions. This article will discuss novel lipid-based drug-delivery systems, outlining the properties and applications of lipid-based nanoparticles alongside their methods of production. In addition, a comparison between generations of the lipid-based nano-formulations is examined, providing insight into the current directions of lipid-based nanoparticle drug-delivery systems.
Collapse
Affiliation(s)
- Joshua Buse
- Drug Design & Discover Research Group, College of Pharmacy & Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N5C9, Canada
| | | |
Collapse
|
57
|
Debus H, Baumhof P, Probst J, Kissel T. Delivery of messenger RNA using poly(ethylene imine)-poly(ethylene glycol)-copolymer blends for polyplex formation: biophysical characterization and in vitro transfection properties. J Control Release 2010; 148:334-43. [PMID: 20854856 DOI: 10.1016/j.jconrel.2010.09.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 08/27/2010] [Accepted: 09/12/2010] [Indexed: 12/22/2022]
Abstract
Nucleic acid based therapies have so far mainly been focused on plasmid DNA (pDNA), small interfering RNA (siRNA), antisense and immunostimulatory oligonucleotides. Messenger RNA (mRNA) was the subject of only a few studies. The objective of this investigation was the preparation of new composite polyplexes with mRNA consisting of poly(ethylene imine) (PEI) and poly(ethylene imine)-poly(ethylene glycol)-copolymers (PEI-PEG) as blends. These complexes were designed to increase the stability of mRNA, to improve transfection efficiency and to reduce cytotoxicity. Hydrodynamic diameters of the polyplexes were measured by dynamic light scattering, polyplex stability was analyzed by gel retardation assay and transfection efficiency of luciferase (Luc) encoding mRNA was evaluated under in vitro conditions. Most of the polyplexes generated showed small particle sizes <200 nm and positive zeta-potentials of +20 mV to +30 mV. Stable complexes were formed even at low nitrogen to phosphate ratios. Polyplexes with mRNA Luc and blends of low molecular weight PEI(5 kDa) and PEI(25k Da)-PEG(20 kDa)₁-block-copolymer showed protein expression as high as polyplexes with PEI(25 kDa). Moreover, luciferase expression was significantly higher than that obtained with one of the components alone. These results suggest that delivery systems for pulmonary application of mRNA merit further investigation under in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Heiko Debus
- Philipps-Universität Marburg, Department of Pharmaceutics and Biopharmacy, Ketzerbach 63, 35032 Marburg, Germany.
| | | | | | | |
Collapse
|
58
|
Zhang H, Gerson T, Varney ML, Singh RK, Vinogradov SV. Multifunctional peptide-PEG intercalating conjugates: programmatic of gene delivery to the blood-brain barrier. Pharm Res 2010; 27:2528-43. [PMID: 20824308 DOI: 10.1007/s11095-010-0256-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 08/19/2010] [Indexed: 01/25/2023]
Abstract
PURPOSE To enhance transfection efficacy of pDNA through the application of multifunctional peptide-PEG-tris-acridine conjugates (pPAC) and the formation of biodegradable core-shell polyplexes for gene delivery to the blood-brain barrier (BBB). METHODS pPAC-mediated transfection was compositionally optimized in mouse BBB cells (bEnd.3). Cellular uptake and trafficking, and brain accumulation of pDNA was evaluated by fluorescent imaging and histochemistry. We constructed anti-MRP4 siRNA-producing vectors and evaluated the efficacy of MRP4 down-regulation of MRP4 by Western blot and qPCR, and its effect on the uptake of (3)H-AZT, an MRP4 substrate. RESULTS A core-shell gene delivery system (GDS) was assembled from pDNA and pPAC, carrying multifunctional peptides with NLS, TAT, and brain-specific BH, or ApoE sequences, and biodegradable pLPEI polyamine. This GDS demonstrated better cellular and nuclear accumulation, and a 25-fold higher transfection efficacy in slow-dividing bEnd.3 cells compared to ExGen500. Inclusion of brain-targeting pPAC enhanced in vivo accumulation of functional pDNA in brain capillaries. Treatment by encapsulated anti-MRP4 siRNA-producing pDNA caused transient down-regulation of MRP4, and, after intravenous injection in Balb/c mice, enhanced AZT uptake in the brain by 230-270%. CONCLUSIONS The pPAC represent novel efficient components of GDS that could find various gene therapy applications, including genetic modulation of the BBB.
Collapse
Affiliation(s)
- Hongwei Zhang
- Center for Drug Delivery and Nanomedicine and Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | | | | | | | |
Collapse
|
59
|
Li Z, Chau Y. Synthesis of heterobifunctional poly(ethylene glycol)s by an acetal protection method. Polym Chem 2010. [DOI: 10.1039/c0py00310g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
60
|
Cell-penetrating DNA-binding protein as a safe and efficient naked DNA delivery carrier in vitro and in vivo. Biochem Biophys Res Commun 2010; 392:9-15. [DOI: 10.1016/j.bbrc.2009.12.135] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 12/23/2009] [Indexed: 11/21/2022]
|
61
|
Sawant R, Torchilin V. Intracellulartransduction using cell-penetrating peptides. ACTA ACUST UNITED AC 2010; 6:628-40. [DOI: 10.1039/b916297f] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
62
|
Abstract
The lung is an attractive target for drug delivery due to noninvasive administration via inhalation aerosols, avoidance of first-pass metabolism, direct delivery to the site of action for the treatment of respiratory diseases, and the availability of a huge surface area for local drug action and systemic absorption of drug. Colloidal carriers (ie, nanocarrier systems) in pulmonary drug delivery offer many advantages such as the potential to achieve relatively uniform distribution of drug dose among the alveoli, achievement of improved solubility of the drug from its own aqueous solubility, a sustained drug release which consequently reduces dosing frequency, improves patient compliance, decreases incidence of side effects, and the potential of drug internalization by cells. This review focuses on the current status and explores the potential of colloidal carriers (ie, nanocarrier systems) in pulmonary drug delivery with special attention to their pharmaceutical aspects. Manufacturing processes, in vitro/in vivo evaluation methods, and regulatory/toxicity issues of nanomedicines in pulmonary delivery are also discussed.
Collapse
Affiliation(s)
- Heidi M Mansour
- University of Kentucky, College of Pharmacy, Division of Pharmaceutical Sciences-Drug Development Division, Lexington, KY 40536, USA.
| | | | | |
Collapse
|
63
|
Kwon EJ, Lasiene J, Jacobson BE, Park IK, Horner PJ, Pun SH. Targeted nonviral delivery vehicles to neural progenitor cells in the mouse subventricular zone. Biomaterials 2009; 31:2417-24. [PMID: 20004466 DOI: 10.1016/j.biomaterials.2009.11.086] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 11/24/2009] [Indexed: 12/22/2022]
Abstract
Targeted gene therapy can potentially minimize undesirable off-target toxicity due to specific delivery. Neuron-specific gene delivery in the central nervous system is challenging because neurons are non-dividing and also outnumbered by glial cells. One approach is to transfect dividing neural stem and progenitor cells (NSCs and NPCs, respectively). In this work, we demonstrate cell-specific gene delivery to NPCs in the brains of adult mice using a peptide-modified polymeric vector. Tet1, a 12-amino acid peptide which has been shown to bind specifically to neuronal cells, was utilized as a neuronal targeting ligand. The cationic polymer polyethylenimine (PEI) was covalently modified with polyethylene glycol (PEG) for in vivo salt stability and Tet1 for neuron targeting to yield a Tet1-PEG-PEI conjugate. When plasmid DNA encoding the reporter gene luciferase was complexed with Tet1-PEG-PEI and delivered in vivo via an injection into the lateral ventricle, Tet1-PEG-PEI complexes mediated increased luciferase expression levels in brain tissue when compared to unmodified PEI-PEG complexes. In addition, cells transfected by Tet1-PEG-PEI complexes were found to be exclusively adult NPCs whereas untargeted PEG-PEI complexes were found to transfect a heterogenous population of cells. Thus, we have demonstrated targeted, nonviral delivery of nucleic acids to adult NPCs using the Tet1 targeting ligand. These materials could potentially be used to deliver therapeutic genes for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ester J Kwon
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
64
|
Abstract
Cell-penetrating peptides (CPPs) are small peptides that can facilitate the uptake of macromolecular drugs, such as proteins or nucleic acids, into mammalian cells. Cytosolic delivery of CPPs could be beneficial to bypass conventional endocytosis in order to avoid degradation in the lysosomes. Oligoarginine conjugates have characteristics similar to CPPs in terms of cell translocation and are used in the intracellular delivery of plasmid DNA. In these cases, oligoarginine length and/or charge are important factors in the cellular uptake of oligoarginine alone. The arginine moiety of oligoarginine-modified particles may also be a decisive factor for vectors to deliver plasmid DNA. Oligoarginine-PEG-lipids can form self-assembled particles and modify the surface of lipid- and polymer-based particles. This review focuses on the influence of: i) oligoarginine-modified particles such as micelles, liposomes and polymer-based particles; ii) the morphology of oligoarginine-PEG-lipid complexed with plasmid DNA by decreasing the charge ratio; and iii) the oligoarginine length in the complex on its cellular uptake, transfection efficiency and uptake mechanism. The oligoarginine length of oligoarginine-modified particle complexed with plasmid DNA governs the cellular uptake pathway that determines the destiny of intracellular trafficking and finally transfection efficiency. The new aspects of surface-functionalized particle vectors with oligoarginine are discussed.
Collapse
Affiliation(s)
- Yoshie Maitani
- Hoshi University, Institute of Medicinal Chemistry, Tokyo, Japan.
| | | |
Collapse
|
65
|
Song HP, Yang JY, Lo SL, Wang Y, Fan WM, Tang XS, Xue JM, Wang S. Gene transfer using self-assembled ternary complexes of cationic magnetic nanoparticles, plasmid DNA and cell-penetrating Tat peptide. Biomaterials 2009; 31:769-78. [PMID: 19819012 DOI: 10.1016/j.biomaterials.2009.09.085] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 09/22/2009] [Indexed: 11/27/2022]
Abstract
Nonviral magnetofection facilitates gene transfer by using a magnetic field to concentrate magnetic nanoparticle-associated plasmid delivery vectors onto target cells. In light of the well-established effects of the Tat peptide, a cationic cell-penetrating peptide, that enhances the cytoplasmic delivery of a variety of cargos, we tested whether the combined use of magnetofection and Tat-mediated intracellular delivery would improve transfection efficiency. Through electrostatic interaction, gene transfer complexes were generated by mixing polyethylenimine-coated cationic magnetic iron beads with plasmid DNA, followed by addition of a bis(cysteinyl) histidine-rich Tat peptide. These ternary magnetofection complexes provided a 4-fold improvement in transgene expression at a dose of 1 microg of plasmid DNA per 20,000 cells over the binary complexes without the Tat peptide and transfected up to 60% of cells in vitro. The enhanced transfection efficiency was also observed in vivo in the rat spinal cord after lumbar intrathecal injection. Moreover, the injected ternary magnetofection complexes in the cerebrospinal fluid responded to a moving magnetic filed by shifting away from the injection site and mediating transgene expression in a remote region. Thus, our approach could potentially be useful for effective gene therapy treatments of localized diseases.
Collapse
Affiliation(s)
- Hai Peng Song
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Nanocomposites of lung surfactant and biodegradable cationic nanoparticles improve transfection efficiency to lung cells. J Control Release 2009; 140:47-54. [PMID: 19666064 DOI: 10.1016/j.jconrel.2009.07.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 07/09/2009] [Accepted: 07/26/2009] [Indexed: 11/22/2022]
Abstract
The objective of this study was to develop highly efficient ternary nanocomposites for aerosol gene therapy consisting of a biodegradable polymer core, poly[vinyl-3-(diethylamino)propylcarbamate-co-vinyl acetate-co-vinyl alcohol]-graft-poly(d,l-lactide-co-glycolide), pDNA and a third component to alter surface properties, physicochemical characteristics and biological activity. The effects of the surface altering components lung surfactant, carboxymethyl cellulose (CMC) or poloxamer on nanocomposites were characterized with regard to size, zeta potential, cytotoxicity, biological activity and surface properties. With increasing concentrations of lung surfactant, CMC or poloxamer, sizes of nanocomposites increased. AFM nanoindentation measurements showed a significant increase in adhesion forces of nanocomposites compared to pure nanoparticles. Zeta potential values, cytotoxicity and intracellular uptake demonstrated a strong dependency on the surface altering component. While an excess of CMC led to a decreased uptake into cells due to the negative zeta potential, nanocomposites with lung surfactant displayed enhanced intracellular uptake. Transfection efficiency of nanocomposites with lung surfactant was 12-fold higher compared to pure nanoparticles and 30-fold higher compared to polyethylenimine in lung cells and could also be maintained after nebulization. Ternary nanocomposites prepared with lung surfactant proved to be a potent pulmonary gene delivery vector due to its high stability during aerosolization with a vibrating mesh nebulizer and favourable biological activity.
Collapse
|
67
|
Enhanced cytotoxicity of TATp-bearing paclitaxel-loaded micelles in vitro and in vivo. Int J Pharm 2009; 374:114-8. [PMID: 19446767 DOI: 10.1016/j.ijpharm.2009.02.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 02/28/2009] [Indexed: 11/23/2022]
Abstract
Cell-penetrating peptide (TATp) was attached to the distal tips of polyethyleneglycol (PEG) moieties of polyethyleneglycol-phosphatidylethanolamine (PEG-PE) micelles loaded with paclitaxel (PCT). The TATp-modified micelles demonstrated an increased interaction with cancer cells compared to non-modified micelles resulting in a significant increase of the in vitro cytotoxicity to different cancer cells. TATp-modified PCT-loaded micelles were administered intratumorally in mice and the induction of apoptosis in tumor cells was studied after 48h with the Terminal Deoxynucleotidyl Transferase Biotin-dUTP Nick End Labeling (TUNEL) assay using free PCT and TATp-free PCT-loaded PEG-PE micelles as controls. A significant apoptotic cell death was observed in tumors treated with PCT-loaded micelles modified with TATp, while the treatment with free PCT or with non-modified PCT-loaded micelles resulted in much smaller number of TUNEL-positive cells within tumors.
Collapse
|