51
|
Watanave M, Hoshino C, Konno A, Fukuzaki Y, Matsuzaki Y, Ishitani T, Hirai H. Pharmacological enhancement of retinoid-related orphan receptor α function mitigates spinocerebellar ataxia type 3 pathology. Neurobiol Dis 2019; 121:263-273. [DOI: 10.1016/j.nbd.2018.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/26/2018] [Accepted: 10/17/2018] [Indexed: 01/02/2023] Open
|
52
|
Driessen TM, Lee PJ, Lim J. Molecular pathway analysis towards understanding tissue vulnerability in spinocerebellar ataxia type 1. eLife 2018; 7:39981. [PMID: 30507379 PMCID: PMC6292693 DOI: 10.7554/elife.39981] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/02/2018] [Indexed: 12/13/2022] Open
Abstract
The neurodegenerative disorder spinocerebellar ataxia type 1 (SCA1) affects the cerebellum and inferior olive, though previous research has focused primarily on the cerebellum. As a result, it is unknown what molecular alterations are present in the inferior olive, and whether these changes are found in other affected tissues. This study addresses these questions for the first time using two different SCA1 mouse models. We found that differentially regulated genes in the inferior olive segregated into several biological pathways. Comparison of the inferior olive and cerebellum demonstrates that vulnerable tissues in SCA1 are not uniform in their gene expression changes, and express largely discrete but some commonly enriched biological pathways. Importantly, we also found that brain-region-specific differences occur early in disease initiation and progression, and they are shared across the two mouse models of SCA1. This suggests different mechanisms of degeneration at work in the inferior olive and cerebellum.
Collapse
Affiliation(s)
- Terri M Driessen
- Department of Genetics, Yale School of Medicine, New Haven, Unites States
| | - Paul J Lee
- Department of Genetics, Yale School of Medicine, New Haven, Unites States
| | - Janghoo Lim
- Department of Genetics, Yale School of Medicine, New Haven, Unites States.,Department of Neuroscience, Yale School of Medicine, New Haven, Unites States.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, Unites States
| |
Collapse
|
53
|
Weishäupl D, Schneider J, Peixoto Pinheiro B, Ruess C, Dold SM, von Zweydorf F, Gloeckner CJ, Schmidt J, Riess O, Schmidt T. Physiological and pathophysiological characteristics of ataxin-3 isoforms. J Biol Chem 2018; 294:644-661. [PMID: 30455355 DOI: 10.1074/jbc.ra118.005801] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/08/2018] [Indexed: 12/18/2022] Open
Abstract
Ataxin-3 is a deubiquitinating enzyme and the affected protein in the neurodegenerative disorder Machado-Joseph disease (MJD). The ATXN3 gene is alternatively spliced, resulting in protein isoforms that differ in the number of ubiquitin-interacting motifs. Additionally, nonsynonymous SNPs in ATXN3 cause amino acid changes in ataxin-3, and one of these polymorphisms introduces a premature stop codon in one isoform. Here, we examined the effects of different ataxin-3 isoforms and of the premature stop codon on ataxin-3's physiological function and on main disease mechanisms. At the physiological level, we show that alternative splicing and the premature stop codon alter ataxin-3 stability and that ataxin-3 isoforms differ in their enzymatic deubiquitination activity, subcellular distribution, and interaction with other proteins. At the pathological level, we found that the expansion of the polyglutamine repeat leads to a stabilization of ataxin-3 and that ataxin-3 isoforms differ in their aggregation properties. Interestingly, we observed a functional interaction between normal and polyglutamine-expanded ATXN3 allelic variants. We found that interactions between different ATXN3 allelic variants modify the physiological and pathophysiological properties of ataxin-3. Our findings indicate that alternative splicing and interactions between different ataxin-3 isoforms affect not only major aspects of ataxin-3 function but also MJD pathogenesis. Our results stress the importance of considering isoforms of disease-causing proteins and their interplay with the normal allelic variant as disease modifiers in MJD and autosomal-dominantly inherited diseases in general.
Collapse
Affiliation(s)
- Daniel Weishäupl
- From the Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany.,the Center for Rare Diseases, 72076 Tübingen, Germany.,the NGS Competence Center, 72076 Tübingen, Germany.,the Graduate Training Center of Neuroscience, 72074 Tübingen, Germany
| | - Juliane Schneider
- From the Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany.,the Center for Rare Diseases, 72076 Tübingen, Germany.,the NGS Competence Center, 72076 Tübingen, Germany
| | - Barbara Peixoto Pinheiro
- From the Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany.,the Center for Rare Diseases, 72076 Tübingen, Germany.,the NGS Competence Center, 72076 Tübingen, Germany
| | - Corinna Ruess
- From the Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany.,the Center for Rare Diseases, 72076 Tübingen, Germany.,the NGS Competence Center, 72076 Tübingen, Germany
| | - Sandra Maria Dold
- From the Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany.,the Center for Rare Diseases, 72076 Tübingen, Germany.,the NGS Competence Center, 72076 Tübingen, Germany
| | - Felix von Zweydorf
- the German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany, and
| | - Christian Johannes Gloeckner
- the German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany, and.,the Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | - Jana Schmidt
- From the Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany.,the Center for Rare Diseases, 72076 Tübingen, Germany.,the NGS Competence Center, 72076 Tübingen, Germany
| | - Olaf Riess
- From the Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany.,the Center for Rare Diseases, 72076 Tübingen, Germany.,the NGS Competence Center, 72076 Tübingen, Germany
| | - Thorsten Schmidt
- From the Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany, .,the Center for Rare Diseases, 72076 Tübingen, Germany.,the NGS Competence Center, 72076 Tübingen, Germany
| |
Collapse
|
54
|
Oh AJ, Chen T, Shariati MA, Jehangir N, Hwang TN, Liao YJ. A simple saccadic reading test to assess ocular motor function in cerebellar ataxia. PLoS One 2018; 13:e0203924. [PMID: 30403759 PMCID: PMC6221255 DOI: 10.1371/journal.pone.0203924] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 08/30/2018] [Indexed: 01/09/2023] Open
Abstract
Cerebellar ataxia is a neurological disorder due to dysfunction of the cerebellum that affects coordination of fine movement, gait, and balance. Although ataxic patients commonly exhibit abnormal eye movement and have difficulties with saccadic reading, quantification of ocular motor abilities during reading in the clinical setting is rarely done. In this study, we assess visual performance with simple reading tests that can be used in the clinical setting and performed video infrared oculography in 11 patients with hereditary or acquired cerebellar ataxia and 11 age-matched controls. We found that compared with controls, ataxic patients read significantly slower on regularly and irregularly spaced 120 single-digit number reading tasks (read aloud) (p = 0.02 for both) but not on a word reading task (read silently), although there was large variability on the word reading task. Among the 3 reading tasks, the regularly spaced number reading task had the greatest difference (44%) between ataxic patients and controls. Analysis of oculography revealed that ataxic patients had slower reading speeds on the regularly spaced number reading task because of significantly higher saccade and fixation counts, impairment of small amplitude progressive saccades as well as large amplitude, line-changing saccades, greater fixation dispersion, and irregularity of scan paths and staircase gaze patterns. Our findings show that infrared oculography remains the gold standard in assessment of ocular motor difficulties during reading in ataxic patients. In the absence of this capability in the clinical setting, a simple 120 regularly spaced single-digit saccadic number reading test, which most patients can perform in less than 2 minutes, can be a possible biomarker for ocular motor abilities necessary for reading.
Collapse
Affiliation(s)
- Angela Jinsook Oh
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Tiffany Chen
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Mohammad Ali Shariati
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Naz Jehangir
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Thomas N. Hwang
- Department of Ophthalmology, Kaiser Permanente Redwood City Medical Center, Redwood City, California, United States of America
| | - Yaping Joyce Liao
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Neurology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
55
|
Matos CA, de Almeida LP, Nóbrega C. Machado-Joseph disease/spinocerebellar ataxia type 3: lessons from disease pathogenesis and clues into therapy. J Neurochem 2018; 148:8-28. [PMID: 29959858 DOI: 10.1111/jnc.14541] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/05/2018] [Accepted: 06/27/2018] [Indexed: 12/25/2022]
Abstract
Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is an incurable disorder, widely regarded as the most common form of spinocerebellar ataxia in the world. MJD/SCA3 arises from mutation of the ATXN3 gene, but this simple monogenic cause contrasts with the complexity of the pathogenic mechanisms that are currently admitted to underlie neuronal dysfunction and death. The aberrantly expanded protein product - ataxin-3 - is known to aggregate and generate toxic species that disrupt several cell systems, including autophagy, proteostasis, transcription, mitochondrial function and signalling. Over the years, research into putative therapeutic approaches has often been devoted to the development of strategies that counteract disease at different stages of cellular pathogenesis. Silencing the pathogenic protein, blocking aggregation, inhibiting toxic proteolytic processing and counteracting dysfunctions of the cellular systems affected have yielded promising ameliorating results in studies with cellular and animal models. The current review analyses the available studies dedicated to the investigation of MJD/SCA3 pathogenesis and the exploration of possible therapeutic strategies, focusing primarily on gene therapy and pharmacological approaches rooted on the molecular and cellular mechanisms of disease.
Collapse
Affiliation(s)
- Carlos A Matos
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Clévio Nóbrega
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Department of Biomedical Sciences and Medicine, University of Algarve, Coimbra, Portugal.,Centre for Biomedical Research (CBMR), University of Algarve, Coimbra, Portugal.,Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
| |
Collapse
|
56
|
Postural Instability in Prodromal Spinocerebellar Ataxia Type 2: Insights into Cerebellar Involvement Before Onset of Permanent Ataxia. THE CEREBELLUM 2018; 16:279-281. [PMID: 26956609 DOI: 10.1007/s12311-016-0771-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
57
|
Cheng N, Wied HM, Gaul JJ, Doyle LE, Reich SG. SCA2 presenting as a focal dystonia. JOURNAL OF CLINICAL MOVEMENT DISORDERS 2018; 5:6. [PMID: 30123518 PMCID: PMC6090825 DOI: 10.1186/s40734-018-0073-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/03/2018] [Indexed: 11/14/2022]
Abstract
BACKGROUND Spinocerebellar ataxia 2 (SCA2) is an autosomal dominant neurodegenerative disorder caused by CAG repeat expansions in ATXN2 on chromosome 12q24. Patients present with adult-onset progressive gait ataxia, slow saccades, nystagmus, dysarthria and peripheral neuropathy. Dystonia is known to occur as SCA2 advances, but is rarely the presenting symptom. CASE PRESENTATION A 43-year-old right handed woman presented with focal dystonia of the right hand which started two years earlier with difficulty writing. There were only mild cerebellar signs. Her mother was reported to have a progressive gait disorder and we subsequently learned that she had SCA2. A total of 10 maternal family members were similarly affected. Over the course of 10 years, the patient's cerebellar signs progressed only mildly however the dystonia worsened to the extent of inability to use her right hand. Dystonia did not improve significantly with botulinum toxin, levodopa or trihexyphenidyl, but has shown marked improvement since DBS implantation in the GPi. CONCLUSIONS We describe a patient with SCA2 who presented with focal dystonia of the right upper extremity. Subtle cerebellar signs as well as the family history became especially important given the absence of predominant gait ataxia. Our case emphasizes that focal dystonia is not only a feature of SCA2, but can also rarely be the presenting sign as well as the most prominent feature during the disease course.
Collapse
Affiliation(s)
- Nan Cheng
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Heather M. Wied
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | | | - Lauren E. Doyle
- Department of Genetic Counseling, University of North Carolina Greensboro School of Health and Human Sciences, Greensboro, NC USA
| | - Stephen G. Reich
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
58
|
Consensus Paper: Neurophysiological Assessments of Ataxias in Daily Practice. THE CEREBELLUM 2018; 17:628-653. [DOI: 10.1007/s12311-018-0937-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
59
|
Luo L, Wang J, Lo RY, Figueroa KP, Pulst SM, Kuo PH, Perlman S, Wilmot G, Gomez CM, Schmahmann J, Paulson H, Shakkottai VG, Ying SH, Zesiewicz T, Bushara K, Geschwind M, Xia G, Subramony SH, Ashizawa T, Kuo SH. The Initial Symptom and Motor Progression in Spinocerebellar Ataxias. THE CEREBELLUM 2018; 16:615-622. [PMID: 27848087 DOI: 10.1007/s12311-016-0836-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The aim of this study is to determine whether the initial symptom associates with motor progression in spinocerebellar ataxias (SCAs). SCAs are clinically heterogeneous and the initial presentation may represent different subtypes of SCA with different motor progression. We studied 317 participants with SCAs1, 2, 3, and 6 from the Clinical Research Consortium for SCAs (CRC-SCA) and repeatedly measured the severity of ataxia for 2 years. SCA patients were divided into gait-onset and non-gait-onset (speech, vision, and hand dexterity) groups based on the initial presentation. In addition to demographic comparison, we employed regression models to study ataxia progression in these two groups after adjusting for age, sex, and pathological CAG repeats. The majority of SCA patients had gait abnormality as an initial presentation. The pathological CAG repeat expansions were similar between the gait-onset and non-gait-onset groups. In SCA1, gait-onset group progressed slower than non-gait-onset group, while gait-onset SCA6 group progressed faster than their counterpart. In addition, the disease presented 9 years later for SCA2 gait-onset group than non-gait-onset group. Initial symptoms of SCA3 did not influence age of onset or disease progression. The initial symptom in each SCA has a different influence on age of onset and motor progression. Therefore, gait and non-gait-onset groups of SCAs might represent different subtypes of the diseases.
Collapse
Affiliation(s)
- Lan Luo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Jie Wang
- Department of Basic and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Raymond Y Lo
- Department of Neurology, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien, Taiwan
| | - Karla P Figueroa
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Pei-Hsin Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Department of Neurology, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien, Taiwan
| | - Susan Perlman
- Department of Neurology, University of California Los Angeles, California, USA
| | - George Wilmot
- Department of Neurology, Emory University, Atlanta, Georgia, USA
| | | | - Jeremy Schmahmann
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Henry Paulson
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Sarah H Ying
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Theresa Zesiewicz
- Department of Neurology, University of South Florida, Tampa, Florida, USA
| | - Khalaf Bushara
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael Geschwind
- Department of Neurology, University of California San Francisco, California, USA
| | - Guangbin Xia
- Department of Neurology and McKnight Brain Institute, University of Florida, Gainesville, USA
| | - S H Subramony
- Department of Neurology and McKnight Brain Institute, University of Florida, Gainesville, USA
| | | | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
60
|
Cagnoli C, Brussino A, Mancini C, Ferrone M, Orsi L, Salmin P, Pappi P, Giorgio E, Pozzi E, Cavalieri S, Di Gregorio E, Ferrero M, Filla A, De Michele G, Gellera C, Mariotti C, Nethisinghe S, Giunti P, Stevanin G, Brusco A. Spinocerebellar Ataxia Tethering PCR: A Rapid Genetic Test for the Diagnosis of Spinocerebellar Ataxia Types 1, 2, 3, 6, and 7 by PCR and Capillary Electrophoresis. J Mol Diagn 2018; 20:289-297. [PMID: 29462666 DOI: 10.1016/j.jmoldx.2017.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/17/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022] Open
Abstract
Spinocerebellar ataxia (SCA) types 1, 2, 3, 6, and 7, associated with a (CAG)n repeat expansion in coding sequences, are the most prevalent autosomal dominant ataxias worldwide (approximately 60% of the cases). In addition, the phenotype of SCA2 expansions has been now extended to Parkinson disease and amyotrophic lateral sclerosis. Their diagnosis is currently based on a PCR to identify small expanded alleles, followed by a second-level test whenever a false normal homozygous or a CAT interruption in SCA1 needs to be verified. Next-generation sequencing still does not allow efficient detection of these repeats. Here, we show the efficacy of a novel, rapid, and cost-effective method to identify and size pathogenic expansions in SCA1, 2, 3, 6, and 7 and recognize large alleles or interruptions without a second-level test. Twenty-five healthy controls and 33 expansion carriers were analyzed: alleles migrated consistently in different PCRs and capillary runs, and homozygous individuals were always distinguishable from heterozygous carriers of both common and large (>100 repeats) pathogenic CAG expansions. Repeat number could be calculated counting the number of peaks, except for the largest SCA2 and SCA7 alleles. Interruptions in SCA1 were always visible. Overall, our method allows a simpler, cost-effective, and sensibly faster SCA diagnostic protocol compared with the standard technique and to the still unadapted next-generation sequencing.
Collapse
Affiliation(s)
- Claudia Cagnoli
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Cecilia Mancini
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Marina Ferrone
- Department of Medical Sciences, University of Turin, Turin, Italy; Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Laura Orsi
- Department of Laboratory Medicine, and the Neurologic Division I, Department of Neuroscience and Mental Health, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Paola Salmin
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Patrizia Pappi
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Elisa Giorgio
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Elisa Pozzi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Simona Cavalieri
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Marta Ferrero
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alessandro Filla
- Department of Neurosciences, Odontostomatological and Reproductive Sciences, University Federico II, Naples, Italy
| | - Giuseppe De Michele
- Department of Neurosciences, Odontostomatological and Reproductive Sciences, University Federico II, Naples, Italy
| | - Cinzia Gellera
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Carlo Besta Neurological Institute, Milan, Italy
| | - Caterina Mariotti
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Carlo Besta Neurological Institute, Milan, Italy
| | - Suran Nethisinghe
- Ataxia Centre, Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Paola Giunti
- Ataxia Centre, Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Giovanni Stevanin
- INSERM, U 1127, Institut du Cerveau et de la Moelle epinière, Paris, France; Centre National de la Recherche Scientifique UMR 7225, Paris, France; UMRS 1127, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités, Paris, France; Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France; Centre de Référence de Neurogénétique, Hôpital de la Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Alfredo Brusco
- Department of Medical Sciences, University of Turin, Turin, Italy; Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy.
| |
Collapse
|
61
|
Du X, Gomez CM. Spinocerebellar [corrected] Ataxia Type 6: Molecular Mechanisms and Calcium Channel Genetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:147-173. [PMID: 29427102 DOI: 10.1007/978-3-319-71779-1_7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Spinocerebellar ataxia (SCA) type 6 is an autosomal dominant disease affecting cerebellar degeneration. Clinically, it is characterized by pure cerebellar dysfunction, slowly progressive unsteadiness of gait and stance, slurred speech, and abnormal eye movements with late onset. Pathological findings of SCA6 include a diffuse loss of Purkinje cells, predominantly in the cerebellar vermis. Genetically, SCA6 is caused by expansion of a trinucleotide CAG repeat in the last exon of longest isoform CACNA1A gene on chromosome 19p13.1-p13.2. Normal alleles have 4-18 repeats, while alleles causing disease contain 19-33 repeats. Due to presence of a novel internal ribosomal entry site (IRES) with the mRNA, CACNA1A encodes two structurally unrelated proteins with distinct functions within an overlapping open reading frame (ORF) of the same mRNA: (1) α1A subunit of P/Q-type voltage gated calcium channel; (2) α1ACT, a newly recognized transcription factor, with polyglutamine repeat at C-terminal end. Understanding the function of α1ACT in physiological and pathological conditions may elucidate the pathogenesis of SCA6. More importantly, the IRES, as the translational control element of α1ACT, provides a potential therapeutic target for the treatment of SCA6.
Collapse
Affiliation(s)
- Xiaofei Du
- Department of Neurology, The University of Chicago, Chicago, 60637, IL, USA
| | | |
Collapse
|
62
|
Paulson HL, Shakkottai VG, Clark HB, Orr HT. Polyglutamine spinocerebellar ataxias - from genes to potential treatments. Nat Rev Neurosci 2017; 18:613-626. [PMID: 28855740 PMCID: PMC6420820 DOI: 10.1038/nrn.2017.92] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The dominantly inherited spinocerebellar ataxias (SCAs) are a large and diverse group of neurodegenerative diseases. The most prevalent SCAs (SCA1, SCA2, SCA3, SCA6 and SCA7) are caused by expansion of a glutamine-encoding CAG repeat in the affected gene. These SCAs represent a substantial portion of the polyglutamine neurodegenerative disorders and provide insight into this class of diseases as a whole. Recent years have seen considerable progress in deciphering the clinical, pathological, physiological and molecular aspects of the polyglutamine SCAs, with these advances establishing a solid base from which to pursue potential therapeutic approaches.
Collapse
Affiliation(s)
- Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Vikram G Shakkottai
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - H Brent Clark
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Harry T Orr
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, 55455, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| |
Collapse
|
63
|
de Assis AM, Saute JAM, Longoni A, Haas CB, Torrez VR, Brochier AW, Souza GN, Furtado GV, Gheno TC, Russo A, Monte TL, Castilhos RM, Schumacher-Schuh A, D'Avila R, Donis KC, de Mello Rieder CR, Souza DO, Camey S, Leotti VB, Jardim LB, Portela LV. Peripheral Oxidative Stress Biomarkers in Spinocerebellar Ataxia Type 3/Machado-Joseph Disease. Front Neurol 2017; 8:485. [PMID: 28979235 PMCID: PMC5611390 DOI: 10.3389/fneur.2017.00485] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/31/2017] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is a polyglutamine disorder with no current disease-modifying treatment. Conformational changes in mutant ataxin-3 trigger different pathogenic cascades, including reactive oxygen species (ROS) generation; however, the clinical relevance of oxidative stress elements as peripheral biomarkers of SCA3/MJD remains unknown. We aimed to evaluate ROS production and antioxidant defense capacity in symptomatic and presymptomatic SCA3/MJD individuals and correlate these markers with clinical and molecular data with the goal of assessing their properties as disease biomarkers. METHODS Molecularly confirmed SCA3/MJD carriers and controls were included in an exploratory case-control study. Serum ROS, measured by 2',7'-dichlorofluorescein diacetate (DCFH-DA) as well as superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) antioxidant enzyme activities, levels were assessed. RESULTS Fifty-eight early/moderate stage symptomatic SCA3/MJD, 12 presymptomatic SCA3/MJD, and 47 control individuals were assessed. The DCFH-DA levels in the symptomatic group were 152.82 nmol/mg of protein [95% confidence interval (CI), 82.57-223.08, p < 0.001] higher than in the control and 243.80 nmol/mg of protein (95% CI, 130.64-356.96, p < 0.001) higher than in the presymptomatic group. The SOD activity in the symptomatic group was 3 U/mg of protein (95% CI, 0.015-6.00, p = 0.048) lower than in the presymptomatic group. The GSH-Px activity in the symptomatic group was 13.96 U/mg of protein (95% CI, 5.90-22.03, p < 0.001) lower than in the control group and 20.52 U/mg of protein (95% CI, 6.79-34.24, p < 0.001) lower than in the presymptomatic group and was inversely correlated with the neurological examination score for spinocerebellar ataxias (R = -0.309, p = 0.049). CONCLUSION Early/moderate stage SCA3/MJD patients presented a decreased antioxidant capacity and increased ROS generation. GSH-Px activity was the most promising oxidative stress disease biomarker in SCA3/MJD. Further longitudinal studies are necessary to identify both the roles of redox parameters in SCA3/MJD pathophysiology and as surrogate outcomes for clinical trials.
Collapse
Affiliation(s)
- Adriano M de Assis
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Saúde e Comportamento, Centro de Ciências da Vida e da Saúde, Universidade Católica de Pelotas (UCPel), Pelotas, Brazil
| | - Jonas Alex Morales Saute
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Serviço de Neurologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Laboratório de Identificação Genética, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Aline Longoni
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Clarissa Branco Haas
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Vitor Rocco Torrez
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Andressa Wigner Brochier
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Gabriele Nunes Souza
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Gabriel Vasata Furtado
- Laboratório de Identificação Genética, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Tailise Conte Gheno
- Laboratório de Identificação Genética, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Aline Russo
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Thais Lampert Monte
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Serviço de Neurologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Raphael Machado Castilhos
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Artur Schumacher-Schuh
- Serviço de Neurologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Rui D'Avila
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Karina Carvalho Donis
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Carlos Roberto de Mello Rieder
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Serviço de Neurologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Departamento de Neurologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Diogo Onofre Souza
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Suzi Camey
- Programa de Pós-Graduação em Epidemiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Departamento de Estatística, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Vanessa Bielefeldt Leotti
- Programa de Pós-Graduação em Epidemiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Departamento de Estatística, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Laura Bannach Jardim
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Laboratório de Identificação Genética, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luis Valmor Portela
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
64
|
Velázquez-Pérez L, Rodríguez-Labrada R, Laffita-Mesa JM. Prodromal spinocerebellar ataxia type 2: Prospects for early interventions and ethical challenges. Mov Disord 2017; 32:708-718. [DOI: 10.1002/mds.26969] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/24/2017] [Accepted: 01/30/2017] [Indexed: 12/29/2022] Open
Affiliation(s)
| | | | - José Miguel Laffita-Mesa
- Centre for the Research and Rehabilitation of Hereditary Ataxias; Holguín Cuba
- Department of Clinical Neuroscience; Karolinska Universitetssjukhuset; Stockholm Sweden
| |
Collapse
|
65
|
Wu C, Chen DB, Feng L, Zhou XX, Zhang JW, You HJ, Liang XL, Pei Z, Li XH. Oculomotor deficits in spinocerebellar ataxia type 3: Potential biomarkers of preclinical detection and disease progression. CNS Neurosci Ther 2017; 23:321-328. [PMID: 28195427 DOI: 10.1111/cns.12676] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/07/2017] [Accepted: 01/10/2017] [Indexed: 12/19/2022] Open
Abstract
AIMS To detect specific oculomotor deficits in preclinical stage of spinocerebellar ataxia type 3 (SCA3) and evaluate whether these abnormalities prove useful as potential biomarkers of disease progression. METHODS A Chinese cohort of 56 patients with SCA3, including 12 preclinical carriers of SCA3 (pre-SCA3) and 44 manifest SCA3, and 26 healthy control individuals were recruited. We performed a detailed investigation on central oculomotor performance including fixation, gaze, smooth pursuit, prosaccade, and antisaccade using video-oculography. RESULTS Common oculomotor features of pre-SCA3 included square-wave jerk during central fixation and gaze holding, impaired vertical smooth pursuit, slow upward saccade, and increased antisaccade error rate. In our SCA3 cohort, all oculomotor parameters were correlated with the score of the Scale for the Assessment and Rating of Ataxia, whilst some of them were correlated with disease duration. CONCLUSION This study showed that a series of neuropathological changes reflected by oculomotor abnormalities appeared preferentially in preclinical stage of SCA3. Accordingly, objective oculomotor preclinical signs may be useful to detect the optimum time-point for therapeutic interventions in future clinical trials of SCA3. Larger and longitudinal data are warranted to confirm our results.
Collapse
Affiliation(s)
- Chao Wu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, Guangzhou, Guangdong, China
| | - Ding-Bang Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, Guangzhou, Guangdong, China
| | - Li Feng
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, Guangzhou, Guangdong, China.,Department of Neurology Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiang-Xue Zhou
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, Guangzhou, Guangdong, China.,Department of Neurology, The East Area of the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ji-Wei Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hua-Jing You
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, Guangzhou, Guangdong, China
| | - Xiu-Ling Liang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, Guangzhou, Guangdong, China
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, Guangzhou, Guangdong, China
| | - Xun-Hua Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, Guangzhou, Guangdong, China
| |
Collapse
|
66
|
Ilg W, Fleszar Z, Schatton C, Hengel H, Harmuth F, Bauer P, Timmann D, Giese M, Schöls L, Synofzik M. Individual changes in preclinical spinocerebellar ataxia identified via increased motor complexity. Mov Disord 2016; 31:1891-1900. [PMID: 27782309 DOI: 10.1002/mds.26835] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/30/2016] [Accepted: 09/11/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Movement changes in autosomal-dominant spinocerebellar ataxias are suggested to occur many years before clinical manifestation. Detecting and quantifying these changes in the preclinical phase offers a window for future treatment interventions and allows the clinician to decipher the earliest dysfunctions starting the evolution of spinocerebellar ataxia. We hypothesized that quantitative movement analysis of complex stance and gait tasks allows to (i) reveal movement changes already at early stages of the preclinical phase when clinical ataxia signs are still absent and to (ii) quantify motor progression in this phase. METHODS A total of 46 participants (14 preclinical spinocerebellar ataxia mutation carriers [spinocerebellar ataxias 1,2,3,6], 9 spinocerebellar ataxia patients at an early stage; 23 healthy controls) were assessed by quantitative movement analyses of increasingly complex stance and walking tasks in a cross-sectional design. RESULTS Body sway in stance and spatiotemporal variability in tandem walking differentiated between preclinical mutation carriers and healthy controls (P < .01). Complex movement conditions allowed one to discriminate even those mutation carriers without any clinical signs in posture and gait (SARAposture&gait = 0; P < .04). Multivariate regression analysis categorized preclinical mutation carriers on a single-subject level with 100% accuracy within a range of 10 years to the estimated onset. Movement features in stance and gait correlated significantly with genetically estimated time to onset, indicating a gradual increase of motor changes with increasing proximity to disease manifestation. CONCLUSION Our results provide evidence for subclinical motor changes in spinocerebellar ataxia, which allow to discriminate patients without clinical signs even on a single-subject basis and may help capture disease progression in the preclinical phase. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Winfried Ilg
- Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany.,Centre for Integrative Neuroscience (CIN), Tübingen, Germany
| | - Zofia Fleszar
- Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany.,Centre for Integrative Neuroscience (CIN), Tübingen, Germany
| | - Cornelia Schatton
- Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany.,Centre for Integrative Neuroscience (CIN), Tübingen, Germany
| | - Holger Hengel
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research and Centre of Neurology, Tübingen, Germany.,German Research Center for Neurodegenerative Diseases, University of Tübingen, Germany
| | - Florian Harmuth
- Department of Medical Genetics, University of Tübingen, Tübingen, Germany
| | - Peter Bauer
- Department of Medical Genetics, University of Tübingen, Tübingen, Germany
| | - Dagmar Timmann
- Department of Neurology, University of Duisburg-Essen, Germany
| | - Martin Giese
- Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany.,Centre for Integrative Neuroscience (CIN), Tübingen, Germany
| | - Ludger Schöls
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research and Centre of Neurology, Tübingen, Germany.,German Research Center for Neurodegenerative Diseases, University of Tübingen, Germany
| | - Matthis Synofzik
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research and Centre of Neurology, Tübingen, Germany.,German Research Center for Neurodegenerative Diseases, University of Tübingen, Germany
| |
Collapse
|
67
|
Falcon MI, Gomez CM, Chen EE, Shereen A, Solodkin A. Early Cerebellar Network Shifting in Spinocerebellar Ataxia Type 6. Cereb Cortex 2016; 26:3205-18. [PMID: 26209844 PMCID: PMC4898673 DOI: 10.1093/cercor/bhv154] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spinocerebellar ataxia 6 (SCA6), an autosomal dominant degenerative disease, is characterized by diplopia, gait ataxia, and incoordination due to severe progressive degeneration of Purkinje cells in the vestibulo- and spinocerebellum. Ocular motor deficits are common, including difficulty fixating on moving objects, nystagmus and disruption of smooth pursuit movements. In presymptomatic SCA6, there are alterations in saccades and smooth-pursuit movements. We sought to assess functional and structural changes in cerebellar connectivity associated with a visual task, hypothesizing that gradual changes would parallel disease progression. We acquired functional magnetic resonance imaging and diffusion tensor imaging data during a passive smooth-pursuit task in 14 SCA6 patients, representing a range of disease duration and severity, and performed a cross-sectional comparison of cerebellar networks compared with healthy controls. We identified a shift in activation from vermis in presymptomatic individuals to lateral cerebellum in moderate-to-severe cases. Concomitantly, effective connectivity between regions of cerebral cortex and cerebellum was at its highest in moderate cases, and disappeared in severe cases. Finally, we noted structural differences in the cerebral and cerebellar peduncles. These unique results, spanning both functional and structural domains, highlight widespread changes in SCA6 and compensatory mechanisms associated with cerebellar physiology that could be utilized in developing new therapies.
Collapse
Affiliation(s)
| | - C M Gomez
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - E E Chen
- Department of Anatomy and Neurobiology
| | - A Shereen
- Department of Anatomy and Neurobiology
| | - A Solodkin
- Department of Anatomy and Neurobiology Department of Neurology, UC Irvine School of Medicine, Irvine, CA 92697, USA
| |
Collapse
|
68
|
Moriarty A, Cook A, Hunt H, Adams ME, Cipolotti L, Giunti P. A longitudinal investigation into cognition and disease progression in spinocerebellar ataxia types 1, 2, 3, 6, and 7. Orphanet J Rare Dis 2016; 11:82. [PMID: 27333979 PMCID: PMC4917932 DOI: 10.1186/s13023-016-0447-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 05/10/2016] [Indexed: 01/31/2023] Open
Abstract
Background The natural history of clinical symptoms in the spinocerebellar ataxias (SCA)s has been well characterised. However there is little longitudinal data comparing cognitive changes in the most common SCA subtypes over time. The present study provides a preliminary longitudinal characterisation of the clinical and cognitive profiles in patients with SCA1, SCA2, SCA3, SCA6 and SCA7, with the aim of elucidating the role of the cerebellum in cognition. Methods 13 patients with different SCAs all caused by CAG repeat expansion (SCA1, n = 2; SCA2, n = 2; SCA3, n = 2; SCA6, n = 4; and SCA7, n = 3) completed a comprehensive battery of cognitive and mood assessments at two time points, a mean of 7.35 years apart. All patients were evaluated clinically using the Scale for the Rating and Assessment of Ataxia (SARA) and the Inventory of Non-Ataxia Signs (INAS). Patients underwent structural MRI imaging at follow-up. Results Clinical scale scores increased in all patients over time, most prominently in the SCA1 (SARA) and SCA3 (INAS) groups. New impairments on neuropsychological tests were most commonly observed with executive functions, speed, attention, visual memory and Theory of Mind. Results suggest possible differences in cognitive decline in SCA subtypes, with the most rapid cognitive decline observed in the SCA1 patients, and the least in the SCA6 patients, congruent with observed patterns of motor deterioration. Minimal changes in mood were observed, and MRI measures of atrophy did not correlate with cognitive decline. Conclusion As well as increasing physical impairment, cognitive decline over time appears to be a distinct aspect of the SCA phenotype, in keeping with the cerebellar cognitive-affective syndrome. Our data suggest a trend of cognitive decline that is different for each SCA subtype, and for the majority is related to the severity of cerebellar motor impairment. Electronic supplementary material The online version of this article (doi:10.1186/s13023-016-0447-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amy Moriarty
- Department of Neuropsychology, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Arron Cook
- Department of Molecular Neuroscience, Ataxia Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Helen Hunt
- Department of Neuropsychology, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Matthew E Adams
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Lisa Cipolotti
- Department of Neuropsychology, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK.,Dipartimento Di Psicologia, Universita Degli Studi Di Palermo, Palermo, Italy
| | - Paola Giunti
- Department of Molecular Neuroscience, Ataxia Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
69
|
Duarte JV, Faustino R, Lobo M, Cunha G, Nunes C, Ferreira C, Januário C, Castelo-Branco M. Parametric fMRI of paced motor responses uncovers novel whole-brain imaging biomarkers in spinocerebellar ataxia type 3. Hum Brain Mapp 2016; 37:3656-68. [PMID: 27273236 DOI: 10.1002/hbm.23266] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 04/05/2016] [Accepted: 05/14/2016] [Indexed: 12/13/2022] Open
Abstract
Machado-Joseph Disease, inherited type 3 spinocerebellar ataxia (SCA3), is the most common form worldwide. Neuroimaging and neuropathology have consistently demonstrated cerebellar alterations. Here we aimed to discover whole-brain functional biomarkers, based on parametric performance-level-dependent signals. We assessed 13 patients with early SCA3 and 14 healthy participants. We used a combined parametric behavioral/functional neuroimaging design to investigate disease fingerprints, as a function of performance levels, coupled with structural MRI and voxel-based morphometry. Functional magnetic resonance imaging (fMRI) was designed to parametrically analyze behavior and neural responses to audio-paced bilateral thumb movements at temporal frequencies of 1, 3, and 5 Hz. Our performance-level-based design probing neuronal correlates of motor coordination enabled the discovery that neural activation and behavior show critical loss of parametric modulation specifically in SCA3, associated with frequency-dependent cortico/subcortical activation/deactivation patterns. Cerebellar/cortical rate-dependent dissociation patterns could clearly differentiate between groups irrespective of grey matter loss. Our findings suggest functional reorganization of the motor network and indicate a possible role of fMRI as a tool to monitor disease progression in SCA3. Accordingly, fMRI patterns proved to be potential biomarkers in early SCA3, as tested by receiver operating characteristic analysis of both behavior and neural activation at different frequencies. Discrimination analysis based on BOLD signal in response to the applied parametric finger-tapping task significantly often reached >80% sensitivity and specificity in single regions-of-interest.Functional fingerprints based on cerebellar and cortical BOLD performance dependent signal modulation can thus be combined as diagnostic and/or therapeutic targets in hereditary ataxia. Hum Brain Mapp 37:3656-3668, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- João Valente Duarte
- Institute for Biomedical Imaging and Life Sciences (IBILI) - Faculty of Medicine, University of Coimbra, Portugal.,Institute of Nuclear Sciences Applied to Health (ICNAS) - University of Coimbra, Brain Imaging Network of Portugal, Portugal
| | - Ricardo Faustino
- Institute for Biomedical Imaging and Life Sciences (IBILI) - Faculty of Medicine, University of Coimbra, Portugal.,Institute of Nuclear Sciences Applied to Health (ICNAS) - University of Coimbra, Brain Imaging Network of Portugal, Portugal
| | - Mercês Lobo
- Institute for Biomedical Imaging and Life Sciences (IBILI) - Faculty of Medicine, University of Coimbra, Portugal.,Institute of Nuclear Sciences Applied to Health (ICNAS) - University of Coimbra, Brain Imaging Network of Portugal, Portugal
| | - Gil Cunha
- Institute of Nuclear Sciences Applied to Health (ICNAS) - University of Coimbra, Brain Imaging Network of Portugal, Portugal.,Department of Neuroradiology, Hospital of Coimbra University, Portugal
| | - César Nunes
- Department of Neuroradiology, Hospital of Coimbra University, Portugal
| | - Carlos Ferreira
- Institute for Biomedical Imaging and Life Sciences (IBILI) - Faculty of Medicine, University of Coimbra, Portugal.,Institute of Nuclear Sciences Applied to Health (ICNAS) - University of Coimbra, Brain Imaging Network of Portugal, Portugal
| | | | - Miguel Castelo-Branco
- Institute for Biomedical Imaging and Life Sciences (IBILI) - Faculty of Medicine, University of Coimbra, Portugal.,Institute of Nuclear Sciences Applied to Health (ICNAS) - University of Coimbra, Brain Imaging Network of Portugal, Portugal
| |
Collapse
|
70
|
Borroni B, Di Gregorio E, Orsi L, Vaula G, Costanzi C, Tempia F, Mitro N, Caruso D, Manes M, Pinessi L, Padovani A, Brusco A, Boccone L. Clinical and neuroradiological features of spinocerebellar ataxia 38 (SCA38). Parkinsonism Relat Disord 2016; 28:80-6. [PMID: 27143115 PMCID: PMC4925464 DOI: 10.1016/j.parkreldis.2016.04.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/18/2016] [Accepted: 04/25/2016] [Indexed: 01/21/2023]
Abstract
INTRODUCTION SCA38 (MIM 611805) caused by mutations within the ELOVL5 gene, which encodes an enzyme involved in the synthesis of long-chain fatty acids with a high and specific expression in Purkinje cells, has recently been identified. OBJECTIVE The present study was aimed at describing the clinical and neuroimaging features, and the natural history of SCA38. METHODS We extended our clinical and brain neuroimaging data on SCA38 including 21 cases from three Italian families. All had the ELOVL5 c.689G > T (p.Gly230Val) missense mutation. RESULTS Age at disease onset was in the fourth decade of life. The presenting features were nystagmus (100% of cases) and slowly progressive gait ataxia (95%). Frequent signs and symptoms included pes cavus (82%) and hyposmia (76%); rarer symptoms were hearing loss (33%) and anxiety disorder (33%). The disease progressed with cerebellar symptoms such as limb ataxia, dysarthria, dysphagia, and ophtalmoparesis followed in the later stages by ophtalmoplegia. Peripheral nervous system involvement was present in the last phase of disease with sensory loss. Dementia or extrapyramidal signs were not detected. Significant loss of abilities of daily living was reported only after 20 years of the disease. Brain imaging documented cerebellar atrophy with sparing of cerebral cortex and no white matter disease. CONCLUSIONS SCA38 is a rare form of inherited ataxia with characteristic clinical features, including pes cavus and hyposmia, that may guide genetic screening and prompt diagnosis in light of possible future therapeutic interventions.
Collapse
Affiliation(s)
- Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
| | - Eleonora Di Gregorio
- Department of Medical Sciences, University of Turin, Turin, Italy; Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Laura Orsi
- Neurologic Division 1, Department of Neuroscience and Mental Health, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Giovanna Vaula
- Neurologic Division 1, Department of Neuroscience and Mental Health, Città della Salute e della Scienza University Hospital, Turin, Italy
| | | | - Filippo Tempia
- Neuroscience Institute Cavalieri Ottolenghi (NICO) and Department of Neuroscience, University of Turin, Turin, Italy
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Marta Manes
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Lorenzo Pinessi
- Neurologic Division 1, Department of Neuroscience and Mental Health, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Turin, Turin, Italy; Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | | |
Collapse
|
71
|
Wang X, Wang H, Xia Y, Jiang H, Shen L, Wang S, Shen R, Xu Q, Luo X, Tang B. Spinocerebellar ataxia type 6: Systematic patho-anatomical study reveals different phylogenetically defined regions of the cerebellum and neural pathways undergo different evolutions of the degenerative process. Neuropathology 2016; 30:501-14. [PMID: 20113406 DOI: 10.1111/j.1440-1789.2009.01094.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Spinocerebellar ataxia type 6 is a late onset autosomal dominantly inherited ataxic disorder, and previous patho-anatomical studies have only reported neurodegeneration in SCA6 as being confined to the cerebellar cortex, dentate nucleus and inferior olive. However, the characteristics of cerebellar symptoms and many poorly understood "extracerebellar" symptoms reveal the three cerebellar regions and the corresponding precerebellar nuclei may undergo differing evolution of the degenerative process, and a more widespread brainstem degeneration in SCA6. We carried out a detailed immunohistochemical study in two SCA6 patients who had rather early onset and short disease duration with 25 CAG repeats, which is atypical for SCA-6. We investigated the severity of neurodegeneration in each of the cerebellar regions and the corresponding precerebellar nuclei, and further characterize the extent of brain degeneration. This study confirmed that vestibulocerebellar, spinocerebellum and pontocerebellar are consistent targets of the pathological process of SCA6, but the severity of neurodegeneration in each of them was different. Vestibulocerebellum and the inferior cerebellar peduncle undergo the most severe neurodegeneration, while neurodegeneration in the pontocerebellar is less severe. Furthermore, we observed obvious neurodegeneration in layers II and III of the primary motor cortex, vestibular nuclei, inferior olivary nucleus, nucleus proprius and posterior spinocerebellar tract. Our detailed postmortem findings confirmed that SCA6 was not a simple "pure" cerebellar disease, but a complex neurodegenerative disease in which the three cerebellar regions underwent different evolutions of neurodegeneration process, and the corresponding precerebellar nuclei and the neural pathway were all involved.
Collapse
Affiliation(s)
- Xuejing Wang
- Department of Neurology, Xiangya Hospital,Department of Anatomy & Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, andDepartment of Anatomy, Qing Dao University, QingDao, Shandong, China
| | - Hui Wang
- Department of Neurology, Xiangya Hospital,Department of Anatomy & Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, andDepartment of Anatomy, Qing Dao University, QingDao, Shandong, China
| | - Yujun Xia
- Department of Neurology, Xiangya Hospital,Department of Anatomy & Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, andDepartment of Anatomy, Qing Dao University, QingDao, Shandong, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital,Department of Anatomy & Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, andDepartment of Anatomy, Qing Dao University, QingDao, Shandong, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital,Department of Anatomy & Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, andDepartment of Anatomy, Qing Dao University, QingDao, Shandong, China
| | - Shoubiao Wang
- Department of Neurology, Xiangya Hospital,Department of Anatomy & Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, andDepartment of Anatomy, Qing Dao University, QingDao, Shandong, China
| | - Ruowu Shen
- Department of Neurology, Xiangya Hospital,Department of Anatomy & Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, andDepartment of Anatomy, Qing Dao University, QingDao, Shandong, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital,Department of Anatomy & Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, andDepartment of Anatomy, Qing Dao University, QingDao, Shandong, China
| | - Xuegang Luo
- Department of Neurology, Xiangya Hospital,Department of Anatomy & Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, andDepartment of Anatomy, Qing Dao University, QingDao, Shandong, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital,Department of Anatomy & Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, andDepartment of Anatomy, Qing Dao University, QingDao, Shandong, China
| |
Collapse
|
72
|
Vision related quality of life in spinocerebellar ataxia. J Neurol Sci 2015; 358:404-8. [PMID: 26474795 DOI: 10.1016/j.jns.2015.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Spinocerebellar ataxia (SCA) leads to abnormal ocular motility and alignment. The objective of this study was to quantitatively assess vision, ocular motility and alignment and its impact on vision related quality of life (VRQOL) in SCA. METHODS Nineteen genetically diagnosed SCA subjects (11 SCA type 3, 3 SCA type 1 and 5 SCA type 6) participated at two university centers. All subjects completed the National Eye Institute Visual Function Questionnaire (NEI-VFQ), 10-Item Neuro-Ophthalmic Supplement (NOS), scale for assessment and rating of ataxia (SARA) and ophthalmic examination. Twelve subjects seen at one of the 2 sites underwent quantitative ocular motility and alignment assessment. RESULTS Composite scores for NEI-VFQ (mean 76.3±13) and NOS (mean 65.2±16.8) were significantly decreased in SCA subjects. NEI-VFQ subscale scores were decreased for general, near, distance and peripheral vision and driving. SCA patients had decreased low contrast sensitivity, stereoacuity and multiple ocular motility defects which included gaze limitation (9/12), nystagmus (5/12), distance esophoria (11/12), near exophoria (12/12) and receded near point of convergence. A significant negative correlation was noted between composite scores and distance convergence fusional amplitude. CONCLUSION VRQOL is significantly decreased in SCA compared to normal population. All SCA patients should be screened for visual disability and referred for neuro-ophthalmic assessment promptly.
Collapse
|
73
|
Abstract
While the onset of a dominantly inherited ataxia is typically taken to be the onset of gait ataxia, a wide range of other symptoms related to central and/or peripheral nervous system impairment, or even to non-neurological involvement, can be the presenting feature. Knowledge of these is fairly robust for the commonest spinocerebellar ataxias (SCAs 1, 2, 3 and 6) and for those where a striking non-ataxic presentation is the norm (SCAs 7 and 12), but the literature is potentially misleading in the rarer dominant ataxias. This review summarises what is currently known of these non-ataxic presentations and outlines and explains the difficulties associated with determining non-ataxic presentations of dominant ataxias. The relevant literature was surveyed, including systematic reviews (where available) and case reports. Non-ataxic presentations of dominant ataxias are classified by symptom.
Collapse
Affiliation(s)
- Elsdon Storey
- Department of Medicine (Neuroscience), Monash University, Alfred Hospital Campus, Commercial Road, Melbourne, VIC, 3004, Australia. .,Department of Neuroscience, Alfred Hospital, Commercial Road, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
74
|
Maas RP, van Gaalen J, Klockgether T, van de Warrenburg BP. The preclinical stage of spinocerebellar ataxias. Neurology 2015; 85:96-103. [DOI: 10.1212/wnl.0000000000001711] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/09/2015] [Indexed: 02/01/2023] Open
|
75
|
Chang YJ, Chou CC, Huang WT, Lu CS, Wong AM, Hsu MJ. Cycling Regimen Induces Spinal Circuitry Plasticity and Improves Leg Muscle Coordination in Individuals With Spinocerebellar Ataxia. Arch Phys Med Rehabil 2015; 96:1006-13. [DOI: 10.1016/j.apmr.2015.01.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 01/12/2015] [Accepted: 01/26/2015] [Indexed: 10/24/2022]
|
76
|
Comprehensive study of early features in spinocerebellar ataxia 2: delineating the prodromal stage of the disease. THE CEREBELLUM 2015; 13:568-79. [PMID: 24906824 DOI: 10.1007/s12311-014-0574-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The prodromal phase of spinocerebellar ataxias (SCAs) has not been systematically studied. Main findings come from a homogeneous SCA type 2 (SCA2) population living in Cuba. The aim of this study was to characterize extensively the prodromal phase of SCA2 by several approaches. Thirty-seven non-ataxic SCA2 mutation carriers and its age- and sex-matched controls underwent clinical assessments, including standardized neurological exam, structured interviews and clinical scales, and looking for somatic and autonomic features, as well as a neuropsychological battery, antisaccadic recordings, and MRI scans. Main clinical somatic features of non-ataxic mutation carriers were cramps, sensory symptoms, sleep disorders, and hyperreflexia, whereas predominating autonomic symptoms were pollakiuria/nocturia, constipation, and frequent throat clearing. Cognitive impairments included early deficits of executive functions and visual memory, suggesting the involvement of cerebro-cerebellar-cerebral loops and/or reduced cholinergic basal forebrain input to the cortex. Antisaccadic task revealed impaired oculomotor inhibitory control but preserved ability for error correction. Cognitive and antisaccadic deficits were higher as carriers were closer to the estimated onset of ataxia, whereas higher Scale for the Assessment and Rating of Ataxia (SARA) scores were associated most notably to vermis atrophy. The recognition of early features of SCA2 offers novel insights into the prodromal phase and physiopathological base of the disease, allowing the assessment of its progression and the efficacy of treatments, in particular at early phases when therapeutical options should be most effective.
Collapse
|
77
|
Monin ML, Tezenas du Montcel S, Marelli C, Cazeneuve C, Charles P, Tallaksen C, Forlani S, Stevanin G, Brice A, Durr A. Survival and severity in dominant cerebellar ataxias. Ann Clin Transl Neurol 2015; 2:202-7. [PMID: 25750924 PMCID: PMC4338960 DOI: 10.1002/acn3.156] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 12/31/2022] Open
Abstract
Inherited spinocerebellar ataxias (SCAs) are known to be genetically and clinically heterogeneous. Whether severity and survival are variable, however, is not known. We, therefore, studied survival and severity in 446 cases and 509 relatives with known mutations. Survival was 68 years [95% CI: 65–70] in 223 patients with polyglutamine expansions versus 80 years [73–84] in 23 with other mutations (P < 0.0001). Disability was also more severe in the former: at age 60, 30% were wheelchair users versus 3% with other SCAs (P < 0.001). This has implications for genetic counseling and the design of therapeutic trials.
Collapse
Affiliation(s)
- Marie-Lorraine Monin
- AP-HP, Genetic Department, Pitié-Salpêtrière University Hospital F-75013, Paris, France ; Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Univ Paris 06 UMR S 1127, INSERM U 1127, CNRS UMR 7225, ICM (Brain and Spine Institute) Pitié-Salpêtrière Hospital F-75013, Paris, France
| | - Sophie Tezenas du Montcel
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Univ Paris 06, UMR S 1136, INSERM U 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique F-75013, Paris, France ; AP-HP, Biostatistics Unit, Groupe Hospitalier Pitié-Salpêtrière F-75013, Paris, France
| | - Cecilia Marelli
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Univ Paris 06 UMR S 1127, INSERM U 1127, CNRS UMR 7225, ICM (Brain and Spine Institute) Pitié-Salpêtrière Hospital F-75013, Paris, France ; Department of Neurology, CHRU Guy de Chauliac Montpellier, France
| | - Cecile Cazeneuve
- AP-HP, Genetic Department, Pitié-Salpêtrière University Hospital F-75013, Paris, France
| | - Perrine Charles
- AP-HP, Genetic Department, Pitié-Salpêtrière University Hospital F-75013, Paris, France
| | - Chantal Tallaksen
- Department of Neurology, Oslo University Oslo, Norway ; Faculty of Medicine, Oslo University Oslo, Norway
| | - Sylvie Forlani
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Univ Paris 06 UMR S 1127, INSERM U 1127, CNRS UMR 7225, ICM (Brain and Spine Institute) Pitié-Salpêtrière Hospital F-75013, Paris, France
| | - Giovanni Stevanin
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Univ Paris 06 UMR S 1127, INSERM U 1127, CNRS UMR 7225, ICM (Brain and Spine Institute) Pitié-Salpêtrière Hospital F-75013, Paris, France ; Neurogenetics Team, Ecole Pratique des Hautes Etudes, Institut du Cerveau et de la Moelle épinière F-75013, Paris, France
| | - Alexis Brice
- AP-HP, Genetic Department, Pitié-Salpêtrière University Hospital F-75013, Paris, France ; Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Univ Paris 06 UMR S 1127, INSERM U 1127, CNRS UMR 7225, ICM (Brain and Spine Institute) Pitié-Salpêtrière Hospital F-75013, Paris, France
| | - Alexandra Durr
- AP-HP, Genetic Department, Pitié-Salpêtrière University Hospital F-75013, Paris, France ; Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Univ Paris 06 UMR S 1127, INSERM U 1127, CNRS UMR 7225, ICM (Brain and Spine Institute) Pitié-Salpêtrière Hospital F-75013, Paris, France
| |
Collapse
|
78
|
Ariño H, Gresa-Arribas N, Blanco Y, Martínez-Hernández E, Sabater L, Petit-Pedrol M, Rouco I, Bataller L, Dalmau JO, Saiz A, Graus F. Cerebellar ataxia and glutamic acid decarboxylase antibodies: immunologic profile and long-term effect of immunotherapy. JAMA Neurol 2014; 71:1009-16. [PMID: 24934144 DOI: 10.1001/jamaneurol.2014.1011] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
IMPORTANCE Current clinical and immunologic knowledge on cerebellar ataxia (CA) with glutamic acid decarboxylase 65 antibodies (GAD65-Abs) is based on case reports and small series with short-term follow-up data. OBJECTIVE To report the symptoms, additional antibodies, prognostic factors, and long-term outcomes in a cohort of patients with CA and GAD65-Abs. DESIGN, SETTING, AND PARTICIPANTS Retrospective cohort study and laboratory investigations at a center for autoimmune neurologic disorders among 34 patients with CA and GAD65-Abs, including 25 with long-term follow-up data (median, 5.4 years; interquartile range, 3.1-10.3 years). MAIN OUTCOMES AND MEASURES Analysis of clinicoimmunologic features and predictors of response to immunotherapy. Immunochemistry on rat brain, cultured neurons, and human embryonic kidney cells expressing GAD65, GAD67, α1-subunit of the glycine receptor, and a repertoire of known cell surface autoantigens were used to identify additional antibodies. Twenty-eight patients with stiff person syndrome and GAD65-Abs served as controls. RESULTS The median age of patients was 58 years (range, 33-80 years); 28 of 34 patients (82%) were women. Nine patients (26%) reported episodes of brainstem and cerebellar dysfunction or persistent vertigo several months before developing CA. The clinical presentation was subacute during a period of weeks in 13 patients (38%). Nine patients (26%) had coexisting stiff person syndrome symptoms. Systemic organ-specific autoimmunities (type 1 diabetes mellitus and others) were present in 29 patients (85%). Twenty of 25 patients with long-term follow-up data received immunotherapy (intravenous immunoglobulin in 10 and corticosteroids and intravenous immunoglobulin or other immunosuppressors in 10), and 7 of them (35%) improved. Predictors of clinical response included subacute onset of CA (odds ratio [OR], 0.50; 95% CI, 0.25-0.99; P = .047) and prompt immunotherapy (OR, 0.98; 95% CI, 0.96-0.99; P = .01). Similar frequencies of serum GAD67-Abs were found in patients with CA (24 of 34 patients [71%]) and in patients with stiff person syndrome (20 of 28 patients [71%]). However, GAD67-Abs were found in all of the cerebrospinal fluid samples examined (22 samples from patients with CA and 17 samples from patients with stiff person syndrome). Glycine receptor antibodies but not other cell surface antibodies were identified in 4 patients with CA. The presence of glycine receptor antibodies did not correlate with any specific clinical feature. CONCLUSIONS AND RELEVANCE In patients with CA and GAD65-Abs, subacute onset of symptoms and prompt immunotherapy are associated with good outcome. Persistent vertigo or brainstem and cerebellar episodes can herald CA and should lead to GAD65-Ab testing, particularly in patients with systemic organ-specific autoimmunities.
Collapse
Affiliation(s)
- Helena Ariño
- Neurology Service, Hospital Clínic, Barcelona, Spain2Neuroimmunology Program, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Nuria Gresa-Arribas
- Neuroimmunology Program, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Yolanda Blanco
- Neurology Service, Hospital Clínic, Barcelona, Spain2Neuroimmunology Program, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Eugenia Martínez-Hernández
- Neurology Service, Hospital Clínic, Barcelona, Spain2Neuroimmunology Program, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Lidia Sabater
- Neuroimmunology Program, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Mar Petit-Pedrol
- Neuroimmunology Program, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Idoia Rouco
- Neurology Service, Department of Neurosciences, Cruces University Hospital, University of the Basque Country, Bizkaia, Spain
| | - Luis Bataller
- Neurology Service, University Hospital Politècnic La Fe, Valencia, Spain
| | - Josep O Dalmau
- Neuroimmunology Program, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain5Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain6Department of Neurology, University of Pennsylvania, Philadelp
| | - Albert Saiz
- Neurology Service, Hospital Clínic, Barcelona, Spain2Neuroimmunology Program, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Francesc Graus
- Neurology Service, Hospital Clínic, Barcelona, Spain2Neuroimmunology Program, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| |
Collapse
|
79
|
Abstract
Heredoataxias are a group of genetic disorders with a cerebellar syndrome as the leading clinical manifestation. The current classification distinguishes heredoataxias according to the trait of inheritance into autosomal dominant, autosomal recessive, X-linked, and maternally inherited heredoataxias. The autosomal dominant heredoataxias are separated into spinocerebellar ataxias (SCA1-8, 10-15, 17-23, 25-30, and dentato-rubro-pallido-luysian atrophy), episodic ataxias (EA1-7), and autosomal dominant mitochondrial heredoataxias (Leigh syndrome, MIRAS, ADOAD, and AD-CPEO). The autosomal recessive ataxias are separated into Friedreich ataxia, ataxia due to vitamin E deficiency, ataxia due to Abeta-lipoproteinemia, Refsum disease, late-onset Tay-Sachs disease, cerebrotendineous xanthomatosis, spinocerebellar ataxia with axonal neuropathy, ataxia telangiectasia, ataxia telangiectasia-like disorder, ataxia with oculomotor apraxia 1 and 2, spastic ataxia of Charlevoix-Saguenay, Cayman ataxia, Marinesco-Sjögren syndrome, and autosomal recessive mitochondrial ataxias (AR-CPEO, SANDO, SCAE, AHS, IOSCA, MEMSA, LBSL CoQ-deficiency, PDC-deficiency). Only two of the heredoataxias, fragile X/tremor/ataxia syndrome, and XLSA/A are transmitted via an X-linked trait. Maternally inherited heredoataxias are due to point mutations in genes encoding for tRNAs, rRNAs, respiratory chain subunits or single large scale deletions/duplications of the mitochondrial DNA and include MELAS, MERRF, KSS, PS, MILS, NARP, and non-syndromic mitochondrial disorders. Treatment of heredoataxias is symptomatic and supportive and may have a beneficial effect in single patients.**Please see page 424 for abbreviation list.
Collapse
|
80
|
Zeigelboim BS, Teive HAG, Carvalho HASD, Abdulmassih EMDS, Jurkiewicz AL, Faryniuk JH. Ataxia espinocerebelar tipo 6: relato de caso. REVISTA CEFAC 2014. [DOI: 10.1590/1982-0216201412513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
O objetivo deste estudo foi verificar as alterações vestibulococleares observadas em um caso de ataxia espinocerebelar tipo 6. O caso foi encaminhado do Hospital de Clínicas para o Laboratório de Otoneurologia de uma Instituição de Ensino e foi submetido aos seguintes procedimentos: anamnese, inspeção otológica, avaliações audiológica e vestibular. O caso retrata uma paciente com diagnóstico genético de ataxia espinocerebelar tipo 6, do sexo feminino, com 57 anos de idade, que referiu desequilíbrio à marcha com tendência a queda para a esquerda, disartria e disfonia. Na avaliação audiológica apresentou configuração audiométrica descendente a partir da frequência de 4kHz e curva timpanométrica do tipo "A" com presença dos reflexos estapedianos bilateralmente. No exame vestibular observou-se na pesquisa da vertigem posicional presença de nistagmo vertical inferior e oblíquo, espontâneo e semiespontâneo múltiplo com características centrais (ausência de latência, paroxismo, fatigabilidade e vertigem), nistagmooptocinético abolido e hiporreflexia à prova calórica. Constataram-se alterações labirínticas que indicaram afecção do sistema vestibular central evidenciando-se a importância dessa avaliação. A existência da possível relação entre os achados com os sintomas vestibulares apresentados pela paciente apontou a relevância do exame labiríntico neste tipo de ataxia uma vez que a presença do nistagmo vertical inferior demonstrou ser frequente neste tipo de patologia.
Collapse
|
81
|
Nóbrega C, Nascimento-Ferreira I, Onofre I, Albuquerque D, Déglon N, Pereira de Almeida L. RNA interference mitigates motor and neuropathological deficits in a cerebellar mouse model of Machado-Joseph disease. PLoS One 2014; 9:e100086. [PMID: 25144231 PMCID: PMC4140724 DOI: 10.1371/journal.pone.0100086] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 05/22/2014] [Indexed: 02/04/2023] Open
Abstract
Machado-Joseph disease or Spinocerebellar ataxia type 3 is a progressive fatal neurodegenerative disorder caused by the polyglutamine-expanded protein ataxin-3. Recent studies demonstrate that RNA interference is a promising approach for the treatment of Machado-Joseph disease. However, whether gene silencing at an early time-point is able to prevent the appearance of motor behavior deficits typical of the disease when initiated before onset of the disease had not been explored. Here, using a lentiviral-mediated allele-specific silencing of mutant ataxin-3 in an early pre-symptomatic cerebellar mouse model of Machado-Joseph disease we show that this strategy hampers the development of the motor and neuropathological phenotypic characteristics of the disease. At the histological level, the RNA-specific silencing of mutant ataxin-3 decreased formation of mutant ataxin-3 aggregates, preserved Purkinje cell morphology and expression of neuronal markers while reducing cell death. Importantly, gene silencing prevented the development of impairments in balance, motor coordination, gait and hyperactivity observed in control mice. These data support the therapeutic potential of RNA interference for Machado-Joseph disease and constitute a proof of principle of the beneficial effects of early allele-specific silencing for therapy of this disease.
Collapse
Affiliation(s)
- Clévio Nóbrega
- CNC - Center for Neuroscience & Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Isabel Nascimento-Ferreira
- CNC - Center for Neuroscience & Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Isabel Onofre
- CNC - Center for Neuroscience & Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - David Albuquerque
- Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Nicole Déglon
- Lausanne University Hospital, Department of Clinical Neurosciences, Laboratory of Cellular and Molecular Neurotherapies, Lausanne, Switzerland
| | - Luís Pereira de Almeida
- CNC - Center for Neuroscience & Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- * E-mail:
| |
Collapse
|
82
|
Tezenas du Montcel S, Durr A, Bauer P, Figueroa KP, Ichikawa Y, Brussino A, Forlani S, Rakowicz M, Schöls L, Mariotti C, van de Warrenburg BPC, Orsi L, Giunti P, Filla A, Szymanski S, Klockgether T, Berciano J, Pandolfo M, Boesch S, Melegh B, Timmann D, Mandich P, Camuzat A, Goto J, Ashizawa T, Cazeneuve C, Tsuji S, Pulst SM, Brusco A, Riess O, Brice A, Stevanin G. Modulation of the age at onset in spinocerebellar ataxia by CAG tracts in various genes. ACTA ACUST UNITED AC 2014; 137:2444-55. [PMID: 24972706 DOI: 10.1093/brain/awu174] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Polyglutamine-coding (CAG)n repeat expansions in seven different genes cause spinocerebellar ataxias. Although the size of the expansion is negatively correlated with age at onset, it accounts for only 50-70% of its variability. To find other factors involved in this variability, we performed a regression analysis in 1255 affected individuals with identified expansions (spinocerebellar ataxia types 1, 2, 3, 6 and 7), recruited through the European Consortium on Spinocerebellar Ataxias, to determine whether age at onset is influenced by the size of the normal allele in eight causal (CAG)n-containing genes (ATXN1-3, 6-7, 17, ATN1 and HTT). We confirmed the negative effect of the expanded allele and detected threshold effects reflected by a quadratic association between age at onset and CAG size in spinocerebellar ataxia types 1, 3 and 6. We also evidenced an interaction between the expanded and normal alleles in trans in individuals with spinocerebellar ataxia types 1, 6 and 7. Except for individuals with spinocerebellar ataxia type 1, age at onset was also influenced by other (CAG)n-containing genes: ATXN7 in spinocerebellar ataxia type 2; ATXN2, ATN1 and HTT in spinocerebellar ataxia type 3; ATXN1 and ATXN3 in spinocerebellar ataxia type 6; and ATXN3 and TBP in spinocerebellar ataxia type 7. This suggests that there are biological relationships among these genes. The results were partially replicated in four independent populations representing 460 Caucasians and 216 Asian samples; the differences are possibly explained by ethnic or geographical differences. As the variability in age at onset is not completely explained by the effects of the causative and modifier sister genes, other genetic or environmental factors must also play a role in these diseases.
Collapse
Affiliation(s)
- Sophie Tezenas du Montcel
- 1 Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Univ Paris 06, UMR_S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, F-75013, Paris, France2 INSERM, UMR_S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, F-75013, Paris, France3 AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Biostatistics Unit, Paris, F-75013, France
| | - Alexandra Durr
- 4 AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Genetics and Cytogenetics, F-75013, Paris, France5 Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Peter Bauer
- 6 Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Karla P Figueroa
- 7 Department of Neurology, University of Utah, Salt Lake City, USA
| | - Yaeko Ichikawa
- 8 Department of Neurology, University of Tokyo, Graduate School of Medicine, Tokyo, Japan
| | - Alessandro Brussino
- 9 University of Torino, Department of Medical Sciences, and Medical Genetics Unit, Az. Osp. 'Città della Salute e della Scienza', Torino, Italy
| | - Sylvie Forlani
- 5 Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Maria Rakowicz
- 10 Institute of Psychiatry and Neurology Warsaw, Sobieskiego 9, 02-957 Warsaw, Poland
| | - Ludger Schöls
- 11 Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany12 German Centre of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Caterina Mariotti
- 13 SOSD Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS, Istituto Neurologico 'Carlo Besta', Milan, Italy
| | - Bart P C van de Warrenburg
- 14 Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radbound University Medical Centre, Nijmegen, The Netherlands
| | - Laura Orsi
- 15 Neurologic Division I, Department of Neuroscience and Mental Health, AOU Città della Salute e della Scienza, Torino, Italy
| | - Paola Giunti
- 16 Institute of Neurology, Department of Molecular Neuroscience, UCL, Queen Square, London, UK
| | - Alessandro Filla
- 17 Department of Neurological Sciences, Federico II University, Naples, Italy
| | - Sandra Szymanski
- 18 Department of Neurology, St. Josef Hospital, University Hospital of Bochum, Bochum, Germany
| | | | - José Berciano
- 20 Department of Neurology, University Hospital 'Marqués de Valdecilla', UC, IDIVAL and CIBERNED, 39008 Santander, Spain
| | - Massimo Pandolfo
- 21 Department of Neurology, ULB-Hôpital Erasme, Université Libre de Bruxelles, CP 231, Campus Plaine, ULB, Brusssels, Belgium
| | - Sylvia Boesch
- 22 Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Bela Melegh
- 23 Department of Medical Genetics, and Szentagothai Research Centre, University Pécs, Hungary
| | - Dagmar Timmann
- 24 Department of Neurology, University Clinic Essen, University of Duisburg-Essen, Essen, Germany
| | - Paola Mandich
- 25 Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genova, and U.O. Medical Genetics of IRCCS AOU S. Martino Institute, Genova, Italy
| | - Agnès Camuzat
- 5 Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | | | | | - Jun Goto
- 8 Department of Neurology, University of Tokyo, Graduate School of Medicine, Tokyo, Japan
| | - Tetsuo Ashizawa
- 26 Department of Neurology and McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Cécile Cazeneuve
- 4 AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Genetics and Cytogenetics, F-75013, Paris, France
| | - Shoji Tsuji
- 8 Department of Neurology, University of Tokyo, Graduate School of Medicine, Tokyo, Japan
| | - Stefan-M Pulst
- 7 Department of Neurology, University of Utah, Salt Lake City, USA
| | - Alfredo Brusco
- 9 University of Torino, Department of Medical Sciences, and Medical Genetics Unit, Az. Osp. 'Città della Salute e della Scienza', Torino, Italy
| | - Olaf Riess
- 6 Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Alexis Brice
- 4 AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Genetics and Cytogenetics, F-75013, Paris, France5 Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Giovanni Stevanin
- 4 AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Genetics and Cytogenetics, F-75013, Paris, France5 Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France27 Ecole Pratique des Hautes Etudes, heSam Université, laboratoire de neurogénétique, ICM, Groupe Hospitalier Pitié-Salpêtrière, F-75013 Paris, France
| |
Collapse
|
83
|
Tezenas du Montcel S, Durr A, Rakowicz M, Nanetti L, Charles P, Sulek A, Mariotti C, Rola R, Schols L, Bauer P, Dufaure-Garé I, Jacobi H, Forlani S, Schmitz-Hübsch T, Filla A, Timmann D, van de Warrenburg BP, Marelli C, Kang JS, Giunti P, Cook A, Baliko L, Melegh B, Bela M, Boesch S, Szymanski S, Berciano J, Infante J, Buerk K, Masciullo M, Di Fabio R, Depondt C, Ratka S, Stevanin G, Klockgether T, Brice A, Golmard JL. Prediction of the age at onset in spinocerebellar ataxia type 1, 2, 3 and 6. J Med Genet 2014; 51:479-86. [PMID: 24780882 PMCID: PMC4078703 DOI: 10.1136/jmedgenet-2013-102200] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND The most common spinocerebellar ataxias (SCA)--SCA1, SCA2, SCA3, and SCA6--are caused by (CAG)n repeat expansion. While the number of repeats of the coding (CAG)n expansions is correlated with the age at onset, there are no appropriate models that include both affected and preclinical carriers allowing for the prediction of age at onset. METHODS We combined data from two major European cohorts of SCA1, SCA2, SCA3, and SCA6 mutation carriers: 1187 affected individuals from the EUROSCA registry and 123 preclinical individuals from the RISCA cohort. For each SCA genotype, a regression model was fitted using a log-normal distribution for age at onset with the repeat length of the alleles as covariates. From these models, we calculated expected age at onset from birth and conditionally that this age is greater than the current age. RESULTS For SCA2 and SCA3 genotypes, the expanded allele was a significant predictor of age at onset (-0.105±0.005 and -0.056±0.003) while for SCA1 and SCA6 genotypes both the size of the expanded and normal alleles were significant (expanded: -0.049±0.002 and -0.090±0.009, respectively; normal: +0.013±0.005 and -0.029±0.010, respectively). According to the model, we indicated the median values (90% critical region) and the expectancy (SD) of the predicted age at onset for each SCA genotype according to the CAG repeat size and current age. CONCLUSIONS These estimations can be valuable in clinical and research. However, results need to be confirmed in other independent cohorts and in future longitudinal studies. CLINICALTRIALSGOV, NUMBER NCT01037777 and NCT00136630 for the French patients.
Collapse
Affiliation(s)
- Sophie Tezenas du Montcel
- UPMC Univ Paris 06, ER4, Modelling in Clinical Research, Paris, France Department of Biostatistics and Medical Informatics, AP-HP, Hopitaux Universitaires Pitié-Salpétrière Charles-Foix, Paris, France
| | - Alexandra Durr
- UPMC Univ Paris 06, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, UMR-S975, Paris, France Inserm, U975, Paris, France Cnrs, UMR 7225, Paris, France Département de Génétique et Cytogénétique, AP-HP, Hopitaux Universitaires Pitié-Salpétrière Charles-Foix, Paris, France
| | - Maria Rakowicz
- Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Lorenzo Nanetti
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Perrine Charles
- UPMC Univ Paris 06, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, UMR-S975, Paris, France Inserm, U975, Paris, France Cnrs, UMR 7225, Paris, France Département de Génétique et Cytogénétique, AP-HP, Hopitaux Universitaires Pitié-Salpétrière Charles-Foix, Paris, France
| | - Anna Sulek
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Caterina Mariotti
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Rafal Rola
- First Department of Neurology Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Ludger Schols
- Department of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Germany German Center for Neurodgenerative Diseases (DZNE), Tübingen, Germany
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics, University Tübingen, Tübingen, Germany
| | | | - Heike Jacobi
- Department of Neurology, University Hospital of Bonn, Bonn, Germany
| | - Sylvie Forlani
- UPMC Univ Paris 06, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, UMR-S975, Paris, France Inserm, U975, Paris, France Cnrs, UMR 7225, Paris, France
| | | | | | - Dagmar Timmann
- Department of Neurology, University Clinic Essen, University of Duisburg-Essen, Essen, Germany
| | - Bart P van de Warrenburg
- Department of Neurology, Radboud University Medical Centre, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands
| | - Cecila Marelli
- UPMC Univ Paris 06, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, UMR-S975, Paris, France Inserm, U975, Paris, France Cnrs, UMR 7225, Paris, France Département de Génétique et Cytogénétique, AP-HP, Hopitaux Universitaires Pitié-Salpétrière Charles-Foix, Paris, France Departement of Neurology, University Hospital Gui de Chauliac, Montpellier, France
| | - Jun-Suk Kang
- Department of Neurology, Goethe University Frankfurt, Frankfurt, Germany
| | - Paola Giunti
- Department of Molecular Neuroscience, Institute of Neurology, UCL London, UK
| | - Arron Cook
- Department of Molecular Neuroscience, Institute of Neurology, UCL London, UK
| | - Laszlo Baliko
- Department of Medical Genetics, Szentagothai Research Center, University Pécs, Hungary
| | | | - Melegh Bela
- Department of Medical Genetics, Szentagothai Research Center, University Pécs, Hungary
| | - Sylvia Boesch
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Sandra Szymanski
- Department of Neurology, St. Josef Hospital, University Hospital of Bochum, Bochum, Germany
| | - José Berciano
- Service of Neurology, University Hospital "Marqués de Valdecilla (IFIMAV)", University of Cantabria, Spain Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain
| | - Jon Infante
- Service of Neurology, University Hospital "Marqués de Valdecilla (IFIMAV)", University of Cantabria, Spain Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain
| | - Katrin Buerk
- Department of Neurology, Philipps University of Marburg, Marburg, Germany
| | | | - Roberto Di Fabio
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Chantal Depondt
- Department of Neurology, Université Libre de Bruxelles, Brussels, Belgium
| | - Susanne Ratka
- Department of Neurodegeneration and Restorative Research, Centers of Molecular Physiology of the Brain and Neurological Medicine, University Hospital of Göttingen, Göttingen
| | - Giovanni Stevanin
- UPMC Univ Paris 06, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, UMR-S975, Paris, France Inserm, U975, Paris, France Cnrs, UMR 7225, Paris, France Département de Génétique et Cytogénétique, AP-HP, Hopitaux Universitaires Pitié-Salpétrière Charles-Foix, Paris, France Laboratoire de Neurogenetique, Ecole Pratique des Hautes Etudes (EPHE), Institut du Cerveau et de la Moelle épinière, Hôpital de la Salpêtrière, Paris, France
| | - Thomas Klockgether
- Department of Neurology, University Hospital of Bonn, Bonn, Germany German Center for Neurodgenerative Diseases (DZNE), Bonn, Germany
| | - Alexis Brice
- UPMC Univ Paris 06, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, UMR-S975, Paris, France Inserm, U975, Paris, France Cnrs, UMR 7225, Paris, France Département de Génétique et Cytogénétique, AP-HP, Hopitaux Universitaires Pitié-Salpétrière Charles-Foix, Paris, France Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Jean-Louis Golmard
- UPMC Univ Paris 06, ER4, Modelling in Clinical Research, Paris, France Department of Biostatistics and Medical Informatics, AP-HP, Hopitaux Universitaires Pitié-Salpétrière Charles-Foix, Paris, France
| |
Collapse
|
84
|
Rossi M, Perez-Lloret S, Doldan L, Cerquetti D, Balej J, Millar Vernetti P, Hawkes H, Cammarota A, Merello M. Autosomal dominant cerebellar ataxias: a systematic review of clinical features. Eur J Neurol 2014; 21:607-15. [PMID: 24765663 DOI: 10.1111/ene.12350] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE To assess, through systematic review, distinctive or common clinical signs of autosomal dominant cerebellar ataxias (ADCAs), also referred to as spinocerebellar ataxias (SCAs) in genetic nomenclature. METHODS This was a structured search of electronic databases up to September 2012 conducted by two independent reviewers. Publications containing proportions or descriptions of ADCA clinical features written in several languages were selected. Gray literature was included and a back-search was conducted of retrieved publication reference lists. Initial selection was based on title and abstract screening, followed by full-text reading of potentially relevant publications. Clinical findings and demographic data from genetically confirmed patients were extracted. Data were analyzed using the chi-squared test and controlled for alpha-error inflation by applying the Holms step-down procedure. RESULTS In all, 1062 publications reviewing 12 141 patients (52% male) from 30 SCAs were analyzed. Mean age at onset was 35 ± 11 years. Onset symptoms in 3945 patients revealed gait ataxia as the most frequent sign (68%), whereas overall non-ataxia symptom frequency was 50%. Some ADCAs often presented non-ataxia symptoms at onset, such as SCA7 (visual impairment), SCA14 (myoclonus) and SCA17 (parkinsonism). Therefore a categorization into two groups was established: pure ataxia and mainly non-ataxia forms. During overall disease course, dysarthria (90%) and saccadic eye movement alterations (69%) were the most prevalent non-ataxia findings. Some ADCAs were clinically restricted to cerebellar dysfunction, whilst others presented additional features. CONCLUSIONS Autosomal dominant cerebellar ataxias encompass a broad spectrum of clinical features with high prevalence of non-ataxia symptoms. Certain features distinguish different genetic subtypes. A new algorithm for ADCA classification at disease onset is proposed.
Collapse
|
85
|
Raposo M, Vasconcelos J, Bettencourt C, Kay T, Coutinho P, Lima M. Nystagmus as an early ocular alteration in Machado-Joseph disease (MJD/SCA3). BMC Neurol 2014; 14:17. [PMID: 24450306 PMCID: PMC3901765 DOI: 10.1186/1471-2377-14-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 01/17/2014] [Indexed: 11/30/2022] Open
Abstract
Background Machado-Joseph disease (MJD), also named spinocerebellar ataxia type 3 (SCA3) is the most common autosomal dominant ataxia worldwide. Although nystagmus is one of the most frequently reported ocular alterations in MJD patients its behaviour during the course of the disease, namely in its early stages, has only recently started to be investigated. The main goal of this work was to characterize the frequency of nystagmus in symptomatic and presymptomatic carriers of the MJD mutation, and investigate its usefulness as an early indicator of the disease. Methods We conducted an observational study of Azorean MJD family members, comprising a total of 158 subjects which underwent neurological evaluation. Sixty eight were clinically and molecularly diagnosed with MJD, 48 were confirmed asymptomatic carriers and 42 were confirmed non-carriers of the MJD mutation. The frequency of nystagmus was calculated for the 3 groups. Results Nystagmus was present in 88% of the MJD patients. Seventeen percent of the at-risk subjects with a carrier result in the molecular test and none of the 42 individuals who received a non-carrier test result displayed nystagmus (p < 0.006). Although not reaching statistical significance, symptomatic subjects showing nystagmus had a tendency for a higher length of the CAG tract in the expanded allele, when compared to individuals who did not have nystagmus. Conclusions The frequency of nystagmus in asymptomatic carriers and its absence in non-carriers of the mutation, suggests that nystagmus may appear before gait disturbance and can thus be considered an early sign of MJD.
Collapse
Affiliation(s)
- Mafalda Raposo
- Center of Research in Natural Resources (CIRN), University of the Azores, Rua Mãe de Deus, Apartado 1422, 9501-801 Ponta Delgada, Portugal.
| | | | | | | | | | | |
Collapse
|
86
|
Rojas F, García RV, González J, Velázquez L, Becerra R, Valenzuela O, San Román B. Identification of saccadic components in spinocerebellar ataxia applying an independent component analysis algorithm. Neurocomputing 2013. [DOI: 10.1016/j.neucom.2012.11.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
87
|
Schalling E, Hartelius L. Speech in spinocerebellar ataxia. BRAIN AND LANGUAGE 2013; 127:317-322. [PMID: 24182841 DOI: 10.1016/j.bandl.2013.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 09/13/2013] [Accepted: 10/06/2013] [Indexed: 06/02/2023]
Abstract
Spinocerebellar ataxias (SCAs) are a heterogeneous group of autosomal dominant cerebellar ataxias clinically characterized by progressive ataxia, dysarthria and a range of other concomitant neurological symptoms. Only a few studies include detailed characterization of speech symptoms in SCA. Speech symptoms in SCA resemble ataxic dysarthria but symptoms related to phonation may be more prominent. One study to date has shown an association between differences in speech and voice symptoms related to genotype. More studies of speech and voice phenotypes are motivated, to possibly aid in clinical diagnosis. In addition, instrumental speech analysis has been demonstrated to be a reliable measure that may be used to monitor disease progression or therapy outcomes in possible future pharmacological treatments. Intervention by speech and language pathologists should go beyond assessment. Clinical guidelines for management of speech, communication and swallowing need to be developed for individuals with progressive cerebellar ataxia.
Collapse
Affiliation(s)
- Ellika Schalling
- Department of Clinical Science, Intervention and Technology, Division of Speech and Language Pathology, Karolinska Institutet, 141 86 Stockholm, Sweden; Department of Speech and Language Pathology, Karolinska University Hospital, 171 76 Stockholm, Sweden.
| | | |
Collapse
|
88
|
|
89
|
Jacobi H, Reetz K, du Montcel ST, Bauer P, Mariotti C, Nanetti L, Rakowicz M, Sulek A, Durr A, Charles P, Filla A, Antenora A, Schöls L, Schicks J, Infante J, Kang JS, Timmann D, Di Fabio R, Masciullo M, Baliko L, Melegh B, Boesch S, Bürk K, Peltz A, Schulz JB, Dufaure-Garé I, Klockgether T. Biological and clinical characteristics of individuals at risk for spinocerebellar ataxia types 1, 2, 3, and 6 in the longitudinal RISCA study: analysis of baseline data. Lancet Neurol 2013; 12:650-8. [PMID: 23707147 DOI: 10.1016/s1474-4422(13)70104-2] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Spinocerebellar ataxias (SCAs) are autosomal, dominantly inherited, fully penetrant neurodegenerative diseases. Our aim was to study the preclinical stage of the most common SCAs: SCA1, SCA2, SCA3, and SCA6. METHODS Between Sept 13, 2008, and Dec 1, 2011, offspring or siblings of patients with SCA1, SCA2, SCA3, or SCA6 were enrolled into a prospective, longitudinal observational study at 14 European centres. To be eligible for inclusion in our study, individuals had to have no ataxia and be aged 18-50 years if directly related to individuals with SCA1, SCA2, or SCA3, or 35-70 years if directly related to individuals with SCA6. We did anonymous genetic testing to identify mutation carriers. We assessed participants with clinical scales, questionnaires, and performance-based coordination tests. In eight of the 14 centres, participants underwent MRI. We analysed relations between outcome variables and time from onset (defined as the difference between present age and estimated age at ataxia onset). This study is registered with ClinicalTrials.gov, number NCT01037777. FINDINGS 276 participants met inclusion criteria and agreed to participate, of whom 12 (4%) were excluded from final analysis because DNA samples were missing or genotyping failed. Estimated time from onset was -9 years (IQR -13 to -6) in 50 carriers of the SCA1 mutation, -12 years (-15 to -9) in 31 SCA2 mutation carriers, -8 years (-11 to -6) in 26 SCA3 mutation carriers, and -18 years (-22 to -16) in 16 SCA6 mutation carriers. Compared with non-carriers of each mutation, SCA1 mutation carriers had higher median scores on the scale for the assessment and rating of ataxia (SARA; 0·5 [IQR 0-1·0] vs 0 [0-0]; p=0·0052), as did SCA2 mutation carriers (0·5 [0-2·0] vs 0 [0-0·5]; p=0·0037). SCA2 mutation carriers had lower SCA functional index scores than did non-carriers (-0·43 [-0·91 to -0·07] vs 0·09 [-0·30 to 0·56]; p=0·0007). SCA2 mutation carriers had worse composite cerebellar functional scores than did their non-carrier counterparts (0·915 [0·861-0·959] vs 0·849 [0·764-0·886]; p=0·0039). All other differences between carriers and non-carriers were non-significant. In SCA1 and SCA2 mutation carriers, SARA scores were increased in participants who were closer to the estimated age at onset (SCA1: r=0·36, p=0·0112; SCA2: r=0·50, p=0·0038). 83 individuals (30%) underwent MRI. Voxel-based morphometry showed grey-matter loss in the brainstem and cerebellum in SCA1 and SCA2 mutation carriers, and normalised brainstem volume was lower in SCA2 mutation carriers (median 0·015, range 0·012-0·016) than in non-carriers (0·019, 0·017-0·021; p=0·0107). INTERPRETATION Preclinical SCA1 and SCA2 mutation carriers seem to have mild coordination deficits and abnormalities in the brain that are more common in carriers who are closer to the estimated onset of ataxia. Individuals in this early disease stage could be targeted in future preventive trials. FUNDING ERA-Net E-Rare and Polish Ministry of Science and Higher Education.
Collapse
Affiliation(s)
- Heike Jacobi
- Department of Neurology, University Hospital of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Fujioka S, Sundal C, Wszolek ZK. Autosomal dominant cerebellar ataxia type III: a review of the phenotypic and genotypic characteristics. Orphanet J Rare Dis 2013; 8:14. [PMID: 23331413 PMCID: PMC3558377 DOI: 10.1186/1750-1172-8-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 01/16/2013] [Indexed: 12/26/2022] Open
Abstract
Autosomal Dominant Cerebellar Ataxia (ADCA) Type III is a type of spinocerebellar ataxia (SCA) classically characterized by pure cerebellar ataxia and occasionally by non-cerebellar signs such as pyramidal signs, ophthalmoplegia, and tremor. The onset of symptoms typically occurs in adulthood; however, a minority of patients develop clinical features in adolescence. The incidence of ADCA Type III is unknown. ADCA Type III consists of six subtypes, SCA5, SCA6, SCA11, SCA26, SCA30, and SCA31. The subtype SCA6 is the most common. These subtypes are associated with four causative genes and two loci. The severity of symptoms and age of onset can vary between each SCA subtype and even between families with the same subtype. SCA5 and SCA11 are caused by specific gene mutations such as missense, inframe deletions, and frameshift insertions or deletions. SCA6 is caused by trinucleotide CAG repeat expansions encoding large uninterrupted glutamine tracts. SCA31 is caused by repeat expansions that fall outside of the protein-coding region of the disease gene. Currently, there are no specific gene mutations associated with SCA26 or SCA30, though there is a confirmed locus for each subtype. This disease is mainly diagnosed via genetic testing; however, differential diagnoses include pure cerebellar ataxia and non-cerebellar features in addition to ataxia. Although not fatal, ADCA Type III may cause dysphagia and falls, which reduce the quality of life of the patients and may in turn shorten the lifespan. The therapy for ADCA Type III is supportive and includes occupational and speech modalities. There is no cure for ADCA Type III, but a number of recent studies have highlighted novel therapies, which bring hope for future curative treatments.
Collapse
Affiliation(s)
- Shinsuke Fujioka
- Department of Neurology at Mayo Clinic, 4500 San Pablo Road Cannaday Bldg 2-E, Jacksonville, FL 32224, USA
| | | | | |
Collapse
|
91
|
Uses of the postural stability test for differential diagnosis of hereditary ataxias. J Neurol Sci 2012; 316:79-85. [DOI: 10.1016/j.jns.2012.01.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 01/16/2012] [Accepted: 01/24/2012] [Indexed: 11/22/2022]
|
92
|
Abstract
Polyglutamine neurodegenerative diseases result from the expansion of a trinucleotide CAG repeat, encoding a polyglutamine tract in the disease-causing protein. The process by which each polyglutamine protein exerts its toxicity is complex, involving a variety of mechanisms including transcriptional dysregulation, proteasome impairment and mitochondrial dysfunction. Thus, the most effective and widely applicable therapies are likely to be those designed to eliminate production of the mutant protein upstream of these deleterious effects. RNA-based approaches represent promising therapeutic strategies for polyglutamine diseases, offering the potential to suppress gene expression in a sequence-specific manner at the transcriptional and post-transcriptional levels. In particular, gene silencing therapies capable of discrimination between mutant and wildtype alleles, based on disease-linked polymorphisms or CAG repeat length, might prove crucial in cases where a loss of wild type function is deleterious. Novel methods, such as gene knockdown and replacement, seek to eliminate the technical difficulties associated with allele-specific silencing by avoiding the need to target specific mutations. With a variety of RNA technologies currently being developed to target multiple facets of polyglutamine pathogenesis, the emergence of an effective therapy seems imminent. However, numerous technical obstacles associated with design, discrimination and delivery must be overcome before RNA therapy can be effectively applied in the clinical setting.
Collapse
|
93
|
Abstract
The autosomal dominant spinocerebellar ataxias (SCA) are a genetically heterogeneous group of neurodegenerative disorders characterized by progressive motor incoordination, in some cases with ataxia alone and in others in association with additional progressive neurological deficits. Spinocerebellar ataxia type 6 (SCA6) is the prototype of a pure cerebellar ataxia, associated with a severe form of progressive ataxia and cerebellar dysfunction. SCA6, originally classified as such by Zhuchenko et al. (1997), is caused by a CAG repeat expansion in the CACNA1A gene which encodes the α1A subunit of the P/Q-type voltage-gated calcium channel. SCA6 is one of ten polyglutamine-encoding CAG nucleotide repeat expansion disorders comprising other neurodegenerative disorders such as Huntington's disease. The present review describes clinical, genetic, and pathological manifestations associated with this illness. Currently, there is no treatment for this neurodegenerative disease. Successful therapeutic strategies must target a valid pathological mechanism; thus, understanding the underlying mechanisms of disease is crucial to finding a proper treatment. Hence, this chapter will discuss as well the molecular mechanisms possibly associated with SCA6 pathology and their implication for the development of future treatment.
Collapse
Affiliation(s)
- Ana Solodkin
- Department of Neurology, University of Chicago Medical Center, Chicago, IL 606337, USA.
| | | |
Collapse
|
94
|
Donato SD, Mariotti C, Taroni F. Spinocerebellar ataxia type 1. HANDBOOK OF CLINICAL NEUROLOGY 2012; 103:399-421. [PMID: 21827903 DOI: 10.1016/b978-0-444-51892-7.00025-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is one out of nine polyglutamine diseases, a group of late-onset neurodegenerative diseases present only in humans. SCA1, the first autosomal dominant cerebellar ataxia (ADCA) to be genetically characterized, is caused by the expansion of a CAG triplet repeat located in the N-terminal coding region of the disease-causing gene ATX1 located on chromosome 6p23: the mutation results in the production of a mutant protein, dubbed ataxin-1, with a longer-than-normal polyglutamine stretch. The predominant effect of the mutation is thought to be a toxic gain-of-function of the aberrant protein, and longer expansions are associated with earlier onset and more severe disease in subsequent generations. The most common presentation of SCA1 is dominant ataxia 'plus', characterized by cerebellar dysfunctions variably associated with slow saccades, ophthalmoplegia, pyramidal and extrapyramidal features, mild to moderate dementia, amyotrophy, and peripheral neuropathy. Its diagnostic pathological feature is olivopontocerebellar atrophy and degeneration predominantly affects the Purkinje cells and the dentate nuclei of the cerebellum. Pathogenesis is mainly attributed to the toxic effect of mutant ataxin-1, which localizes into the nucleus and, through restricted and aberrant protein-protein interactions, causes putative dysfunctional gene transcription in target cells which leads to late-onset cell dysfunction and death.
Collapse
Affiliation(s)
- Stefano Di Donato
- UO Biochimica e Genetics, IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | | | | |
Collapse
|
95
|
Klein C, Hagenah J, Landwehrmeyer B, Münte T, Klockgether T. Das präsymptomatische Stadium neurodegenerativer Erkrankungen. DER NERVENARZT 2011; 82:994-1001. [DOI: 10.1007/s00115-011-3258-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
96
|
Pula JH, Towle VL, Staszak VM, Cao D, Bernard JT, Gomez CM. Retinal Nerve Fibre Layer and Macular Thinning in Spinocerebellar Ataxia and Cerebellar Multisystem Atrophy. Neuroophthalmology 2011; 35:108-114. [PMID: 21866205 DOI: 10.3109/01658107.2011.580898] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The spinocerebellar ataxias, like all neurodegenerative diseases, lack objective disease- and stage-specific biomarkers. Based on reports of clinically evident optic disc atrophy or retinal disease in some ataxia patients, and the discovery that pre-symptomatic retinal thinning occurs in other neurologic diseases such as multiple sclerosis, we tested the hypothesis that subclinical neuronal or axonal loss in the retina could occur in the degenerative ataxias. Spectral domain optical coherence tomography was performed on 29 ataxia patients with genetically proven spinocerebellar ataxia (SCA) 1, 2, 3, or 6, or multisystem atrophy type C (MSA-C) and 27 age-matched normal subjects. Ataxia patients were assessed using the scale for assessment and rating of ataxia. Compared with normal control subjects, retinal nerve fibre layer (RNFL) thickness was reduced for patients with SCA2 and SCA3, and thickness in the macular region was reduced for all SCAs but SCA2.
Collapse
Affiliation(s)
- John H Pula
- Department of Neurology, University of Illinois College of Medicine, Peoria, Illinois, USA
| | | | | | | | | | | |
Collapse
|
97
|
Solodkin A, Peri E, Chen EE, Ben-Jacob E, Gomez CM. Loss of intrinsic organization of cerebellar networks in spinocerebellar ataxia type 1: correlates with disease severity and duration. CEREBELLUM (LONDON, ENGLAND) 2011; 10:218-32. [PMID: 20886327 PMCID: PMC3091958 DOI: 10.1007/s12311-010-0214-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of cerebellar degenerative disorders, characterized by progressive gait unsteadiness, hand incoordination, and dysarthria. The mutational mechanism in SCA1, a dominantly inherited form of SCA, consists of an expanded trinucleotide CAG repeat. In SCA1, there is loss of Purkinje cells, neuronal loss in dentate nucleus, olives, and pontine nuclei. In the present study, we sought to apply intrinsic functional connectivity analysis combined with diffusion tensor imaging to define the state of cerebellar connectivity in SCA1. Our results on the intrinsic functional connectivity in lateral cerebellum and thalamus showed progressive organizational changes in SCA1 noted as a progressive increase in the absolute value of the correlation coefficients. In the lateral cerebellum, the anatomical organization of functional clusters seen as parasagittal bands in controls is lost, changing to a patchy appearance in SCA1. Lastly, only fractional anisotropy in the superior peduncle and changes in functional organization in thalamus showed a linear dependence to duration and severity of disease. The present pilot work represents an initial effort describing connectivity biomarkers of disease progression in SCA1. The functional changes detected with intrinsic functional analysis and diffusion tensor imaging suggest that disease progression can be analyzed as a disconnection syndrome.
Collapse
Affiliation(s)
- Ana Solodkin
- Department of Neurology, MC 2030, The University of Chicago Hospitals, Chicago, IL, USA.
| | | | | | | | | |
Collapse
|
98
|
Marelli C, Cazeneuve C, Brice A, Stevanin G, Dürr A. Autosomal dominant cerebellar ataxias. Rev Neurol (Paris) 2011; 167:385-400. [PMID: 21546047 DOI: 10.1016/j.neurol.2011.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 01/27/2011] [Indexed: 12/30/2022]
Abstract
Cerebellar ataxias with autosomal dominant transmission (ADCA) are far rarer than sporadic cases of cerebellar ataxia. The identification of genes involved in dominant forms has confirmed the genetic heterogeneity of these conditions and of the underlying mechanisms and pathways. To date, at least 28 genetic loci and, among them, 20 genes have been identified. In many instances, the phenotype is not restricted to cerebellar dysfunction but includes more complex multisystemic neurological deficits. Seven ADCA (SCA1, 2, 3, 6, 7, 17, and dentatorubro-pallido-luysian atrophy) are caused by repeat expansions in the corresponding proteins; phenotype-genotype correlations have shown that repeat size influences the progression of the disease, its severity and clinical differences among patients, including the phenomenon of anticipation between generations. All other ADCA are caused either by non-coding repeat expansions, conventional mutations or large rearrangements in genes with different functions. This review will focus on the genetic features of ADCA and on the clinical differences among the different forms.
Collapse
Affiliation(s)
- C Marelli
- Département de génétique et cytogénétique, consultation de génétique clinique, CHU Pitié-Salpêtrière, AP-HP, 47, boulevard de l'Hôpital, 75013 Paris, France
| | | | | | | | | |
Collapse
|
99
|
Gehrking KM, Andresen JM, Duvick L, Lough J, Zoghbi HY, Orr HT. Partial loss of Tip60 slows mid-stage neurodegeneration in a spinocerebellar ataxia type 1 (SCA1) mouse model. Hum Mol Genet 2011; 20:2204-12. [PMID: 21427130 PMCID: PMC3090197 DOI: 10.1093/hmg/ddr108] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is one of nine dominantly inherited neurodegenerative diseases caused by polyglutamine tract expansion. In SCA1, the expanded polyglutamine tract is in the ataxin-1 (ATXN1) protein. ATXN1 is part of an in vivo complex with retinoid acid receptor-related orphan receptor alpha (Rora) and the acetyltransferase tat-interactive protein 60 kDa (Tip60). ATXN1 and Tip60 interact directly via the ATXN1 and HMG-box protein 1 (AXH) domain of ATXN1. Moreover, the phospho-mimicking Asp amino acid at position 776, previously shown to enhance pathogenesis, increases the ability of ATXN1 to interact with Tip60. Using a genetic approach, the biological relevance of the ATXN1/Tip60 interaction was assessed by crossing ATXN1[82Q] mice with Tip60(+/-)animals. Partial Tip60 loss increased Rora and Rora-mediated gene expression and delayed ATXN1[82]-mediated cerebellar degeneration during mid-stage disease progression. These results suggested a specific, temporal role for Tip60 during disease progression. We also showed that genetic background modulated ATXN1[82Q]-induced phenotypes. Of interest, these latter studies showed that some phenotypes are enhanced on a mixed background while others are suppressed.
Collapse
Affiliation(s)
- Kristin M Gehrking
- Institute of Human Genetics and Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
100
|
Abstract
Cerebellar ataxias with autosomal dominant transmission are rare, but identification of the associated genes has provided insight into the mechanisms that could underlie other forms of genetic or non-genetic ataxias. In many instances, the phenotype is not restricted to cerebellar dysfunction but includes complex multisystemic neurological deficits. The designation of the loci, SCA for spinocerebellar ataxia, indicates the involvement of at least two systems: the spinal cord and the cerebellum. 11 of 18 known genes are caused by repeat expansions in the corresponding proteins, sharing the same mutational mechanism. All other SCAs are caused by either conventional mutations or large rearrangements in genes with different functions, including glutamate signalling (SCA5/SPTBN2) and calcium signalling (SCA15/16/ITPR1), channel function (SCA13/KCNC3, SCA14/PRKCG, SCA27/FGF14), tau regulation (SCA11/TTBK2), and mitochondrial activity (SCA28/AFG3L2) or RNA alteration (SCA31/BEAN-TK2). The diversity of underlying mechanisms that give rise to the dominant cerebellar ataxias need to be taken into account to identify therapeutic targets.
Collapse
Affiliation(s)
- Alexandra Durr
- Université Pierre et Marie Curie-Paris, Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, UMR-S975, Paris, France.
| |
Collapse
|