51
|
Rouby G, Tran NT, Leblanc Y, Taverna M, Bihoreau N. Investigation of monoclonal antibody dimers in a final formulated drug by separation techniques coupled to native mass spectrometry. MAbs 2021; 12:e1781743. [PMID: 32633190 PMCID: PMC7531515 DOI: 10.1080/19420862.2020.1781743] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are highly complex proteins that must be exhaustively characterized according to the regulatory authorities' recommendations. MAbs display micro-heterogeneity mainly due to their post-translational modifications, but also to their susceptibility to chemical and physical degradations. Among these degradations, aggregation is quite frequent, initiated by protein denaturation and then dimer formation. Here, we investigated the nature and structure of the high molecular weight species (HMW) present at less than 1% in an unstressed formulated roledumab biopharmaceutical, as a model of high purity mAb. HMW species were first purified through preparative size-exclusion chromatography (SEC) and then analyzed by a combination of chromatographic methods (ion-exchange chromatography (IEX), SEC) coupled to native mass spectrometry (MS), as well as sodium dodecyl sulfate–polyacrylamide gel electrophoresis and capillary gel electrophoresis under non-reducing conditions. Both covalently and non-covalently bound dimers were identified at a proportion of 50/50. In-depth characterization of the HMW fraction by SEC and IEX hyphenated to native MS revealed the presence of three mAb dimer forms having the same mass, but differing by their charge and size. They were attributed to different compact and elongated dimers. Finally, high-resolution middle-up approaches using different enzymes (IdeS and IgdE) were performed to determine the mAb domains implicated in the dimerization. Our results revealed that the roledumab dimers were associated mainly by a single Fab-to-Fab arm-bound association.
Collapse
Affiliation(s)
- G Rouby
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay , 92296, Châtenay-Malabry, France.,Analytical Department, LFB , Courtaboeuf (Les Ulis), France
| | - N T Tran
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay , 92296, Châtenay-Malabry, France
| | - Y Leblanc
- Analytical Department, LFB , Courtaboeuf (Les Ulis), France
| | - M Taverna
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay , 92296, Châtenay-Malabry, France.,Institut Universitaire de France , Paris, France
| | - N Bihoreau
- Analytical Department, LFB , Courtaboeuf (Les Ulis), France
| |
Collapse
|
52
|
Evans AR, Hebert AS, Mulholland J, Lewis MJ, Hu P. ID-MAM: A Validated Identity and Multi-Attribute Monitoring Method for Commercial Release and Stability Testing of a Bispecific Antibody. Anal Chem 2021; 93:9166-9173. [PMID: 34161073 DOI: 10.1021/acs.analchem.1c01029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Post-translational modifications (PTMs) that impact the safety or efficacy of protein therapeutics are critical quality attributes (CQAs) that need to be controlled to ensure product quality. Peptide mapping with online mass spectrometry (MS) is a powerful tool that has been used for many years to monitor PTM CQAs during product development. However, operating peptide mapping methods with high-resolution mass spectrometers in GMP compliant, commercial quality control (QC) labs can be difficult. Peptide mapping is also required as an identity test in several countries. To address these two different needs, we utilized high-resolution peptide mapping for comprehensive characterization during development and then developed and validated a targeted multi-attribute monitoring (MAM) method using the low-resolution Waters QDa MS system with a fully automated data processing workflow that is suitable for identity (ID) testing, sequence variant control, and CQA quantitation in commercial QC labs. The ID-MAM method was validated for the quantitation of three selected PTM CQAs (CDR isomerization, Fc Met oxidation, and CDR Met oxidation) to ensure control of the oxidation and isomerization degradation pathways of a bispecific antibody (BsAb). This ID-MAM method was successfully validated in six labs (three analytical development and three QC labs) across four countries for commercial release and stability testing of a BsAb. CQA results obtained with the ID-MAM method were similar to results obtained using high-resolution peptide mapping, and the method was robust and reproducible. To our knowledge, this ID-MAM method is the first MS-based peptide mapping method implemented in GMP compliant QC labs for commercial release and stability testing of a biotherapeutic.
Collapse
Affiliation(s)
- Adam R Evans
- BioTherapeutics Development & Supply-Analytical Development, Janssen Research and Development, LLC, Malvern, Pennsylvania 19355, United States
| | - Alexander S Hebert
- BioTherapeutics Development & Supply-Analytical Development, Janssen Research and Development, LLC, Malvern, Pennsylvania 19355, United States
| | - Joseph Mulholland
- BioTherapeutics Development & Supply-Analytical Development, Janssen Research and Development, LLC, Malvern, Pennsylvania 19355, United States
| | - Michael J Lewis
- BioTherapeutics Development & Supply-Analytical Development, Janssen Research and Development, LLC, Malvern, Pennsylvania 19355, United States
| | - Ping Hu
- BioTherapeutics Development & Supply-Analytical Development, Janssen Research and Development, LLC, Malvern, Pennsylvania 19355, United States
| |
Collapse
|
53
|
A comprehensive analysis of novel disulfide bond introduction site into the constant domain of human Fab. Sci Rep 2021; 11:12937. [PMID: 34155225 PMCID: PMC8217492 DOI: 10.1038/s41598-021-92225-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/07/2021] [Indexed: 12/05/2022] Open
Abstract
Generally, intermolecular disulfide bond contribute to the conformational protein stability. To identify sites where intermolecular disulfide bond can be introduced into the Fab’s constant domain of the therapeutic IgG, Fab mutants were predicted using the MOE software, a molecular simulator, and expressed in Pichia pastoris. SDS-PAGE analysis of the prepared Fab mutants from P. pastoris indicated that among the nine analyzed Fab mutants, the F130C(H):Q124C(L), F174C(H):S176C(L), V177C(H):Q160C(L), F174C(H):S162C(L), F130C(H):S121C(L), and A145C(H):F116C(L) mutants mostly formed intermolecular disulfide bond. All these mutants showed increased thermal stability compared to that of Fab without intermolecular disulfide bond. In the other mutants, the intermolecular disulfide bond could not be completely formed, and the L132C(H):F118C(L) mutant showed only a slight decrease in binding activity and β-helix content, owing to the exertion of adverse intermolecular disulfide bond effects. Thus, our comprehensive analysis reveals that the introduction of intermolecular disulfide bond in the Fab’s constant domain is possible at various locations. These findings provide important insights for accomplishing human Fab stabilization.
Collapse
|
54
|
Liu R, Zhang Y, Kumar A, Huhn S, Hullinger L, Du Z. Modulating tyrosine sulfation of recombinant antibodies in CHO cell culture by host selection and sodium chlorate supplementation. Biotechnol J 2021; 16:e2100142. [PMID: 34081410 DOI: 10.1002/biot.202100142] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Tyrosine sulfation is a post-translational modification found on many surface receptors and plays an important role in cell-cell and cell-matrix interactions. However, tyrosine sulfation of therapeutic antibodies has only been reported very recently. Because of potential potency and immunogenicity concerns, tyrosine sulfation needs to be controlled during the manufacturing process. METHODS AND RESULTS In this study, we explored methods to modulate antibody tyrosine sulfation during cell line development and upstream production process. We found that tyrosine sulfation levels were significantly different in various Chinese hamster ovary (CHO) cell lines due to differential expression of genes in the sulfation pathway including tyrosylprotein sulfotransferase 2 (TPST2) and the sulfation substrate transporter SLC35B2. We also screened chemical inhibitors to reduce tyrosine sulfation in CHO culture and found that sodium chlorate could significantly inhibit tyrosine sulfation while having minimal impact on cell growth and antibody production. We further confirmed this finding in a standard fed-batch production assay. Sodium chlorate at 16 mM markedly inhibited tyrosine sulfation by more than 50% and had no significant impact on antibody titer or quality. CONCLUSION These data suggest that we can control tyrosine sulfation by selecting CHO cell lines based on the expression level of TPST2 and SLC35B2 or adding sodium chlorate in upstream production process.
Collapse
Affiliation(s)
- Ren Liu
- Process Cell Sciences, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Yixiao Zhang
- Process Cell Sciences, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Amit Kumar
- Process Cell Sciences, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Steven Huhn
- Process Cell Sciences, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Laurie Hullinger
- Process Cell Sciences, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Zhimei Du
- Process Cell Sciences, Merck & Co., Inc., Kenilworth, New Jersey, USA
| |
Collapse
|
55
|
Jing S, Shi C, Leong HY, Yuan J, Gao D, Wang H, Yao S, Lin D. A novel twin-column continuous chromatography approach for separation and enrichment of monoclonal antibody charge variants. Eng Life Sci 2021; 21:382-391. [PMID: 34140849 PMCID: PMC8182273 DOI: 10.1002/elsc.202000094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 11/29/2022] Open
Abstract
Downstream processing of mAb charge variants is difficult owing to their similar molecular structures and surface charge properties. This study aimed to apply a novel twin-column continuous chromatography (called N-rich mode) to separate and enrich acidic variants of an IgG1 mAb. Besides, a comparison study with traditional scaled-up batch-mode cation exchange (CEX) chromatography was conducted. For the N-rich process, two 3.93 mL columns were used, and the buffer system, flow rate and elution gradient slope were optimized. The results showed that 1.33 mg acidic variants with nearly 100% purity could be attained after a 22-cycle accumulation. The yield was 86.21% with the productivity of 7.82 mg/L/h. On the other hand, for the batch CEX process, 4.15 mL column was first used to optimize the separation conditions, and then a scaled-up column of 88.20 mL was used to separate 1.19 mg acidic variants with the purity of nearly 100%. The yield was 59.18% with the productivity of 7.78 mg/L/h. By comparing between the N-rich and scaled-up CEX processes, the results indicated that the N-rich method displays a remarkable advantage on the product yield, i.e. 1.46-fold increment without the loss of productivity and purity. Generally, twin-column N-rich continuous chromatography displays a high potential to enrich minor compounds with a higher yield, more flexibility and lower resin cost.
Collapse
Affiliation(s)
- Shu‐Ying Jing
- Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhouP. R. China
| | - Ce Shi
- Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhouP. R. China
| | - Hui Yi Leong
- Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhouP. R. China
| | - Jun‐Jie Yuan
- BioRay Pharmaceutical Co., Ltd.TaizhouP. R. China
| | - Dong Gao
- BioRay Pharmaceutical Co., Ltd.TaizhouP. R. China
| | - Hai‐Bin Wang
- BioRay Pharmaceutical Co., Ltd.TaizhouP. R. China
| | - Shan‐Jing Yao
- Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhouP. R. China
| | - Dong‐Qiang Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhouP. R. China
| |
Collapse
|
56
|
Saleh D, Hess R, Ahlers-Hesse M, Beckert N, Schönberger M, Rischawy F, Wang G, Bauer J, Blech M, Kluters S, Studts J, Hubbuch J. Modeling the impact of amino acid substitution in a monoclonal antibody on cation exchange chromatography. Biotechnol Bioeng 2021; 118:2923-2933. [PMID: 33871060 DOI: 10.1002/bit.27798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/23/2021] [Accepted: 04/15/2021] [Indexed: 01/03/2023]
Abstract
A vital part of biopharmaceutical research is decision making around which lead candidate should be progressed in early-phase development. When multiple antibody candidates show similar biological activity, developability aspects are taken into account to ease the challenges of manufacturing the potential drug candidate. While current strategies for developability assessment mainly focus on drug product stability, only limited information is available on how antibody candidates with minimal differences in their primary structure behave during downstream processing. With increasing time-to-market pressure and an abundance of monoclonal antibodies (mAbs) in development pipelines, developability assessments should also consider the ability of mAbs to integrate into the downstream platform. This study investigates the influence of amino acid substitutions in the complementarity-determining region (CDR) of a full-length IgG1 mAb on the elution behavior in preparative cation exchange chromatography. Single amino acid substitutions within the investigated mAb resulted in an additional positive charge in the light chain (L) and heavy chain (H) CDR, respectively. The mAb variants showed an increased retention volume in linear gradient elution compared with the wild-type antibody. Furthermore, the substitution of tryptophan with lysine in the H-CDR3 increased charge heterogeneity of the product. A multiscale in silico analysis, consisting of homology modeling, protein surface analysis, and mechanistic chromatography modeling increased understanding of the adsorption mechanism. The results reveal the potential effects of lead optimization during antibody drug discovery on downstream processing.
Collapse
Affiliation(s)
- David Saleh
- Late Stage DSP Development, Boehringer Ingelheim, Biberach, Germany.,Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Rudger Hess
- Late Stage DSP Development, Boehringer Ingelheim, Biberach, Germany.,Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | - Nicole Beckert
- Pharmaceutical Development Biologics, Boehringer Ingelheim, Biberach, Germany
| | | | - Federico Rischawy
- Late Stage DSP Development, Boehringer Ingelheim, Biberach, Germany.,Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Gang Wang
- Late Stage DSP Development, Boehringer Ingelheim, Biberach, Germany
| | - Joschka Bauer
- Pharmaceutical Development Biologics, Boehringer Ingelheim, Biberach, Germany
| | - Michaela Blech
- Pharmaceutical Development Biologics, Boehringer Ingelheim, Biberach, Germany
| | - Simon Kluters
- Late Stage DSP Development, Boehringer Ingelheim, Biberach, Germany
| | - Joey Studts
- Late Stage DSP Development, Boehringer Ingelheim, Biberach, Germany
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
57
|
Brechmann NA, Schwarz H, Eriksson PO, Eriksson K, Shokri A, Chotteau V. Antibody capture process based on magnetic beads from very high cell density suspension. Biotechnol Bioeng 2021; 118:3499-3510. [PMID: 33811659 DOI: 10.1002/bit.27776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/03/2021] [Accepted: 03/25/2021] [Indexed: 11/09/2022]
Abstract
Cell clarification represents a major challenge for the intensification through very high cell density in the production of biopharmaceuticals such as monoclonal antibodies (mAbs). The present report proposes a solution to this challenge in a streamlined process where cell clarification and mAb capture are performed in a single step using magnetic beads coupled with protein A. Capture of mAb from non-clarified CHO cell suspension showed promising results; however, it has not been demonstrated that it can handle the challenge of very high cell density as observed in intensified fed-batch cultures. The performances of magnetic bead-based mAb capture on non-clarified cell suspension from intensified fed-batch culture were studied. Capture from a culture at density larger than 100 × 106 cells/ml provided an adsorption efficiency of 99% and an overall yield of 93% with a logarithmic host cell protein (HCP) clearance of ≈2-3 and a resulting HCP concentration ≤≈5 ppm. These results show that direct capture from very high cell density cell suspension is possible without prior processing. This technology, which brings significant benefits in terms of operational cost reduction and performance improvements such as low HCP, can be a powerful tool alleviating the challenge of process intensification.
Collapse
Affiliation(s)
- Nils A Brechmann
- AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, Stockholm, Sweden.,Cell Technology Group (CETEG), Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Hubert Schwarz
- AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, Stockholm, Sweden.,Cell Technology Group (CETEG), Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Kristofer Eriksson
- AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, Stockholm, Sweden.,R&D, MAGic Bioprocessing, Uppsala, Sweden
| | - Atefeh Shokri
- AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, Stockholm, Sweden.,Cell Technology Group (CETEG), Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Véronique Chotteau
- AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, Stockholm, Sweden.,Cell Technology Group (CETEG), Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
58
|
Development of a novel, fully human, anti-PCSK9 antibody with potent hypolipidemic activity by utilizing phage display-based strategy. EBioMedicine 2021; 65:103250. [PMID: 33647772 PMCID: PMC7921758 DOI: 10.1016/j.ebiom.2021.103250] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/19/2022] Open
Abstract
Background Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates serum LDL cholesterol (LDL-C) levels by facilitating the degradation of the LDL receptor (LDLR) and is an attractive therapeutic target for hypercholesterolemia intervention. Herein, we generated a novel fully human antibody with favourable druggability by utilizing phage display-based strategy. Methods A potent single-chain variable fragment (scFv) named AP2M21 was obtained by screening a fully human scFv phage display library with hPCSK9, and performing two in vitro affinity maturation processes including CDR-targeted tailored mutagenesis and cross-cloning. Thereafter, it was transformed to a full-length Fc-silenced anti-PCSK9 antibody FAP2M21 by fusing to a modified human IgG1 Fc fragment with L234A/L235A/N297G mutations and C-terminal lysine deletion, thus eliminating its immune effector functions and mitigating mAb heterogeneity. Findings Our data showed that the generated full-length anti-PCSK9 antibody FAP2M21 binds to hPCSK9 with a KD as low as 1.42 nM, and a dramatically slow dissociation rate (koff, 4.68 × 10−6 s−1), which could be attributed to its lower binding energy (-47.51 kcal/mol) than its parent counterpart FAP2 (-30.39 kcal/mol). We verified that FAP2M21 potently inhibited PCSK9-induced reduction of LDL-C uptake in HepG2 cells, with an EC50 of 43.56 nM. Further, in hPCSK9 overexpressed C57BL/6 mice, a single tail i.v. injection of FAP2M21 at 1, 3 and 10 mg/kg, dose-dependently up-regulated hepatic LDLR levels, and concomitantly reduced serum LDL-C by 3.3% (P = 0.658, unpaired Student's t-test), 30.2% (P = 0.002, Mann-Whitney U-test) and 37.2% (P = 0.002, Mann-Whitney U-test), respectively. Interpretation FAP2M21 with potent inhibitory effect on PCSK9 may serve as a promising therapeutic agent for treating hypercholesterolemia and associated cardiovascular diseases.
Collapse
|
59
|
Bailly M, Mieczkowski C, Juan V, Metwally E, Tomazela D, Baker J, Uchida M, Kofman E, Raoufi F, Motlagh S, Yu Y, Park J, Raghava S, Welsh J, Rauscher M, Raghunathan G, Hsieh M, Chen YL, Nguyen HT, Nguyen N, Cipriano D, Fayadat-Dilman L. Predicting Antibody Developability Profiles Through Early Stage Discovery Screening. MAbs 2021; 12:1743053. [PMID: 32249670 PMCID: PMC7153844 DOI: 10.1080/19420862.2020.1743053] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Monoclonal antibodies play an increasingly important role for the development of new drugs across multiple therapy areas. The term 'developability' encompasses the feasibility of molecules to successfully progress from discovery to development via evaluation of their physicochemical properties. These properties include the tendency for self-interaction and aggregation, thermal stability, colloidal stability, and optimization of their properties through sequence engineering. Selection of the best antibody molecule based on biological function, efficacy, safety, and developability allows for a streamlined and successful CMC phase. An efficient and practical high-throughput developability workflow (100 s-1,000 s of molecules) implemented during early antibody generation and screening is crucial to select the best lead candidates. This involves careful assessment of critical developability parameters, combined with binding affinity and biological properties evaluation using small amounts of purified material (<1 mg), as well as an efficient data management and database system. Herein, a panel of 152 various human or humanized monoclonal antibodies was analyzed in biophysical property assays. Correlations between assays for different sets of properties were established. We demonstrated in two case studies that physicochemical properties and key assay endpoints correlate with key downstream process parameters. The workflow allows the elimination of antibodies with suboptimal properties and a rank ordering of molecules for further evaluation early in the candidate selection process. This enables any further engineering for problematic sequence attributes without affecting program timelines.
Collapse
Affiliation(s)
- Marc Bailly
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Carl Mieczkowski
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Veronica Juan
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Essam Metwally
- Computation and Structural Chemistry, South San Francisco, CA, USA
| | - Daniela Tomazela
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Jeanne Baker
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Makiko Uchida
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Ester Kofman
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Fahimeh Raoufi
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Soha Motlagh
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Yao Yu
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Jihea Park
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Smita Raghava
- Pharmaceutical Sciences, Sterile FormulationSciences, Kenilworth, NJ, USA
| | - John Welsh
- Downstream Process Development andEngineering, Kenilworth, NJ, USA
| | - Michael Rauscher
- Downstream Process Development andEngineering, Kenilworth, NJ, USA
| | | | - Mark Hsieh
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Yi-Ling Chen
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Hang Thu Nguyen
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Nhung Nguyen
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Dan Cipriano
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | | |
Collapse
|
60
|
Meyer RM, Berger L, Nerkamp J, Scheler S, Nehring S, Friess W. Identification of monoclonal antibody variants involved in aggregate formation - Part 2: Hydrophobicity variants. Eur J Pharm Biopharm 2021; 160:134-142. [PMID: 33524536 DOI: 10.1016/j.ejpb.2021.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 11/29/2022]
Abstract
Monoclonal antibodies (mAbs) are valuable tools both in therapy and in diagnostic. Their tendency to aggregate is a serious concern. Since a mAb drug substance (DS) is composed of different variants, it is important for manufacturers to know the behavior and stability not only of the mAb as a whole, but also of the variants contained in the product. We present a method to separate hydrophobicity variants of a mAb and subsequently analyzed these variants for stability and aggregation propensity. We identified a potentially aggregation prone hydrophilic variant which is interrelated with another previously identified aggregation prone acidic charge variant. Additionally, we assessed the risk posed by the aggregation prone variant to the DS by spiking hydrophobicity variants into DS and did not observe an enhanced aggregation propensity. Thus we present an approach to separate, characterize and analyze the criticality of aggregation prone variants in protein DS which is a step forward to further assure drug safety.
Collapse
Affiliation(s)
- Robina M Meyer
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, University of Munich, Butenandtstr. 5, 81377 Munich, Germany
| | - Lukas Berger
- Sandoz Biopharmaceutics, Biochemiestr. 10, 6336 Langkampfen, Austria
| | - Joerg Nerkamp
- Sandoz Biopharmaceutics, Biochemiestr. 10, 6336 Langkampfen, Austria
| | - Stefan Scheler
- Sandoz Biopharmaceutics, Biochemiestr. 10, 6336 Langkampfen, Austria
| | - Sebastian Nehring
- Sandoz Biopharmaceutics, Biochemiestr. 10, 6336 Langkampfen, Austria
| | - Wolfgang Friess
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, University of Munich, Butenandtstr. 5, 81377 Munich, Germany.
| |
Collapse
|
61
|
Powell T, Knight MJ, Wood A, O'Hara J, Burkitt W. Photoinduced cross-linking of formulation buffer amino acids to monoclonal antibodies. Eur J Pharm Biopharm 2021; 160:35-41. [PMID: 33508437 DOI: 10.1016/j.ejpb.2021.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/22/2020] [Accepted: 01/20/2021] [Indexed: 12/27/2022]
Abstract
The correct choice of formulation buffer is a critical aspect of drug development and is chosen primarily to improve the stability of a protein therapeutic and protect against degradation. Amino acids are frequently incorporated into formulation buffers. In this study we have identified and characterized light induced cross-links between the side chain of histidine residues in an IgG4 monoclonal antibody and different amino acids commonly used in formulation buffers. These reactions have the potential to impact the overall product quality of the drug. The structure of each cross-link identified was elucidated using high performance liquid chromatography (HPLC) hyphenated to tandem mass spectrometry (MS/MS) with higher energy collisional dissociation (HCD). Furthermore, we speculate on the role of amino acids in formulation buffers and their influence on mAb stability. We theorize that whilst the adduction of formulation buffer amino acids could have a negative impact on product quality, it may protect against other pathways of photo-degradation.
Collapse
Affiliation(s)
- Thomas Powell
- Biomolecular Formulation and Characterization Sciences, UCB, Slough SL3WE, UK.
| | - Michael J Knight
- Biomolecular Formulation and Characterization Sciences, UCB, Slough SL3WE, UK
| | - Amanda Wood
- Biomolecular Formulation and Characterization Sciences, UCB, Slough SL3WE, UK
| | - John O'Hara
- Biomolecular Formulation and Characterization Sciences, UCB, Slough SL3WE, UK
| | - William Burkitt
- Biomolecular Formulation and Characterization Sciences, UCB, Slough SL3WE, UK
| |
Collapse
|
62
|
Gstöttner C, Reusch D, Haberger M, Dragan I, Van Veelen P, Kilgour DPA, Tsybin YO, van der Burgt YEM, Wuhrer M, Nicolardi S. Monitoring glycation levels of a bispecific monoclonal antibody at subunit level by ultrahigh-resolution MALDI FT-ICR mass spectrometry. MAbs 2021; 12:1682403. [PMID: 31630606 PMCID: PMC6927770 DOI: 10.1080/19420862.2019.1682403] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Bispecific monoclonal antibodies (BsAbs) are engineered proteins with multiple functionalities and properties. The "bi-specificity" of these complex biopharmaceuticals is a key characteristic for the development of novel and more effective therapeutic strategies. The high structural complexity of BsAbs poses a challenge to the analytical methods needed for their characterization. Modifications of the BsAb structure, resulting from enzymatic and non-enzymatic processes, further complicate the analysis. An important example of the latter type of modification is glycation, which can occur in the manufacturing process, during storage in the formulation or in vivo after application of the drug. Glycation affects the structure, function, and stability of monoclonal antibodies, and consequently, a detailed analysis of glycation levels is required. Mass spectrometry (MS) plays a key role in the structural characterization of monoclonal antibodies and top-down, middle-up and middle-down MS approaches are increasingly used for the analysis of modifications. Here, we apply a novel middle-up strategy, based on IdeS digestion and matrix-assisted laser desorption ionization (MALDI) Fourier transform ion cyclotron resonance (FT-ICR) MS, to analyze all six different BsAb subunits in a single high-resolution mass spectrum, namely two light chains, two half fragment crystallizable regions and two Fd' regions, thus avoiding upfront chromatography. This method was used to monitor glycation changes during a 168 h forced-glycation experiment. In addition, hot spot glycation sites were localized using top-down and middle-down MALDI-in-source decay FT-ICR MS, which provided complementary information compared to standard bottom-up MS.
Collapse
Affiliation(s)
- Christoph Gstöttner
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands
| | - Dietmar Reusch
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Penzberg, Germany
| | - Markus Haberger
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Penzberg, Germany
| | - Irina Dragan
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands
| | - Peter Van Veelen
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands
| | - David P A Kilgour
- Department of Chemistry, Nottingham Trent University, Nottingham, U.K
| | - Yury O Tsybin
- Spectroswiss, EPFL Innovation Park, Lausanne, Switzerland
| | - Yuri E M van der Burgt
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands
| | - Manfred Wuhrer
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands
| | - Simone Nicolardi
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands
| |
Collapse
|
63
|
Prade E, Zeck A, Stiefel F, Unsoeld A, Mentrup D, Arango Gutierrez E, Gorr IH. Cysteine in cell culture media induces acidic IgG1 species by disrupting the disulfide bond network. Biotechnol Bioeng 2020; 118:1091-1104. [PMID: 33200817 PMCID: PMC7986432 DOI: 10.1002/bit.27628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 01/16/2023]
Abstract
A high degree of charge heterogeneity is an unfavorable phenomenon commonly observed for therapeutic monoclonal antibodies (mAbs). Removal of these impurities during manufacturing often comes at the cost of impaired step yields. A wide spectrum of posttranslational and chemical modifications is known to modify mAb charge. However, a deeper understanding of underlying mechanisms triggering charged species would be beneficial for the control of mAb charge variants during bioprocessing. In this study, a comprehensive analytical investigation was carried out to define the root causes and mechanisms inducing acidic variants of an immunoglobulin G1‐derived mAb. Characterization of differently charged species by liquid chromatography–mass spectrometry revealed the reduction of disulfide bonds in acidic variants, which is followed by cysteinylation and glutathionylation of cysteines. Importantly, biophysical stability and integrity of the mAb are not affected. By in vitro incubation of the mAb with the reducing agent cysteine, disulfide bond degradation was directly linked to an increase of numerous acidic species. Modifying the concentrations of cysteine during the fermentation of various mAbs illustrated that redox potential is a critical aspect to consider during bioprocess development with respect to charge variant control.
Collapse
Affiliation(s)
- Elke Prade
- Early Stage Bioprocess Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Anne Zeck
- Pharma and Biotech, NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| | - Fabian Stiefel
- Late Stage USP Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Andreas Unsoeld
- Late Stage USP Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - David Mentrup
- Early Stage Bioprocess Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Erik Arango Gutierrez
- Early Stage Bioprocess Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Ingo H Gorr
- Early Stage Bioprocess Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| |
Collapse
|
64
|
Butreddy A, Janga KY, Ajjarapu S, Sarabu S, Dudhipala N. Instability of therapeutic proteins - An overview of stresses, stabilization mechanisms and analytical techniques involved in lyophilized proteins. Int J Biol Macromol 2020; 167:309-325. [PMID: 33275971 DOI: 10.1016/j.ijbiomac.2020.11.188] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 01/06/2023]
Abstract
Solid-state is the preferred choice for storage of protein therapeutics to improve stability and preserve the biological activity by decreasing the physical and chemical degradation associated with liquid protein formulations. Lyophilization or freeze-drying is an effective drying method to overcome the instability problems of proteins. However, the processing steps (freezing, primary drying and secondary drying) involved in the lyophilization process can expose the proteins to various stress and harsh conditions, leading to denaturation, aggregation often a loss in activity of protein therapeutics. Stabilizers such as sugars and surfactants are often added to protect the proteins against physical stress associated with lyophilization process and storage conditions. Another way to curtail the degradation of proteins due to process related stress is by modification of the lyophilization process. Slow freezing, high nucleation temperature, decreasing the extent of supercooling, and annealing can minimize the formation of the interface (ice-water) by producing large ice crystals with less surface area, thereby preserving the native structure and stability of the proteins. Hence, a thorough understanding of formulation composition, lyophilization process parameters and the choice of analytical methods to characterize and monitor the protein instability is crucial for development of stable therapeutic protein products. This review provides an overview of various stress conditions that proteins might encounter during lyophilization process, mechanisms to improve the stability and analytical techniques to tackle the proteins instability during both freeze-drying and storage.
Collapse
Affiliation(s)
- Arun Butreddy
- Formulation R&D, Biological E. Limited, IKP Knowledge Park, Shameerpet, Hyderabad, Telangana State 500078, India; Laboratory of Nanotechnology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana State 506009, India
| | - Karthik Yadav Janga
- Laboratory of Nanotechnology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana State 506009, India
| | - Srinivas Ajjarapu
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
| | - Sandeep Sarabu
- Laboratory of Nanotechnology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana State 506009, India
| | - Narendar Dudhipala
- Laboratory of Nanotechnology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana State 506009, India; Department of Pharmaceutics, Vaagdevi College of Pharmacy, Warangal, Telangana State 506 005, India..
| |
Collapse
|
65
|
Fink M, Cannon EM, Hofmann C, Patel N, Pauley C, Troutman M, Rustandi RR, Shank-Retzlaff M, Loughney J, Verch T. Monoclonal Antibody Reagent Stability and Expiry Recommendation Combining Experimental Data with Mathematical Modeling. AAPS JOURNAL 2020; 22:145. [DOI: 10.1208/s12248-020-00521-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/06/2020] [Indexed: 12/25/2022]
|
66
|
Simultaneous Monitoring and Comparison of Multiple Product Quality Attributes for Cell Culture Processes at Different Scales Using a LC/MS/MS Based Multi-Attribute Method. J Pharm Sci 2020; 109:3319-3329. [DOI: 10.1016/j.xphs.2020.07.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/07/2020] [Accepted: 07/27/2020] [Indexed: 01/02/2023]
|
67
|
Cui X, Mi W, Hu Z, Li X, Meng B, Zhao X, Qian X, Zhu T, Ying W. Global characterization of modifications to the charge isomers of IgG antibody. J Pharm Anal 2020; 12:156-163. [PMID: 35573890 PMCID: PMC9073142 DOI: 10.1016/j.jpha.2020.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 11/08/2020] [Accepted: 11/17/2020] [Indexed: 11/02/2022] Open
Abstract
Posttranslational modifications of antibody products affect their stability, charge distribution, and drug activity and are thus a critical quality attribute. The comprehensive mapping of antibody modifications and different charge isomers (CIs) is of utmost importance, but is challenging. We intended to quantitatively characterize the posttranslational modification status of CIs of antibody drugs and explore the impact of posttranslational modifications on charge heterogeneity. The CIs of antibodies were fractionated by strong cation exchange chromatography and verified by capillary isoelectric focusing-whole column imaging detection, followed by stepwise structural characterization at three levels. First, the differences between CIs were explored at the intact protein level using a top-down mass spectrometry approach; this showed differences in glycoforms and deamidation status. Second, at the peptide level, common modifications of oxidation, deamidation, and glycosylation were identified. Peptide mapping showed nonuniform deamidation and glycoform distribution among CIs. In total, 10 N-glycoforms were detected by peptide mapping. Finally, an in-depth analysis of glycan variants of CIs was performed through the detection of enriched glycopeptides. Qualitative and quantitative analyses demonstrated the dynamics of 24 N-glycoforms. The results revealed that sialic acid modification is a critical factor accounting for charge heterogeneity, which is otherwise missed in peptide mapping and intact molecular weight analyses. This study demonstrated the importance of the comprehensive analyses of antibody CIs and provides a reference method for the quality control of biopharmaceutical analysis. A stepwise investigation on the diversity and dynamics of modifications of antibody charge isomers (CIs) was performed. The results from SCX-HPLC and cIEF-WCID supported each other. In-depth analysis on glycan variants of CIs was achieved by analyzing the enriched glycopeptides. Sialic acid and deamidation modifications were critical factors for the charge heterogeneity.
Collapse
|
68
|
Zhu W, Li M, Zhang J. Integrating Intact Mass Analysis and Middle-Down Mass Spectrometry Approaches to Effectively Characterize Trastuzumab and Adalimumab Structural Heterogeneity. J Proteome Res 2020; 20:270-278. [PMID: 33118822 DOI: 10.1021/acs.jproteome.0c00373] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Comprehensive characterization of therapeutic monoclonal antibody (mAb) structures is critical for drug development but remains challenging due to the inherent structural heterogeneity. In this study, an integrated strategy has been developed to characterize trastuzumab structural heterogeneity, which has prominent advantages in fast sample preparation with minimal artifacts, and complementary information obtained from intact mass and middle-down analyses. Our methods were all developed on an electron transfer dissociation (ETD)-enabled Q-TOF instrument. As a result, more than 13 structurally different proteoforms were easily identified and quantified through native and denatured intact mass analysis, which may result from the collective differences in glycosylation and C-terminal lysine clipping. Based on collision-induced dissociation and ETD-combined middle-down analysis, sequence coverage values of 28, 45, and 41% for trastuzumab Fc/2, Lc, and Fd subunits, respectively, were reached in a single LC run. The main glycan structure and relative abundance level were determined, and the glycosylation site was confirmed to be on the Fc fragment Asn 61. We finally integrated the native MS and middle-down results to have a more realistic detection of molecular weight, sequence variants, and glycosylation variants of trastuzumab. Applying the integrated strategy, we successfully completed the comprehensive characterization of adalimumab and found unexpected C-terminal lysine-modified variants (dataset identifier PXD021287). Overall, our integration strategy can be easily implemented for in-depth mAb structural heterogeneity characterization during pharmaceutical development and quality control.
Collapse
Affiliation(s)
- Wenwen Zhu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Menglin Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Jinlan Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| |
Collapse
|
69
|
Baek J, Schwahn AB, Lin S, Pohl CA, De Pra M, Tremintin SM, Cook K. New Insights into the Chromatography Mechanisms of Ion-Exchange Charge Variant Analysis: Dispelling Myths and Providing Guidance for Robust Method Optimization. Anal Chem 2020; 92:13411-13419. [DOI: 10.1021/acs.analchem.0c02775] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Julia Baek
- Thermo Fisher Scientific, 1228 Titan Way, Sunnyvale, California 94085, United States of America
| | | | - Shanhua Lin
- Thermo Fisher Scientific, 1228 Titan Way, Sunnyvale, California 94085, United States of America
| | - Christopher A. Pohl
- Thermo Fisher Scientific, 1228 Titan Way, Sunnyvale, California 94085, United States of America
| | - Mauro De Pra
- Thermo Fisher Scientific, Dornierstrasse 4, Germering 82110, Germany
| | - Stacy M. Tremintin
- Thermo Fisher Scientific, 1228 Titan Way, Sunnyvale, California 94085, United States of America
| | - Ken Cook
- Thermo Fisher Scientific, Stafford House, 1 Boundary Park, Hemel Hempstead HP2 7GE, U.K
| |
Collapse
|
70
|
Trabik YA, Moenes EM, Al-Ghobashy MA, Nebsen M, Ayad MF. Analytical comparability study of anti-CD20 monoclonal antibodies rituximab and obinutuzumab using a stability-indicating orthogonal testing protocol: Effect of structural optimization and glycoengineering. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1159:122359. [PMID: 32920338 DOI: 10.1016/j.jchromb.2020.122359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/14/2020] [Accepted: 08/29/2020] [Indexed: 01/01/2023]
Abstract
Glycoengineering and biosimilarity are the key factors for growing, promising and progressive approaches in monoclonal antibodies development. In this study, the physicochemical stability of anti-CD20 rituximab (RTX); originator and biosimilar was compared to its glycoengineered humanized version; obinutuzumab (OBZ). An orthogonal stability-indicating protocol using a set of validated bioanalytical techniques; size exclusion high performance liquid chromatography (SE-HPLC), reversed phase liquid chromatography (RP-HPLC), quantitative gel electrophoresis by TapeStation, receptor binding assay and dynamic light scattering (DLS) was used to investigate the effect of different stress factors on the pattern and kinetics of degradation. SE-HPLC results supported with spectral purity showed similar degradation extent with a different pattern of degradation between RTX and OBZ. A lower tendency to form degraded fragments and a relatively higher favorability for degradation through aggregate formation has been revealed in case of OBZ. Results were in agreement with those of DLS and receptor binding assay which showed specificity to the intact antibodies in the presence of their degradation products. Furthermore, results were additionally confirmed through denaturing quantitative gel electrophoresis which suggested reducible covalent bonds as the mechanism for aggregates formation. RP-HPLC results showed two oxidized forms via excessive oxidation of RTX and OBZ with nearly the same degradation percent. Comparability data of RTX and OBZ using the applied methodologies showed that although glycoengineering; carried out to enhance the therapeutic and biological activity of OBZ altered the pattern of degradation but did not significantly affect the overall stability. Results showed also consistent stability profile between the biosimilar and its originator RTX products.
Collapse
Affiliation(s)
- Yossra A Trabik
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Eman M Moenes
- National Organization for Research and Control of Biologicals, Egypt
| | - Medhat A Al-Ghobashy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt; Bioanalysis Research Group, School of Pharmacy, Newgiza University, Egypt.
| | - Marianne Nebsen
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Miriam F Ayad
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Egypt
| |
Collapse
|
71
|
Zhang W, Liu X, Tang H, Zhang X, Zhou Y, Fan L, Wang H, Tan WS, Zhao L. Investigation into the impact of tyrosine on the product formation and quality attributes of mAbs in rCHO cell cultures. Appl Microbiol Biotechnol 2020; 104:6953-6966. [PMID: 32577803 DOI: 10.1007/s00253-020-10744-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/04/2020] [Accepted: 06/15/2020] [Indexed: 11/26/2022]
Abstract
Tyrosine (Tyr) is crucial to the maintenance of the monoclonal antibody (mAb) titers and quality attributes in fed-batch cultures of recombinant Chinese hamster ovary (rCHO) cells. However, the relation between tyrosine and these aspects is not yet fully defined. In order to further elucidate such a relation, two groups of fed-batch experiments with high tyrosine (H-T) or low tyrosine (L-T) additions producing an IgG1 monoclonal antibody against CD20 were implemented to investigate the intracellular and extracellular effects of tyrosine on the culture performance. It was found that the scarcity of tyrosine led to the distinctive reduction in both viable cell density and antibody specific production rate, hence the sharply reduced titer, possibly related to the impaired translation efficiency caused by the substrate limitation of tyrosine. In addition, alterations to the critical quality attributes were detected in the L-T group, compared to those in the H-T condition. Notable decrease in the contents of intact antibody was found under the L-T condition because of the elevated reductive level in the supernatant. Moreover, the aggregate content in the L-T condition was also reduced, probably resulting from the accumulation of extracellular cystine. In particular, the lysine variant content noticeably increased with tyrosine limitation owing to the downregulation of two carboxypeptidases, i.e., CpB and CpH. Overall, understanding the role of tyrosine in these aspects is fundamental to the increase of product titers and control of critical quality attributes in the monoclonal antibody production of rCHO cell fed-batch cultures. KEY POINTS: • Tyrosine is essential in the maintenance of product titers and the control of product qualities in high cell density cultivations in rCHO cell. • This study revealed the bottleneck of decreased qmAbupon the deficiency of tyrosine. • The impact of tyrosine on the critical product qualities and the underlying mechanisms were also thoroughly assessed.
Collapse
Affiliation(s)
- Weijian Zhang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China
| | - Xuping Liu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China
| | - Hongping Tang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China
| | - Xinran Zhang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China
| | - Yanan Zhou
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China
| | - Li Fan
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China
| | - Haibin Wang
- Zhejiang Hisun Pharmaceutical Co., Ltd., Fuyang, Hangzhou, 311404, Zhejiang, China
| | - Wen-Song Tan
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China
| | - Liang Zhao
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China.
| |
Collapse
|
72
|
Farsang E, Horváth K, Beck A, Wang Q, Lauber M, Guillarme D, Fekete S. Impact of the column on effluent pH in cation exchange pH gradient chromatography, a practical study. J Chromatogr A 2020; 1626:461350. [PMID: 32797830 DOI: 10.1016/j.chroma.2020.461350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 01/16/2023]
Abstract
In ionexchange chromatography, the pH gradient mode becomes more and more popular today for the analysis of therapeutic proteins as this mode can provide higher or alternative selectivity to the commonly used salt gradient mode. Ideally, a linear pH response is expected when performing linear gradients. However up to now, only a very few buffer systems have been developed and are commercially available which can perform nearly linear pH responses when flowing through a given column. It is also known that a selected buffer system (mobile phase) can work well on one column but can fail on other column. The goal of this study was to practically evaluate the effects that ionexchange columns (weak and strong exchangers) might have on effluent pH, when performing linear pH gradient separations of therapeutic monoclonal antibodies. To attain this objective, the pH was monitored on-line at the column outlet using a specific setup. To make comprehensive observations of the phenomenon, four different mobile phase conditions and five cation exchange columns (weak and strong exchangers) were employed. The obtained pH responses were systematically compared to responses measured in the absence of the columns. From this work, it has become clear that both the column and mobile phase can have significant effects on pH gradient chromatography and that their combination must be considered when developing a new method. Phase systems (column + mobile phase) providing linear pH responses are indeed the most suitable for separating mAbs with different isoelectric points and, with them, it is possible to elute mAbs across wide retention time ranges and with high selectivity.
Collapse
Affiliation(s)
- Evelin Farsang
- Department of Analytical Chemistry, University of Pannonia, Egyetem u. 10., H-8200 Veszprém, Hungary
| | - Krisztián Horváth
- Department of Analytical Chemistry, University of Pannonia, Egyetem u. 10., H-8200 Veszprém, Hungary
| | - Alain Beck
- Center of Immunology Pierre Fabre, 5 Avenue Napoléon III, BP 60497, 74160 Saint-Julien-en-Genevois, France
| | - Qi Wang
- Waters Corporation, 34 Maple Street, Milford, MA 01757-3696, United States; Current Address: Bristol Myers Squibb, 38 Jackson Rd, Devens, MA 01434, United States
| | - Matthew Lauber
- Waters Corporation, 34 Maple Street, Milford, MA 01757-3696, United States
| | - Davy Guillarme
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Szabolcs Fekete
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland.
| |
Collapse
|
73
|
Characterization of the acidic species of a monoclonal antibody using free flow electrophoresis fractionation and mass spectrometry. J Pharm Biomed Anal 2020; 185:113217. [DOI: 10.1016/j.jpba.2020.113217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/19/2022]
|
74
|
Expression of actively soluble antigen-binding fragment (Fab) antibody and GFP fused Fab in the cytoplasm of the engineered Escherichia coli. Mol Biol Rep 2020; 47:4519-4529. [PMID: 32394307 DOI: 10.1007/s11033-020-05502-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 05/06/2020] [Indexed: 01/11/2023]
Abstract
The expression of recombinant antibody fragments in the cytoplasmic space of Escherichia coli and the refolding process for restoring the structure and activity of such antibodies are not efficient. Herein, fragment antigen-binding (Fab) antibodies against miroestrol and deoxymiroestrol (MD-Fab) and their fusions with a green fluorescent protein (GFP) were expressed. The reactive MD-Fabs were successfully expressed as soluble and active forms in the cytoplasm of the SHuffle® T7 E. coli strain. Regarding the construct of MD-Fab alone, VH-CH1 could associate VL-CL into Fab in the oxidizing cytoplasm of the E. coli strain, and no additional in vitro refolding was needed. In the case of the fusions with GFP, when the C-terminus of VH-CH1 was linked with the N-terminus of GFP, the MD-Fab binding reactivity was retained, but the fluorescent activity of GFP interfered. When the C-terminus of GFP was linked to the N-terminus of VL-CL, the binding activity of MD-Fab was not observed. The constructed MD-Fabs had higher specificity toward deoxymiroestrol than the parental monoclonal antibody clone 12G11. In conclusion, MD-Fabs could be expressed using SHuffle® T7 E. coli cells. This process could be considered an economical, productive, and effective method to produce antibody fragments for immunoassay techniques.
Collapse
|
75
|
Bauer LG, Hoelterhoff S, Graf T, Bell C, Bathke A. Monitoring modifications in biopharmaceuticals: Toolbox for a generic and robust high-throughput quantification method. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1148:122134. [PMID: 32422530 DOI: 10.1016/j.jchromb.2020.122134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
Abstract
Monoclonal antibodies (mAbs) constitute one of the most important and fastest growing sector within the pharmaceutical industry. The variety of different formats and the large molecule sizes of the mAbs result in an inherent complexity. In addition, the posttranslational modifications (PTMs) that can occur during production, formulation and storage pose a major analytical challenge for their characterization. These PTMs may affect the safety, efficacy and/or pharmacokinetic profile of the medicinal product. Therefore, strict quality and stability monitoring, in particular of (potentially) critical quality attributes (CQAs), is mandatory. Focusing on these needs, a toolbox for different approaches of peptide mapping in the routine quality control (QC) environment was developed. This toolbox includes an automated sample preparation with an optimized buffer system in combination with a Single Quad LC-MS system, which provides the flexibility to handle a high-throughput workflow. Our results demonstrate that a Single Quad LC-MS system is suitable for a routine work environment to monitor modifications by using a user-friendly system.
Collapse
Affiliation(s)
| | - Sina Hoelterhoff
- F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Tobias Graf
- Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Christian Bell
- F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Anja Bathke
- F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland.
| |
Collapse
|
76
|
Nakayoshi T, Kato K, Kurimoto E, Oda A. Computational Studies on the Mechanisms of Nonenzymatic Intramolecular Cyclization of the Glutamine Residues Located at N-Termini Catalyzed by Inorganic Phosphate Species. ACS OMEGA 2020; 5:9162-9170. [PMID: 32363268 PMCID: PMC7191561 DOI: 10.1021/acsomega.9b04384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/02/2020] [Indexed: 05/13/2023]
Abstract
Glutamine (Gln) residues located at N-termini undergo spontaneous intramolecular cyclization, causing the formation of pyroglutamic acid (pGlu) residues. pGlu residues have been detected at the N-termini in various peptides and proteins. The formation of pGlu residues during the fermentation and purification processes of antibody drugs is one of the concerns in the design and formulation of these drugs and has been reported to proceed rapidly in a phosphate buffer. In this study, we have examined the phosphate-catalyzed mechanisms of the pGlu residue formation from N-terminal Gln residues via quantum chemical calculations using B3LYP density functional methods. Single-point energies were calculated using the second-order Møller-Plesset perturbation theory. We performed the calculations for the model compound in which an uncharged N-terminal Gln residue is capped with a methyl amino group on the C-terminal. The activation energy of the formation of pGlu residues was calculated as 83.8 kJ mol-1, which was lower than that of the typical nonenzymatic reaction of amino acid residues. In addition, the computational results indicate that the flexibility of the main and side chains in N-terminal Gln residues was necessary for the formation of pGlu residues to proceed. In the obtained pathway, inorganic phosphate species act as the catalyst by mediating the proton transfer.
Collapse
Affiliation(s)
- Tomoki Nakayoshi
- Graduate
School of Pharmacy, Meijo University, 150 Yagotoyama,
Tempaku-ku, Nagoya, Aichi 468-8503, Japan
- Institute
of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Koichi Kato
- Graduate
School of Pharmacy, Meijo University, 150 Yagotoyama,
Tempaku-ku, Nagoya, Aichi 468-8503, Japan
- Department
of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan
| | - Eiji Kurimoto
- Graduate
School of Pharmacy, Meijo University, 150 Yagotoyama,
Tempaku-ku, Nagoya, Aichi 468-8503, Japan
| | - Akifumi Oda
- Graduate
School of Pharmacy, Meijo University, 150 Yagotoyama,
Tempaku-ku, Nagoya, Aichi 468-8503, Japan
- Institute
of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka,
Suita, Osaka 565-0871, Japan
- . Phone: +81-52-832-1151
| |
Collapse
|
77
|
Binding of excipients is a poor predictor for aggregation kinetics of biopharmaceutical proteins. Eur J Pharm Biopharm 2020; 151:127-136. [PMID: 32283214 DOI: 10.1016/j.ejpb.2020.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 12/11/2022]
Abstract
One of the major challenges in formulation development of biopharmaceuticals is improving long-term storage stability, which is often achieved by addition of excipients to the final formulation. Finding the optimal excipient for a given protein is usually done using a trial-and-error approach, due to the lack of general understanding of how excipients work for a particular protein. Previously, preferential interactions (binding or exclusion) of excipients with proteins were postulated as a mechanism explaining diversity in the stabilisation effects. Weak preferential binding is however difficult to quantify experimentally, and the question remains whether the formulation process should seek excipients which preferentially bind with proteins, or not. Here, we apply solution NMR spectroscopy to comprehensively evaluate protein-excipient interactions between therapeutically relevant proteins and commonly used excipients. Additionally, we evaluate the effect of excipients on thermal and colloidal protein stability, on aggregation kinetics and protein storage stability at elevated temperatures. We show that there is a weak negative correlation between the strength of protein-excipient interactions and effect on enhancing protein thermal stability. We found that the overall protein-excipient binding per se can be a poor criterion for choosing excipients enhancing formulation stability. Experiments on a diverse set of excipients and test proteins reveal that while excipients affect all of the different aspects of protein stability, the effects are very much protein specific, and care must be taken to avoid apparent generalisations if a smaller dataset is being used.
Collapse
|
78
|
Rolinger L, Rüdt M, Hubbuch J. A critical review of recent trends, and a future perspective of optical spectroscopy as PAT in biopharmaceutical downstream processing. Anal Bioanal Chem 2020; 412:2047-2064. [PMID: 32146498 PMCID: PMC7072065 DOI: 10.1007/s00216-020-02407-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/01/2022]
Abstract
As competition in the biopharmaceutical market gets keener due to the market entry of biosimilars, process analytical technologies (PATs) play an important role for process automation and cost reduction. This article will give a general overview and address the recent innovations and applications of spectroscopic methods as PAT tools in the downstream processing of biologics. As data analysis strategies are a crucial part of PAT, the review discusses frequently used data analysis techniques and addresses data fusion methodologies as the combination of several sensors is moving forward in the field. The last chapter will give an outlook on the application of spectroscopic methods in combination with chemometrics and model predictive control (MPC) for downstream processes. Graphical abstract.
Collapse
Affiliation(s)
- Laura Rolinger
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Matthias Rüdt
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany.
| |
Collapse
|
79
|
Jing SY, Gou JX, Gao D, Wang HB, Yao SJ, Lin DQ. Separation of monoclonal antibody charge variants using cation exchange chromatography: Resins and separation conditions optimization. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116136] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
80
|
Feidl F, Vogg S, Wolf M, Podobnik M, Ruggeri C, Ulmer N, Wälchli R, Souquet J, Broly H, Butté A, Morbidelli M. Process‐wide control and automation of an integrated continuous manufacturing platform for antibodies. Biotechnol Bioeng 2020; 117:1367-1380. [DOI: 10.1002/bit.27296] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/03/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Fabian Feidl
- Institute for Chemical and BioengineeringDepartment of Chemistry and Applied BiosciencesZurich Switzerland
| | - Sebastian Vogg
- Institute for Chemical and BioengineeringDepartment of Chemistry and Applied BiosciencesZurich Switzerland
| | - Moritz Wolf
- Institute for Chemical and BioengineeringDepartment of Chemistry and Applied BiosciencesZurich Switzerland
| | - Matevz Podobnik
- Institute for Chemical and BioengineeringDepartment of Chemistry and Applied BiosciencesZurich Switzerland
| | - Caterina Ruggeri
- Institute for Chemical and BioengineeringDepartment of Chemistry and Applied BiosciencesZurich Switzerland
| | - Nicole Ulmer
- Institute for Chemical and BioengineeringDepartment of Chemistry and Applied BiosciencesZurich Switzerland
| | - Ruben Wälchli
- Institute for Chemical and BioengineeringDepartment of Chemistry and Applied BiosciencesZurich Switzerland
| | - Jonathan Souquet
- Merck Serono S.A. Biotech Process Sciences Corsier‐sur‐Vevey Switzerland
| | - Hervé Broly
- Merck Serono S.A. Biotech Process Sciences Corsier‐sur‐Vevey Switzerland
| | - Alessandro Butté
- Institute for Chemical and BioengineeringDepartment of Chemistry and Applied BiosciencesZurich Switzerland
| | - Massimo Morbidelli
- Institute for Chemical and BioengineeringDepartment of Chemistry and Applied BiosciencesZurich Switzerland
| |
Collapse
|
81
|
Bioanalytical methods for therapeutic monoclonal antibodies and antibody–drug conjugates: A review of recent advances and future perspectives. J Pharm Biomed Anal 2020; 179:112991. [DOI: 10.1016/j.jpba.2019.112991] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 11/23/2022]
|
82
|
Antibody Conjugates-Recent Advances and Future Innovations. Antibodies (Basel) 2020; 9:antib9010002. [PMID: 31936270 PMCID: PMC7148502 DOI: 10.3390/antib9010002] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/18/2022] Open
Abstract
Monoclonal antibodies have evolved from research tools to powerful therapeutics in the past 30 years. Clinical success rates of antibodies have exceeded expectations, resulting in heavy investment in biologics discovery and development in addition to traditional small molecules across the industry. However, protein therapeutics cannot drug targets intracellularly and are limited to soluble and cell-surface antigens. Tremendous strides have been made in antibody discovery, protein engineering, formulation, and delivery devices. These advances continue to push the boundaries of biologics to enable antibody conjugates to take advantage of the target specificity and long half-life from an antibody, while delivering highly potent small molecule drugs. While the "magic bullet" concept produced the first wave of antibody conjugates, these entities were met with limited clinical success. This review summarizes the advances and challenges in the field to date with emphasis on antibody conjugation, linker-payload chemistry, novel payload classes, absorption, distribution, metabolism, and excretion (ADME), and product developability. We discuss lessons learned in the development of oncology antibody conjugates and look towards future innovations enabling other therapeutic indications.
Collapse
|
83
|
Sokolowska I, Mo J, Rahimi Pirkolachahi F, McVean C, Meijer LAT, Switzar L, Balog C, Lewis MJ, Hu P. Implementation of a High-Resolution Liquid Chromatography–Mass Spectrometry Method in Quality Control Laboratories for Release and Stability Testing of a Commercial Antibody Product. Anal Chem 2019; 92:2369-2373. [DOI: 10.1021/acs.analchem.9b05036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Izabela Sokolowska
- BioTherapeutics Analytical Development, Janssen Research & Development, LLC, 200 Great Valley Parkway, Malvern, Pennsylvania 19355, United States
| | - Jingjie Mo
- BioTherapeutics Analytical Development, Janssen Research & Development, LLC, 200 Great Valley Parkway, Malvern, Pennsylvania 19355, United States
| | - Fatie Rahimi Pirkolachahi
- Janssen Supply Chain One Lab, Janssen Biologics BV, Einsteinweg 101, 2333 CB Leiden, The Netherlands
| | - Carol McVean
- BioTherapeutics Analytical Development, Janssen Research & Development, LLC, 200 Great Valley Parkway, Malvern, Pennsylvania 19355, United States
| | - Lars A. T. Meijer
- BioTherapeutics Analytical Development, Janssen Biologics BV, Einsteinweg 101, 2333 CB Leiden, The Netherlands
| | - Linda Switzar
- BioTherapeutics Analytical Development, Janssen Biologics BV, Einsteinweg 101, 2333 CB Leiden, The Netherlands
| | - Crina Balog
- BioTherapeutics Analytical Development, Janssen Biologics BV, Einsteinweg 101, 2333 CB Leiden, The Netherlands
| | - Michael J. Lewis
- BioTherapeutics Analytical Development, Janssen Research & Development, LLC, 200 Great Valley Parkway, Malvern, Pennsylvania 19355, United States
| | - Ping Hu
- BioTherapeutics Analytical Development, Janssen Research & Development, LLC, 200 Great Valley Parkway, Malvern, Pennsylvania 19355, United States
| |
Collapse
|
84
|
Schweickert PG, Cheng Z. Application of Genetic Engineering in Biotherapeutics Development. J Pharm Innov 2019. [DOI: 10.1007/s12247-019-09411-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
85
|
Nakayoshi T, Kato K, Kurimoto E, Oda A. Computational studies on nonenzymatic pyroglutamylation mechanism of N-terminal glutamic acid residues in aqueous conditions*. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1702727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Tomoki Nakayoshi
- Graduate School of Pharmacy, Meijo University, Nagoya, Japan
- Institute of Medical, Pharmaceutical and Health Science, Kanazawa University, Kanazawa, Japan
| | - Koichi Kato
- Graduate School of Pharmacy, Meijo University, Nagoya, Japan
- Department of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
| | - Eiji Kurimoto
- Graduate School of Pharmacy, Meijo University, Nagoya, Japan
| | - Akifumi Oda
- Graduate School of Pharmacy, Meijo University, Nagoya, Japan
- Institute of Medical, Pharmaceutical and Health Science, Kanazawa University, Kanazawa, Japan
- Institute for Protein Research, Osaka, Japan
| |
Collapse
|
86
|
Yokoyama H, Mizutani R, Noguchi S, Hayashida N. Structural and biochemical basis of the formation of isoaspartate in the complementarity-determining region of antibody 64M-5 Fab. Sci Rep 2019; 9:18494. [PMID: 31811216 PMCID: PMC6898713 DOI: 10.1038/s41598-019-54918-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/14/2019] [Indexed: 01/07/2023] Open
Abstract
The formation of the isoaspartate (isoAsp) is one of spontaneous degradation processes of proteins, affecting their stability and activity. Here, we report for the first time the crystal structures of an antibody Fab that contains isoAsp in the complementarity-determining region (CDR), along with biochemical studies to detect isoAsp. By comparing the elution profiles of cation-exchange chromatography, it was clarified that the antibody 64M-5 Fab is converted from the normal form to isoAsp form spontaneously and time-dependently under physiological conditions. The isoAsp residue was identified with tryptic peptide mapping, N-terminal sequencing, and the protein isoaspartyl methyltransferase assay. Based on the fluorescence quenching method, the isoAsp form of 64M-5 Fab shows a one order of magnitude lower binding constant for its dinucleotide ligand dT(6-4)T than the normal form. According to the structure of the isoAsp form, the conformation of CDR L1 is changed from the normal form to isoAsp form; the loss of hydrogen bonds involving the Asn28L side-chain, and structural conversion of the β-turn from type I to type II'. The formation of isoAsp leads to a large displacement of the side chain of His27dL, and decreased electrostatic interactions with the phosphate group of dT(6-4)T. Such structural changes should be responsible for the lower affinity of the isoAsp form for dT(6-4)T than the normal form. These findings may provide insight into neurodegenerative diseases (NDDs) and related diseases caused by misfolded proteins.
Collapse
Affiliation(s)
- Hideshi Yokoyama
- 0000 0001 0660 6861grid.143643.7Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510 Japan
| | - Ryuta Mizutani
- 0000 0001 1516 6626grid.265061.6Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 Japan
| | - Shuji Noguchi
- 0000 0000 9290 9879grid.265050.4Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510 Japan
| | - Naoki Hayashida
- 0000 0001 0660 7960grid.268397.1Division of Molecular Gerontology and Anti-Ageing Medicine, Department of Biochemistry and Molecular Biology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505 Japan
| |
Collapse
|
87
|
A generic method for intact and subunit level characterization of mAb charge variants by native mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1133:121814. [DOI: 10.1016/j.jchromb.2019.121814] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 01/16/2023]
|
88
|
Perdomo-Abúndez FC, Vallejo-Castillo L, Vázquez-Leyva S, López-Morales CA, Velasco-Velázquez M, Pavón L, Pérez-Tapia SM, Medina-Rivero E. Development and validation of a mass spectrometric method to determine the identity of rituximab based on its microheterogeneity profile. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1139:121885. [PMID: 31806401 DOI: 10.1016/j.jchromb.2019.121885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/10/2019] [Accepted: 11/14/2019] [Indexed: 11/19/2022]
Abstract
Analytical methods have been considered the "eyes" for development, characterization and batch releasing of biotherapeutics over the past 40 years. One of the most powerful analytical platform for biotherapeutic analysis is mass spectrometry coupled to liquid chromatography (LC-MS). Due to its wide flexibility and instrumental configurations, LC-MS can determine different physicochemical attributes of proteins, e.g. molecular mass, primary sequence, and posttranslational modifications. Intact molecular mass analysis of therapeutic proteins is essential to confirm their identity. Analytical methods must be validated to support drug quality information during its approval process. Although there are international guidelines that provide general information on validation of analytical methods, practical examples about the design, selection of validation attributes and acceptance criteria of identity LC-MS methods are scarce. Here, according to the recommendations of Q2R1 ICH guideline, we showcase the validation of an LC-MS-TOF method to identity rituximab by determining its intact and deglycosylated molecular mass profiles. The proposed method specifically identified the m/z profile and deconvoluted mass profile of rituximab from deglycosylated rituximab and from excipient blank (specificity) with a maximum error of 76.63 ppm (accuracy) and a maximum Relative Standard Deviation (RSD) of 0.00315% (precision). Besides, the system suitability test, which was based on the expected mass value of the mass calibrator, confirmed the reliability of the analytical results. In summary, validation showed that the proposed method is suitable for identifying rituximab based on its glycosylated (intact) and deglycosylated mass profile.
Collapse
Affiliation(s)
- Francisco C Perdomo-Abúndez
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico.
| | - Luis Vallejo-Castillo
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico.
| | - Said Vázquez-Leyva
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico.
| | - Carlos A López-Morales
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico.
| | - Marco Velasco-Velázquez
- Departamento de Farmacología y Unidad Periférica de Investigación en Biomedicina Translacional (CMN 20 de noviembre, ISSSTE), Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico.
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente, Ciudad de México 14370, Mexico.
| | - Sonia Mayra Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Ciudad de México 11340, Mexico; Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico.
| | - Emilio Medina-Rivero
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico.
| |
Collapse
|
89
|
Hinterholzer A, Stanojlovic V, Cabrele C, Schubert M. Unambiguous Identification of Pyroglutamate in Full-Length Biopharmaceutical Monoclonal Antibodies by NMR Spectroscopy. Anal Chem 2019; 91:14299-14305. [PMID: 31589410 DOI: 10.1021/acs.analchem.9b02513] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Biotherapeutic proteins are an indispensable class of pharmaceuticals that present a high degree of structural complexity and are prone to chemical modifications during production, processing, and storage, which have to be tightly controlled. Pyroglutamate (pGlu), a cyclization product of N-terminal Gln or Glu residues, is a widespread post-translational modification in proteins, including monoclonal antibodies (mAbs). The unambiguous identification and quantification of this modification in proteins is challenging, since the mass difference of -17 Da or -18 Da, when formed from Gln or Glu, respectively, is not unique. Moreover, deamidation and dehydration occur not only during cyclization to pGlu, but also during other reactions leading to different types of modifications, like succinimide or isopeptide bond moieties due to cross-linking between Asn or Gln and Lys side chains. Here we report the unambiguous identification and quantification of pGlu in intact mAbs with natural isotope distribution by NMR spectroscopy. The assignment of all 1H, 13C and 15N random coil chemical shifts of pGlu in short reference peptides led to the identification of unique chemical shift pairs that are distinct from the random coil chemical shifts of the natural amino-acid residues. These characteristic correlations are suited for the detection of pGlu in denatured proteins. We achieved complete denaturation of mAbs using a straightforward protocol, and could detect and quantify pGlu, in agreement with available mass spectrometric data. The application to the mAbs rituximab and adalimumab illustrates the potential of our approach for the characterization of biotherapeutics containing isotopes at natural abundance.
Collapse
Affiliation(s)
- Arthur Hinterholzer
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Hellbrunnerstrasse 34 , 5020 Salzburg , Austria.,Department of Biosciences , University of Salzburg , Billrothstrasse 11 , 5020 Salzburg , Austria
| | - Vesna Stanojlovic
- Department of Biosciences , University of Salzburg , Billrothstrasse 11 , 5020 Salzburg , Austria
| | - Chiara Cabrele
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Hellbrunnerstrasse 34 , 5020 Salzburg , Austria.,Department of Biosciences , University of Salzburg , Billrothstrasse 11 , 5020 Salzburg , Austria
| | - Mario Schubert
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Hellbrunnerstrasse 34 , 5020 Salzburg , Austria.,Department of Biosciences , University of Salzburg , Billrothstrasse 11 , 5020 Salzburg , Austria
| |
Collapse
|
90
|
Good modeling practice for industrial chromatography: Mechanistic modeling of ion exchange chromatography of a bispecific antibody. Comput Chem Eng 2019. [DOI: 10.1016/j.compchemeng.2019.106532] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
91
|
Campanati A, Paolinelli M, Diotallevi F, Martina E, Molinelli E, Offidani A. Pharmacodynamics OF TNF α inhibitors for the treatment of psoriasis. Expert Opin Drug Metab Toxicol 2019; 15:913-925. [PMID: 31623470 DOI: 10.1080/17425255.2019.1681969] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: The treatment of psoriasis with conventional topical therapies and disease-modifying anti-rheumatic drugs (DMARDs) is often linked to unsatisfactory outcomes and the risk of serious adverse events. Over the last decades, research advances in understanding the role of tumor necrosis factor alpha (TNF α) and other cytokines in the pathogenesis of psoriasis have driven the introduction of biologic agents targeting specific immune mediators in everyday clinical practice. TNF α inhibitors are a consolidated treatment option for patients with moderate-to-severe disease with remarkable efficacy and a reassuring safety profile.Areas covered: The PubMed database was searched using combinations of the following keywords: psoriasis, TNF α inhibitors, biologic therapy, pharmacodynamics, adalimumab, etanercept, infliximab, certolizumab pegol, golimumab, adverse effects. The aim of this review is to describe the pharmacodynamic profile of anti-TNF α inhibitors, currently approved by the European Medicines Agency (EMA) for the treatment of psoriasis, focusing on related clinical implications, also in comparison to the new generation biological therapies targeting the interleukin 23/interleukin 17 axis.Expert opinion: Pharmacodynamics of TNF α inhibitors should be fully considered in planning patient's therapy strategies, especially in case of secondary failures, poor adherence to treatment, instable psoriasis, high risk of infection, pregnant or lactating women, metabolic comorbidities, coexistence of other immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Anna Campanati
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Matteo Paolinelli
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Frederico Diotallevi
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Emanuela Martina
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Elisa Molinelli
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Annamaria Offidani
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| |
Collapse
|
92
|
Xu X, Huang Y, Pan H, Molden R, Qiu H, Daly TJ, Li N. Quantitation and modeling of post-translational modifications in a therapeutic monoclonal antibody from single- and multiple-dose monkey pharmacokinetic studies using mass spectrometry. PLoS One 2019; 14:e0223899. [PMID: 31618250 PMCID: PMC6795451 DOI: 10.1371/journal.pone.0223899] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 10/01/2019] [Indexed: 01/11/2023] Open
Abstract
Post-translational modifications (PTMs) of therapeutic monoclonal antibodies (mAbs) are important product quality attributes (PQAs) that can potentially impact drug stability, safety, and efficacy. The PTMs of a mAb may change remarkably in the bloodstream after drug administration compared to in vitro conditions. Thus, monitoring in vivo PTM changes of mAbs helps evaluate the criticality of PQAs during the product risk assessment. In addition, quantitation of the subject exposures to PTM variants helps assess the impact of PTMs on the safety and efficacy of therapeutic mAbs. Here, we developed an immunocapture-liquid chromatography/mass spectrometry (LC/MS) method to quantify in vivo PTM changes a therapeutic mAb overtime in single- and multiple-dose monkey pharmacokinetic (PK) studies. We also built mathematical models to predict the in vivo serum concentrations of PQAs, the subject exposures to PQAs, and the relative abundance of PQAs in single- and multiple-dose regimens. The model predictions are in good agreement with the experimental results. The immunocapture-LC/MS method and mathematical models enable bioanalytical chemists to quantitatively assess the criticality of PQAs during drug development.
Collapse
Affiliation(s)
- Xiaobin Xu
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
- * E-mail:
| | - Yu Huang
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - Hao Pan
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - Rosalynn Molden
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - Haibo Qiu
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - Thomas J. Daly
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - Ning Li
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| |
Collapse
|
93
|
Liu Z, Valente J, Lin S, Chennamsetty N, Qiu D, Bolgar M. Cyclization of N-Terminal Glutamic Acid to pyro-Glutamic Acid Impacts Monoclonal Antibody Charge Heterogeneity Despite Its Appearance as a Neutral Transformation. J Pharm Sci 2019; 108:3194-3200. [DOI: 10.1016/j.xphs.2019.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/13/2019] [Accepted: 05/21/2019] [Indexed: 12/23/2022]
|
94
|
Bandi S, Singh SM, Shah DD, Upadhyay V, Mallela KM. 2D NMR Analysis of the Effect of Asparagine Deamidation Versus Methionine Oxidation on the Structure, Stability, Aggregation, and Function of a Therapeutic Protein. Mol Pharm 2019; 16:4621-4635. [DOI: 10.1021/acs.molpharmaceut.9b00719] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Swati Bandi
- Department of Pharmaceutical Sciences & Center for Pharmaceutical Biotechnology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Surinder M. Singh
- Department of Pharmaceutical Sciences & Center for Pharmaceutical Biotechnology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Dinen D. Shah
- Department of Pharmaceutical Sciences & Center for Pharmaceutical Biotechnology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Vaibhav Upadhyay
- Department of Pharmaceutical Sciences & Center for Pharmaceutical Biotechnology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Krishna M.G. Mallela
- Department of Pharmaceutical Sciences & Center for Pharmaceutical Biotechnology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| |
Collapse
|
95
|
Zhou K, Cao X, Bautista J, Chen Z, Hershey N, Ludwig R, Tao L, Zeng M, Das TK. Structure-Function Assessment and High-Throughput Quantification of Site-Specific Aspartate Isomerization in Monoclonal Antibody Using a Novel Analytical Tool Kit. J Pharm Sci 2019; 109:422-428. [PMID: 31469998 DOI: 10.1016/j.xphs.2019.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022]
Abstract
Isomerization of surface-exposed aspartic acid (Asp) in the complementarity-determining regions of therapeutic proteins could potentially impact their target binding affinity because of the sensitive location, and often requires complex analytical tactics to understand its effect on structure-function and stability. Inaccurate quantitation of Asp-isomerized variants, especially the succinimide intermediate, presents major challenge in understanding Asp degradation kinetics, its stability, and consequently establishing a robust control strategy. As a practical solution to this problem, a comprehensive analytical tool kit has been developed, which provides a solution to fully characterize and accurately quantify the Asp-related product variants. The toolkit offers a combination of 2 steps, an ion-exchange chromatography method to separate and enrich the isomerized variants in the folded structure for structure-function evaluation and a novel focused peptide mapping method to quantify the individual complementarity-determining region isomerization components including the unmodified Asp, succinimide, and isoaspartate. This novel procedure allowed an accurate quantification of each Asp-related variant and a comprehensive assessment of the functional impact of Asp isomerization, which ultimately helped to establish an appropriate control strategy for this critical quality attribute.
Collapse
Affiliation(s)
- Kaimeng Zhou
- Drug Product Science and Technology, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08901
| | - Xiang Cao
- Analytical Development, BioTherapeutics Development, Janssen Research & Development, LLC, 200 Great Valley Pkwy, Malvern, Pennsylvania 19355
| | - James Bautista
- Drug Product Science and Technology, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08901
| | - Zhi Chen
- Drug Product Science and Technology, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08901
| | - Neil Hershey
- Analytical Development, BioTherapeutics Development, Janssen Research & Development, LLC, 200 Great Valley Pkwy, Malvern, Pennsylvania 19355
| | - Richard Ludwig
- Biophysical and Chemical Characterization Center of Excellence, Bristol-Myers Squibb, 311 Pennington Rocky Hill Rd, Pennington, New Jersey 08534
| | - Li Tao
- Biophysical and Chemical Characterization Center of Excellence, Bristol-Myers Squibb, 311 Pennington Rocky Hill Rd, Pennington, New Jersey 08534
| | - Ming Zeng
- Drug Product Science and Technology, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08901.
| | - Tapan K Das
- Biophysical and Chemical Characterization Center of Excellence, Bristol-Myers Squibb, 311 Pennington Rocky Hill Rd, Pennington, New Jersey 08534
| |
Collapse
|
96
|
Wang L, Chen DDY. Analysis of four therapeutic monoclonal antibodies by online capillary isoelectric focusing directly coupled to quadrupole time‐of‐flight mass spectrometry. Electrophoresis 2019; 40:2899-2907. [DOI: 10.1002/elps.201900195] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/17/2019] [Accepted: 08/09/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Lingyu Wang
- Department of ChemistryUniversity of British Columbia Vancouver BC Canada
| | - David Da Yong Chen
- Department of ChemistryUniversity of British Columbia Vancouver BC Canada
| |
Collapse
|
97
|
Tuning selectivity in cation-exchange chromatography applied for monoclonal antibody separations, part 2: Evaluation of recent stationary phases. J Pharm Biomed Anal 2019; 172:320-328. [DOI: 10.1016/j.jpba.2019.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/30/2019] [Accepted: 05/04/2019] [Indexed: 02/08/2023]
|
98
|
Brinc M, Belič A. Optimization of process conditions for mammalian fed-batch cell culture in automated micro-bioreactor system using genetic algorithm. J Biotechnol 2019; 300:40-47. [PMID: 31071344 DOI: 10.1016/j.jbiotec.2019.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/05/2019] [Indexed: 10/26/2022]
Abstract
Recombinant proteins produced by mammalian cell culture technology represent an important segment of therapeutic molecules. Development of their manufacturing processes is a time- and resource-consuming task. A wide array of process conditions, e.g. physico-chemical parameters, medium composition, feeding strategy, needs to be optimized to design a commercially feasible process with the desired productivity and product characteristics. Traditionally, statistical experimental designs, i.e. design-of-experiments methodology, have been used for such optimizations. However, statistical design approach has several limitations related to high dimensionality of the explored parameter space originating from the complexity of the mammalian cell culture processes. An alternative is therefore desired to overcome these limitations. In this study, we have successfully used a simple genetic algorithm as a method of experimental design for optimization of mammalian cell culture processes for two recombinant cell lines, one expressing a monoclonal antibody and one an Fc-fusion protein. Harnessing the automation capability of a robotically driven micro-bioreactor system to execute the genetic algorithm-derived experiments, a set of 14 process parameters was optimized within 132 experiments per cell line (six generations of 22 experiments), showing the feasibility of this approach as an alternative to classical statistical experimental designs.
Collapse
Affiliation(s)
- Matjaž Brinc
- Bioprocess development, Technical Development Biologics, Novartis Technical Research & Development, Lek Pharmaceuticals d.d., Kolodvorska 27, SI-1234 Mengeš, Slovenia.
| | - Aleš Belič
- Predictive analytics and modelling, Technical Development Biologics, Novartis Technical Research & Development, Lek Pharmaceuticals d.d., Kolodvorska 27, SI-1234 Mengeš, Slovenia
| |
Collapse
|
99
|
Yu D, Mayani M, Song Y, Xing Z, Ghose S, Li ZJ. Control of antibody high and low molecular weight species by depth filtration‐based cell culture harvesting. Biotechnol Bioeng 2019; 116:2610-2620. [DOI: 10.1002/bit.27081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/24/2019] [Accepted: 06/06/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Deqiang Yu
- Biologics Development, Global Manufacturing & SupplyBristol‐Myers Squibb Devens Massachusetts
| | - Mukesh Mayani
- Biologics Development, Global Manufacturing & SupplyBristol‐Myers Squibb Devens Massachusetts
| | - Yuanli Song
- Biologics Development, Global Manufacturing & SupplyBristol‐Myers Squibb Devens Massachusetts
| | - Zhizhuo Xing
- Biologics Development, Global Manufacturing & SupplyBristol‐Myers Squibb Devens Massachusetts
| | - Sanchayita Ghose
- Biologics Development, Global Manufacturing & SupplyBristol‐Myers Squibb Devens Massachusetts
| | - Zheng Jian Li
- Biologics Development, Global Manufacturing & SupplyBristol‐Myers Squibb Devens Massachusetts
| |
Collapse
|
100
|
Evans AR, Capaldi MT, Goparaju G, Colter D, Shi FF, Aubert S, Li LC, Mo J, Lewis MJ, Hu P, Alfonso P, Mehndiratta P. Using bispecific antibodies in forced degradation studies to analyze the structure-function relationships of symmetrically and asymmetrically modified antibodies. MAbs 2019; 11:1101-1112. [PMID: 31161859 PMCID: PMC6748611 DOI: 10.1080/19420862.2019.1618675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Forced degradation experiments of monoclonal antibodies (mAbs) aid in the identification of critical quality attributes (CQAs) by studying the impact of post-translational modifications (PTMs), such as oxidation, deamidation, glycation, and isomerization, on biological functions. Structure-function characterization of mAbs can be used to identify the PTM CQAs and develop appropriate analytical and process controls. However, the interpretation of forced degradation results can be complicated because samples may contain mixtures of asymmetrically and symmetrically modified mAbs with one or two modified chains. We present a process to selectively create symmetrically and asymmetrically modified antibodies for structure-function characterization using the bispecific DuoBody® platform. Parental molecules mAb1 and mAb2 were first stressed with peracetic acid to induce methionine oxidation. Bispecific antibodies were then prepared from a mixture of oxidized or unoxidized parental mAbs by a controlled Fab-arm exchange process. This process was used to systematically prepare four bispecific mAb products: symmetrically unoxidized, symmetrically oxidized, and both combinations of asymmetrically oxidized bispecific mAbs. Results of this study demonstrated chain-independent, 1:2 stoichiometric binding of the mAb Fc region to both FcRn receptor and to Protein A. The approach was also applied to create asymmetrically deamidated mAbs at the asparagine 330 residue. Results of this study support the proposed 1:1 stoichiometric binding relationship between the FcγRIIIa receptor and the mAb Fc. This approach should be generally applicable to study the potential impact of any modification on biological function.
Collapse
Affiliation(s)
- Adam R Evans
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Michael T Capaldi
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Geetha Goparaju
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - David Colter
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Frank F Shi
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Sarah Aubert
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Lian-Chao Li
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Jingjie Mo
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Michael J Lewis
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Ping Hu
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Pedro Alfonso
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Promod Mehndiratta
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA.,b Analytical Development, Biologics Research and Development, Celgene Corporation , Summit , NJ , USA
| |
Collapse
|