51
|
Alahmadi AAS, Samson RS, Gasston D, Pardini M, Friston KJ, D'Angelo E, Toosy AT, Wheeler-Kingshott CAM. Complex motor task associated with non-linear BOLD responses in cerebro-cortical areas and cerebellum. Brain Struct Funct 2015; 221:2443-58. [PMID: 25921976 PMCID: PMC4884204 DOI: 10.1007/s00429-015-1048-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 04/18/2015] [Indexed: 01/13/2023]
Abstract
Previous studies have used fMRI to address the relationship between grip force (GF) applied to an object and BOLD response. However, whilst the majority of these studies showed a linear relationship between GF and neural activity in the contralateral M1 and ipsilateral cerebellum, animal studies have suggested the presence of non-linear components in the GF–neural activity relationship. Here, we present a methodology for assessing non-linearities in the BOLD response to different GF levels, within primary motor as well as sensory and cognitive areas and the cerebellum. To be sensitive to complex forms, we designed a feasible grip task with five GF targets using an event-related visually guided paradigm and studied a cohort of 13 healthy volunteers. Polynomial functions of increasing order were fitted to the data. Major findings: (1) activated motor areas irrespective of GF; (2) positive higher-order responses in and outside M1, involving premotor, sensory and visual areas and cerebellum; (3) negative correlations with GF, predominantly involving the visual domain. Overall, our results suggest that there are physiologically consistent behaviour patterns in cerebral and cerebellar cortices; for example, we observed the presence of a second-order effect in sensorimotor areas, consistent with an optimum metabolic response at intermediate GF levels, while higher-order behaviour was found in associative and cognitive areas. At higher GF levels, sensory-related cortical areas showed reduced activation, interpretable as a redistribution of the neural activity for more demanding tasks. These results have the potential of opening new avenues for investigating pathological mechanisms of neurological diseases.
Collapse
Affiliation(s)
- Adnan A S Alahmadi
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK. .,Department of Diagnostic Radiology, Faculty of Applied Medical Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia.
| | - Rebecca S Samson
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - David Gasston
- Department of Neuroimaging, Institute of Psychiatry, King's College London, London, UK
| | - Matteo Pardini
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Karl J Friston
- Wellcome Centre for Imaging Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Egidio D'Angelo
- Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Ahmed T Toosy
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK.,Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, University College London, London, UK
| | - Claudia A M Wheeler-Kingshott
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK.,Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy
| |
Collapse
|
52
|
Waldvogel HJ, Kim EH, Tippett LJ, Vonsattel JPG, Faull RLM. The Neuropathology of Huntington's Disease. Curr Top Behav Neurosci 2015; 22:33-80. [PMID: 25300927 DOI: 10.1007/7854_2014_354] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The basal ganglia are a highly interconnected set of subcortical nuclei and major atrophy in one or more regions may have major effects on other regions of the brain. Therefore, the striatum which is preferentially degenerated and receives projections from the entire cortex also affects the regions to which it targets, especially the globus pallidus and substantia nigra pars reticulata. Additionally, the cerebral cortex is itself severely affected as are many other regions of the brain, especially in more advanced cases. The cell loss in the basal ganglia and the cerebral cortex is extensive. The most important new findings in Huntington's disease pathology is the highly variable nature of the degeneration in the brain. Most interestingly, this variable pattern of pathology appears to reflect the highly variable symptomatology of cases with Huntington's disease even among cases possessing the same number of CAG repeats.
Collapse
Affiliation(s)
- Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand,
| | | | | | | | | |
Collapse
|
53
|
Waldvogel H, Faull R. The Diversity of GABAA Receptor Subunit Distribution in the Normal and Huntington's Disease Human Brain1. DIVERSITY AND FUNCTIONS OF GABA RECEPTORS: A TRIBUTE TO HANNS MÖHLER, PART B 2015; 73:223-64. [DOI: 10.1016/bs.apha.2014.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
54
|
Danoudis M, Iansek R. Gait in Huntington's disease and the stride length-cadence relationship. BMC Neurol 2014; 14:161. [PMID: 25265896 PMCID: PMC4190343 DOI: 10.1186/s12883-014-0161-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 07/30/2014] [Indexed: 11/25/2022] Open
Abstract
Background The progressive deterioration of gait in Huntington’s disease (HD) leads to functional decline and loss of function. To understand the underlying mechanisms responsible for the gait changes in HD, we examined the automatic control of gait by measuring the relationship between stride length and cadence. The relationship is strongly linked in healthy adults during automatic gait but disrupted in pathological gait disorders, such as Parkinson’s disease (PD). Methods The stride length cadence relationship was compared between seventeen participants with HD, twenty with PD and twenty one healthy older adults (HOA). Participants had their gait recorded at self-selected preferred, very slow, slow, fast and very fast speeds. Linear regression analysis was used to determine the slope and intercept of the relationship which were compared between groups. The adjustment of stride length and cadence when changing gait speeds was measured and compared within and between groups. Results Linearity was strong in all but two participants with HD and one with PD. Slope did not differ between groups (p > 0.05) but intercept was lower in the HD and PD groups compared to HOA (p < 0.05). Stride length was shorter in the HD and PD groups compared to controls at preferred and most adjusted speed conditions (p < 0.05) but cadence did not differ between groups (p > 0.05) regardless of speed. The HD group adjusted stride length and cadence similar to HOA when changing speed. The range of cadence across speed conditions did not differ between groups. Conclusion Scaling of stride length but not the regulation of cadence was found to be disrupted in participants with HD.
Collapse
|
55
|
Aylward EH. Magnetic resonance imaging striatal volumes: a biomarker for clinical trials in Huntington's disease. Mov Disord 2014; 29:1429-33. [PMID: 25164586 DOI: 10.1002/mds.26013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 07/25/2014] [Accepted: 08/03/2014] [Indexed: 11/06/2022] Open
Abstract
An abundance of research shows that magnetic resonance imaging (MRI) striatal volumes decrease long before diagnosis of Huntington's disease (HD) and closely track disease progression. Additional research indicates that these volumetric measures meet important criteria for a biomarker that can be used in clinical trials: They are 1) objectively measureable; 2) able to predict known endpoints; and 3) associated with known mechanisms of pathology of the disease. Researchers should consider formal application to regulatory agencies for biomarker status of volumetric MRI striatal measures, because these measures are anticipated to contribute significantly in the assessment of treatment effectiveness in HD.
Collapse
|
56
|
Ross CA, Aylward EH, Wild EJ, Langbehn DR, Long JD, Warner JH, Scahill RI, Leavitt BR, Stout JC, Paulsen JS, Reilmann R, Unschuld PG, Wexler A, Margolis RL, Tabrizi SJ. Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat Rev Neurol 2014; 10:204-16. [PMID: 24614516 DOI: 10.1038/nrneurol.2014.24] [Citation(s) in RCA: 683] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Huntington disease (HD) can be seen as a model neurodegenerative disorder, in that it is caused by a single genetic mutation and is amenable to predictive genetic testing, with estimation of years to predicted onset, enabling the entire range of disease natural history to be studied. Structural neuroimaging biomarkers show that progressive regional brain atrophy begins many years before the emergence of diagnosable signs and symptoms of HD, and continues steadily during the symptomatic or 'manifest' period. The continued development of functional, neurochemical and other biomarkers raises hopes that these biomarkers might be useful for future trials of disease-modifying therapeutics to delay the onset and slow the progression of HD. Such advances could herald a new era of personalized preventive therapeutics. We describe the natural history of HD, including the timing of emergence of motor, cognitive and emotional impairments, and the techniques that are used to assess these features. Building on this information, we review recent progress in the development of biomarkers for HD, and potential future roles of these biomarkers in clinical trials.
Collapse
Affiliation(s)
- Christopher A Ross
- Division of Neurobiology, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - Russell L Margolis
- Division of Neurobiology, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | | |
Collapse
|
57
|
Souza LC, Wilhelm EA, Bortolatto CF, Nogueira CW, Boeira SP, Jesse CR. Involvement of mGlu5 receptor in 3-nitropropionic acid-induced oxidative stress in rat striatum. Neurol Res 2014; 36:833-40. [PMID: 24588139 DOI: 10.1179/1743132814y.0000000334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVES The excitotoxin 3-nitropropionic acid (3-NP) induces a suitable experimental model of Huntington's disease (HD). This compound induces neurodegeneration via glutamatergic activation and oxidative stress, suggesting that the metabotropic glutamate receptor blockage and free radical scavenging are potential therapeutic targets in HD. In this study, we evaluated the role of 3-[(2-methyl-1,3-thiazol-4-yl) ethynyl]-pyridine (MTEP), a selective mGlu5 receptor antagonist, in a 3-NP model of HD. METHODS We administered 3-NP (20 mg/kg, intraperitoneal) to rats for 4 days. MTEP at doses of 2·5 and 5 mg/kg was administered 30 min before 3-NP. Behavioral tests and biochemical experiments were performed to assess the effects of 3-NP and the ability of MTEP to ameliorate these changes. RESULTS 3-NP administration induced body weight loss, decreased locomotor activity, and inhibition of succinate dehydrogenase and Na(+)-K(+) adenosine triphosphate (ATP)ase activities in rat striatum. We also observed increases in reactive species (RS) levels and glutathione reductase activity, decreased non-protein thiol levels, and an inhibition of glutathione peroxidase activity in the striatum of rats treated with 3-NP. Notably, all of these effects were attenuated by MTEP treatment. DISCUSSION Our results demonstrate the neuroprotective effect of MTEP and reinforce the involvement of mGluR5 in 3-NP-induced oxidative stress in rat striatum.
Collapse
|
58
|
Watkin EE, Arbez N, Waldron-Roby E, O'Meally R, Ratovitski T, Cole RN, Ross CA. Phosphorylation of mutant huntingtin at serine 116 modulates neuronal toxicity. PLoS One 2014; 9:e88284. [PMID: 24505464 PMCID: PMC3914950 DOI: 10.1371/journal.pone.0088284] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/08/2014] [Indexed: 12/18/2022] Open
Abstract
Phosphorylation has been shown to have a significant impact on expanded huntingtin-mediated cellular toxicity. Several phosphorylation sites have been identified on the huntingtin (Htt) protein. To find new potential therapeutic targets for Huntington's Disease (HD), we used mass spectrometry to identify novel phosphorylation sites on N-terminal Htt, expressed in HEK293 cells. Using site-directed mutagenesis we introduced alterations of phosphorylation sites in a N586 Htt construct containing 82 polyglutamine repeats. The effects of these alterations on expanded Htt toxicity were evaluated in primary neurons using a nuclear condensation assay and a direct time-lapse imaging of neuronal death. As a result of these studies, we identified several novel phosphorylation sites, validated several known sites, and discovered one phospho-null alteration, S116A, that had a protective effect against expanded polyglutamine-mediated cellular toxicity. The results suggest that S116 is a potential therapeutic target, and indicate that our screening method is useful for identifying candidate phosphorylation sites.
Collapse
Affiliation(s)
- Erin E. Watkin
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Nicolas Arbez
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Elaine Waldron-Roby
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Robert O'Meally
- Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Tamara Ratovitski
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Robert N. Cole
- Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Christopher A. Ross
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Departments of Neurology, Pharmacology and Neuroscience and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
59
|
Age-related decrease of functional connectivity additional to gray matter atrophy in a network for movement initiation. Brain Struct Funct 2014; 220:999-1012. [PMID: 24399178 DOI: 10.1007/s00429-013-0696-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 12/26/2013] [Indexed: 01/21/2023]
Abstract
Healthy aging is accompanied by a decrease in cognitive and motor capacities. In a network associated with movement initiation, we investigated age-related changes of functional connectivity (FC) as well as regional atrophy in a sample of 232 healthy subjects (age range 18-85 years). To this end, voxel-based morphometry and whole-brain resting-state FC were analyzed for the supplementary motor area (SMA), anterior midcingulate cortex (aMCC) and bilateral striatum (Str). To assess the specificity of age-related effects, bilateral primary sensorimotor cortex (S1/M1) closely associated with motor execution was used as control seeds. All regions showed strong reduction of gray matter volume with age. Corrected for this regional atrophy, the FC analysis revealed an age × seed interaction for each of the bilateral Str nodes against S1/M1 with consistent age-related decrease in FC with bilateral caudate nucleus and anterior putamen. Specific age-dependent FC decline of SMA was found in bilateral central insula and the adjacent frontal operculum. aMCC showed exclusive age-related decoupling from the anterior cingulate motor area. The present study demonstrates network as well as node-specific age-dependent FC decline of the SMA and aMCC to highly integrative cortical areas involved in cognitive motor control. FC decrease in addition to gray matter atrophy within the Str may provide a substrate for the declining motor control in elderly. Finally, age-related FC changes in both the network for movement initiation as well as the network for motor execution are not explained by regional atrophy in the healthy aging brain.
Collapse
|
60
|
Reiner A, Shelby E, Wang H, DeMarch Z, Deng Y, Guley NH, Hogg V, Roxburgh R, Tippett LJ, Waldvogel HJ, Faull RLM. Striatal parvalbuminergic neurons are lost in Huntington's disease: implications for dystonia. Mov Disord 2013; 28:1691-9. [PMID: 24014043 PMCID: PMC3812318 DOI: 10.1002/mds.25624] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 12/13/2022] Open
Abstract
Although dystonia represents a major source of motor disability in Huntington's disease (HD), its pathophysiology remains unknown. Because recent animal studies indicate that loss of parvalbuminergic (PARV+) striatal interneurons can cause dystonia, we investigated if loss of PARV+ striatal interneurons occurs during human HD progression, and thus might contribute to dystonia in HD. We used immunolabeling to detect PARV+ interneurons in fixed sections, and corrected for disease-related striatal atrophy by expressing PARV+ interneuron counts in ratio to interneurons co-containing somatostatin and neuropeptide Y (whose numbers are unaffected in HD). At all symptomatic HD grades, PARV+ interneurons were reduced to less than 26% of normal abundance in rostral caudate. In putamen rostral to the level of globus pallidus, loss of PARV+ interneurons was more gradual, not dropping off to less than 20% of control until grade 2. Loss of PARV+ interneurons was even more gradual in motor putamen at globus pallidus levels, with no loss at grade 1, and steady grade-wise decline thereafter. A large decrease in striatal PARV+ interneurons, thus, occurs in HD with advancing disease grade, with regional variation in the loss per grade. Given the findings of animal studies and the grade-wise loss of PARV+ striatal interneurons in motor striatum in parallel with the grade-wise appearance and worsening of dystonia, our results raise the possibility that loss of PARV+ striatal interneurons is a contributor to dystonia in HD.
Collapse
Affiliation(s)
- Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science CenterMemphis, Tennessee, USA
| | - Evan Shelby
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science CenterMemphis, Tennessee, USA
| | - Hongbing Wang
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science CenterMemphis, Tennessee, USA
| | - Zena DeMarch
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science CenterMemphis, Tennessee, USA
| | - Yunping Deng
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science CenterMemphis, Tennessee, USA
| | - Natalie Hart Guley
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science CenterMemphis, Tennessee, USA
| | - Virginia Hogg
- Centre for Brain Research, University of AucklandAuckland, New Zealand
- Department of Psychology, University of AucklandAuckland, New Zealand
| | - Richard Roxburgh
- Centre for Brain Research, University of AucklandAuckland, New Zealand
- Department of Neurology, Auckland City HospitalAuckland, New Zealand
| | - Lynette J Tippett
- Centre for Brain Research, University of AucklandAuckland, New Zealand
- Department of Psychology, University of AucklandAuckland, New Zealand
| | - Henry J Waldvogel
- Centre for Brain Research, University of AucklandAuckland, New Zealand
- Department of Anatomy with Radiology, University of AucklandAuckland, New Zealand
| | - Richard LM Faull
- Centre for Brain Research, University of AucklandAuckland, New Zealand
- Department of Anatomy with Radiology, University of AucklandAuckland, New Zealand
| |
Collapse
|
61
|
Zhu M, Shu K, Wang H, Li X, Xiao Q, Chan W, Emmanuel B, Jiang W, Lei T. Microtransplantation of whole ganglionic eminence cells ameliorates motor deficit, enlarges the volume of grafts, and prolongs survival in a rat model of Huntington's disease. J Neurosci Res 2013; 91:1563-71. [PMID: 24105649 DOI: 10.1002/jnr.23282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/23/2013] [Accepted: 07/05/2013] [Indexed: 12/29/2022]
Affiliation(s)
- Mingxin Zhu
- Department of Neurosurgery; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Kai Shu
- Department of Neurosurgery; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Heping Wang
- Department of Neurosurgery; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Xiaopeng Li
- Department of Neurosurgery; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Qungen Xiao
- Department of Neurosurgery; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Waipan Chan
- Department of Immunology; Johns Hopkins University School of Medicine; Baltimore Maryland
| | - Bosomah Emmanuel
- Department of Neurosurgery; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Wei Jiang
- Department of Neurosurgery; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Ting Lei
- Department of Neurosurgery; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| |
Collapse
|
62
|
Abstract
Young-onset dementia is a neurologic syndrome that affects behavior and cognition of patients younger than 65 years of age. Although frequently misdiagnosed, a systematic approach, reliant upon attainment of a detailed medical history, a collateral history, neuropsychological testing, laboratory studies, and neuroimaging, may facilitate earlier and more accurate diagnosis with subsequent intervention. The differential diagnosis of young-onset dementia is extensive and includes early-onset forms of adult neurodegenerative conditions including Alzheimer's disease, vascular dementia, frontotemporal dementia, Lewy body dementias, Huntington's disease, and prion disease. Late-onset forms of childhood neurodegenerative conditions may also present as young-onset dementia and include mitochondrial disorders, lysosomal storage disorders, and leukodystrophies. Potentially reversible etiologies including inflammatory disorders, infectious diseases, toxic/metabolic abnormalities, transient epileptic amnesia, obstructive sleep apnea, and normal pressure hydrocephalus also represent important differential diagnostic considerations in young-onset dementia. This review will present etiologies, diagnostic strategies, and options for management of young-onset dementia with comprehensive summary tables for clinical reference.
Collapse
Affiliation(s)
- Dulanji K Kuruppu
- Indiana University School of Medicine, 5457 Fieldhurst Lane, Plainfield, IN 46168, Telephone: 317-450-8801
| | - Brandy R Matthews
- Department of Neurology, Indiana University School of Medicine, 355 W. 16th Street, Suite 4700, Indianapolis, IN 46202, Telephone: 317-944-4000, Fax: 317-963-7559
| |
Collapse
|
63
|
Canzoniero LMT, Granzotto A, Turetsky DM, Choi DW, Dugan LL, Sensi SL. nNOS(+) striatal neurons, a subpopulation spared in Huntington's Disease, possess functional NMDA receptors but fail to generate mitochondrial ROS in response to an excitotoxic challenge. Front Physiol 2013; 4:112. [PMID: 23720635 PMCID: PMC3655281 DOI: 10.3389/fphys.2013.00112] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/30/2013] [Indexed: 12/26/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative condition characterized by severe neuronal loss in the cortex and striatum that leads to motor and behavioral deficits. Excitotoxicity is thought to be involved in HD and several studies have indicated that NMDA receptor (NMDAR) overactivation can play a role in the selective neuronal loss found in HD. Interestingly, a small subset of striatal neurons (less than 1% of the overall population) is found to be spared in post-mortem HD brains. These neurons are medium-sized aspiny interneurons that highly express the neuronal isoform of nitric oxide synthase (nNOS). Intriguingly, neurons expressing large amounts of nNOS [hereafter indicated as nNOS(+) neurons] show reduced vulnerability to NMDAR-mediated excitotoxicity. Mechanisms underlying this reduced vulnerability are still largely unknown and may shed some light on pathogenic mechanisms involved in HD. One untested possibility is that nNOS(+) neurons possess fewer or less functioning NMDARs. Employing single cell calcium imaging we challenged this hypothesis and found that cultured striatal nNOS(+) neurons show NMDAR-evoked responses that are identical to the ones observed in the overall population of neurons that express lower levels of nNOS [nNOS(−) neurons]. NMDAR-dependent deregulation of intraneuronal Ca2+ is known to generate high levels of reactive oxygen species of mitochondrial origin (mt-ROS), a crucial step in the excitotoxic cascade. With confocal imaging and dihydrorhodamine (DHR; a ROS-sensitive probe) we compared mt-ROS levels generated by NMDAR activation in nNOS(+) and (−) cultured striatal neurons. DHR experiments revealed that nNOS(+) neurons failed to produce significant amounts of mt-ROS in response to NMDA exposure, thereby providing a potential mechanism for their reduced vulnerability to excitotoxicity and decreased vulnerability in HD.
Collapse
Affiliation(s)
- Lorella M T Canzoniero
- Department of Biological and Environmental Science, University of Sannio Benevento, Italy
| | | | | | | | | | | |
Collapse
|