51
|
Progression of Parkinson's disease patients' subtypes based on cortical thinning: 4-year follow-up. Parkinsonism Relat Disord 2019; 64:286-292. [DOI: 10.1016/j.parkreldis.2019.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 01/01/2023]
|
52
|
Young JI, Sivasankaran SK, Wang L, Ali A, Mehta A, Davis DA, Dykxhoorn DM, Petito CK, Beecham GW, Martin ER, Mash DC, Pericak-Vance M, Scott WK, Montine TJ, Vance JM. Genome-wide brain DNA methylation analysis suggests epigenetic reprogramming in Parkinson disease. NEUROLOGY-GENETICS 2019; 5:e342. [PMID: 31403079 PMCID: PMC6659138 DOI: 10.1212/nxg.0000000000000342] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
Abstract
Objective Given the known strong relationship of DNA methylation with environmental exposure, we investigated whether brain regions affected in Parkinson disease (PD) were differentially methylated between PD cases and controls. Methods DNA chip arrays were used to perform a genome-wide screen of DNA methylation on the dorsal motor nucleus of the vagus (DMV), substantia nigra (SN), and cingulate gyrus (CG) of pathologically confirmed PD cases and controls selected using the criteria of Beecham et al. Analysis examined differentially methylated regions (DMRs) between cases and controls for each brain area. RNA sequencing and pathway analysis were also performed for each brain area. Results Thirty-eight PD cases and 41 controls were included in the analysis. Methylation studies revealed 234 significant DMR in the DMV, 44 in the SN, and 141 in the CG between cases and controls (Sidak p < 0.05). Pathway analysis of these genes showed significant enrichment for the Wnt signaling pathway (FDR < 0.01). Conclusions Our data suggest that significant DNA methylation changes exist between cases and controls in PD, especially in the DMV, one of the areas affected earliest in PD. The etiology of these methylation changes is not yet known, but the predominance of methylation changes occurring in the DMV supports the hypothesis that vagus nerve function, perhaps involving the gastrointestinal system, is important in PD pathogenesis. These data also give independent support that genes involved in Wnt signaling are a likely factor in the neurodegenerative processes of PD.
Collapse
Affiliation(s)
- Juan I Young
- John P. Hussman Institute for Human Genomics (J.I.Y., S.K.S., A.A., A.M., D.M.D., G.W.B., E.R.M., M.P.-V., W.K.S., J.M.V.), Miller School of Medicine, University of Miami; Department of Public Health Sciences (L.W.), Division of Biostatistics, Miller School of Medicine, University of Miami; Department of Neurology (D.A.D., D.C.M.), Miller School of Medicine, University of Miami; Department of Pathology (C.K.P.), Miller School of Medicine, University of Miami, FL; and Department of Pathology (T.J.M.), Stanford University, CA
| | - Sathesh K Sivasankaran
- John P. Hussman Institute for Human Genomics (J.I.Y., S.K.S., A.A., A.M., D.M.D., G.W.B., E.R.M., M.P.-V., W.K.S., J.M.V.), Miller School of Medicine, University of Miami; Department of Public Health Sciences (L.W.), Division of Biostatistics, Miller School of Medicine, University of Miami; Department of Neurology (D.A.D., D.C.M.), Miller School of Medicine, University of Miami; Department of Pathology (C.K.P.), Miller School of Medicine, University of Miami, FL; and Department of Pathology (T.J.M.), Stanford University, CA
| | - Lily Wang
- John P. Hussman Institute for Human Genomics (J.I.Y., S.K.S., A.A., A.M., D.M.D., G.W.B., E.R.M., M.P.-V., W.K.S., J.M.V.), Miller School of Medicine, University of Miami; Department of Public Health Sciences (L.W.), Division of Biostatistics, Miller School of Medicine, University of Miami; Department of Neurology (D.A.D., D.C.M.), Miller School of Medicine, University of Miami; Department of Pathology (C.K.P.), Miller School of Medicine, University of Miami, FL; and Department of Pathology (T.J.M.), Stanford University, CA
| | - Aleena Ali
- John P. Hussman Institute for Human Genomics (J.I.Y., S.K.S., A.A., A.M., D.M.D., G.W.B., E.R.M., M.P.-V., W.K.S., J.M.V.), Miller School of Medicine, University of Miami; Department of Public Health Sciences (L.W.), Division of Biostatistics, Miller School of Medicine, University of Miami; Department of Neurology (D.A.D., D.C.M.), Miller School of Medicine, University of Miami; Department of Pathology (C.K.P.), Miller School of Medicine, University of Miami, FL; and Department of Pathology (T.J.M.), Stanford University, CA
| | - Arpit Mehta
- John P. Hussman Institute for Human Genomics (J.I.Y., S.K.S., A.A., A.M., D.M.D., G.W.B., E.R.M., M.P.-V., W.K.S., J.M.V.), Miller School of Medicine, University of Miami; Department of Public Health Sciences (L.W.), Division of Biostatistics, Miller School of Medicine, University of Miami; Department of Neurology (D.A.D., D.C.M.), Miller School of Medicine, University of Miami; Department of Pathology (C.K.P.), Miller School of Medicine, University of Miami, FL; and Department of Pathology (T.J.M.), Stanford University, CA
| | - David A Davis
- John P. Hussman Institute for Human Genomics (J.I.Y., S.K.S., A.A., A.M., D.M.D., G.W.B., E.R.M., M.P.-V., W.K.S., J.M.V.), Miller School of Medicine, University of Miami; Department of Public Health Sciences (L.W.), Division of Biostatistics, Miller School of Medicine, University of Miami; Department of Neurology (D.A.D., D.C.M.), Miller School of Medicine, University of Miami; Department of Pathology (C.K.P.), Miller School of Medicine, University of Miami, FL; and Department of Pathology (T.J.M.), Stanford University, CA
| | - Derek M Dykxhoorn
- John P. Hussman Institute for Human Genomics (J.I.Y., S.K.S., A.A., A.M., D.M.D., G.W.B., E.R.M., M.P.-V., W.K.S., J.M.V.), Miller School of Medicine, University of Miami; Department of Public Health Sciences (L.W.), Division of Biostatistics, Miller School of Medicine, University of Miami; Department of Neurology (D.A.D., D.C.M.), Miller School of Medicine, University of Miami; Department of Pathology (C.K.P.), Miller School of Medicine, University of Miami, FL; and Department of Pathology (T.J.M.), Stanford University, CA
| | - Carol K Petito
- John P. Hussman Institute for Human Genomics (J.I.Y., S.K.S., A.A., A.M., D.M.D., G.W.B., E.R.M., M.P.-V., W.K.S., J.M.V.), Miller School of Medicine, University of Miami; Department of Public Health Sciences (L.W.), Division of Biostatistics, Miller School of Medicine, University of Miami; Department of Neurology (D.A.D., D.C.M.), Miller School of Medicine, University of Miami; Department of Pathology (C.K.P.), Miller School of Medicine, University of Miami, FL; and Department of Pathology (T.J.M.), Stanford University, CA
| | - Gary W Beecham
- John P. Hussman Institute for Human Genomics (J.I.Y., S.K.S., A.A., A.M., D.M.D., G.W.B., E.R.M., M.P.-V., W.K.S., J.M.V.), Miller School of Medicine, University of Miami; Department of Public Health Sciences (L.W.), Division of Biostatistics, Miller School of Medicine, University of Miami; Department of Neurology (D.A.D., D.C.M.), Miller School of Medicine, University of Miami; Department of Pathology (C.K.P.), Miller School of Medicine, University of Miami, FL; and Department of Pathology (T.J.M.), Stanford University, CA
| | - Eden R Martin
- John P. Hussman Institute for Human Genomics (J.I.Y., S.K.S., A.A., A.M., D.M.D., G.W.B., E.R.M., M.P.-V., W.K.S., J.M.V.), Miller School of Medicine, University of Miami; Department of Public Health Sciences (L.W.), Division of Biostatistics, Miller School of Medicine, University of Miami; Department of Neurology (D.A.D., D.C.M.), Miller School of Medicine, University of Miami; Department of Pathology (C.K.P.), Miller School of Medicine, University of Miami, FL; and Department of Pathology (T.J.M.), Stanford University, CA
| | - Deborah C Mash
- John P. Hussman Institute for Human Genomics (J.I.Y., S.K.S., A.A., A.M., D.M.D., G.W.B., E.R.M., M.P.-V., W.K.S., J.M.V.), Miller School of Medicine, University of Miami; Department of Public Health Sciences (L.W.), Division of Biostatistics, Miller School of Medicine, University of Miami; Department of Neurology (D.A.D., D.C.M.), Miller School of Medicine, University of Miami; Department of Pathology (C.K.P.), Miller School of Medicine, University of Miami, FL; and Department of Pathology (T.J.M.), Stanford University, CA
| | - Margaret Pericak-Vance
- John P. Hussman Institute for Human Genomics (J.I.Y., S.K.S., A.A., A.M., D.M.D., G.W.B., E.R.M., M.P.-V., W.K.S., J.M.V.), Miller School of Medicine, University of Miami; Department of Public Health Sciences (L.W.), Division of Biostatistics, Miller School of Medicine, University of Miami; Department of Neurology (D.A.D., D.C.M.), Miller School of Medicine, University of Miami; Department of Pathology (C.K.P.), Miller School of Medicine, University of Miami, FL; and Department of Pathology (T.J.M.), Stanford University, CA
| | - William K Scott
- John P. Hussman Institute for Human Genomics (J.I.Y., S.K.S., A.A., A.M., D.M.D., G.W.B., E.R.M., M.P.-V., W.K.S., J.M.V.), Miller School of Medicine, University of Miami; Department of Public Health Sciences (L.W.), Division of Biostatistics, Miller School of Medicine, University of Miami; Department of Neurology (D.A.D., D.C.M.), Miller School of Medicine, University of Miami; Department of Pathology (C.K.P.), Miller School of Medicine, University of Miami, FL; and Department of Pathology (T.J.M.), Stanford University, CA
| | - Thomas J Montine
- John P. Hussman Institute for Human Genomics (J.I.Y., S.K.S., A.A., A.M., D.M.D., G.W.B., E.R.M., M.P.-V., W.K.S., J.M.V.), Miller School of Medicine, University of Miami; Department of Public Health Sciences (L.W.), Division of Biostatistics, Miller School of Medicine, University of Miami; Department of Neurology (D.A.D., D.C.M.), Miller School of Medicine, University of Miami; Department of Pathology (C.K.P.), Miller School of Medicine, University of Miami, FL; and Department of Pathology (T.J.M.), Stanford University, CA
| | - Jeffery M Vance
- John P. Hussman Institute for Human Genomics (J.I.Y., S.K.S., A.A., A.M., D.M.D., G.W.B., E.R.M., M.P.-V., W.K.S., J.M.V.), Miller School of Medicine, University of Miami; Department of Public Health Sciences (L.W.), Division of Biostatistics, Miller School of Medicine, University of Miami; Department of Neurology (D.A.D., D.C.M.), Miller School of Medicine, University of Miami; Department of Pathology (C.K.P.), Miller School of Medicine, University of Miami, FL; and Department of Pathology (T.J.M.), Stanford University, CA
| |
Collapse
|
53
|
Prange S, Metereau E, Thobois S. Structural Imaging in Parkinson’s Disease: New Developments. Curr Neurol Neurosci Rep 2019; 19:50. [DOI: 10.1007/s11910-019-0964-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
54
|
Campabadal A, Segura B, Junque C, Serradell M, Abos A, Uribe C, Baggio HC, Gaig C, Santamaria J, Compta Y, Bargallo N, Iranzo A. Cortical Gray Matter and Hippocampal Atrophy in Idiopathic Rapid Eye Movement Sleep Behavior Disorder. Front Neurol 2019; 10:312. [PMID: 31024418 PMCID: PMC6459930 DOI: 10.3389/fneur.2019.00312] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/11/2019] [Indexed: 11/13/2022] Open
Abstract
Objective: In this study we investigate cortical and subcortical gray matter structure in patients with Idiopathic REM-sleep behavior disorder (IRBD), and their relation to cognitive performance. Methods: This study includes a sample of 20 patients with polysomnography-confirmed IRBD and 27 healthy controls that underwent neuropsychological and T1-weighted MRI assessment. FreeSurfer was used to estimate cortical thickness, subcortical volumetry (version 5.1), and hippocampal subfields segmentation (version 6.0). FIRST, FSL's model-based segmentation/registration tool was used for hippocampal shape analysis. Results: Compared with healthy subjects, IRBD patients showed impairment in facial recognition, verbal memory, processing speed, attention, and verbal naming. IRBD patients had cortical thinning in left superior parietal, post-central, and fusiform regions, as well as in right superior frontal and lateral occipital regions. Volumetric and shape analyses found right hippocampal atrophy in IRBD, specifically in posterior regions. Hippocampal subfields exploratory analysis identified significant differences in the right CA1, molecular layer, granule cell layer of dentate gyrus, and CA4 of this patients. No correlations were found between cognitive performance and brain atrophy. Conclusion: This work confirms the presence of posterior based cognitive dysfunction, as well as cortical and right hippocampal atrophy in IRBD patients.
Collapse
Affiliation(s)
- Anna Campabadal
- Medical Psychology Unit, Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Barbara Segura
- Medical Psychology Unit, Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Carme Junque
- Medical Psychology Unit, Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic de Barcelona, Barcelona, Spain.,Neuropsychology Group, Clinical and Experimental Neuroscience, Institute of Biomedical Research August Pi i Sunyer, Barcelona, Spain
| | | | - Alexandra Abos
- Medical Psychology Unit, Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Carme Uribe
- Medical Psychology Unit, Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Hugo C Baggio
- Medical Psychology Unit, Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Carles Gaig
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic de Barcelona, Barcelona, Spain.,Multidisciplinary Sleep Unit, Hospital Clínic, Barcelona, Spain
| | - Joan Santamaria
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic de Barcelona, Barcelona, Spain.,Multidisciplinary Sleep Unit, Hospital Clínic, Barcelona, Spain
| | - Yaroslau Compta
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic de Barcelona, Barcelona, Spain.,Neuropsychology Group, Clinical and Experimental Neuroscience, Institute of Biomedical Research August Pi i Sunyer, Barcelona, Spain.,Movement Disorders Unit, Neurology Service, Institute of Neuroscience, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Nuria Bargallo
- Centre de Diagnòstic per la Imatge, Hospital Clínic, Barcelona, Spain
| | - Alex Iranzo
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic de Barcelona, Barcelona, Spain.,Multidisciplinary Sleep Unit, Hospital Clínic, Barcelona, Spain
| |
Collapse
|
55
|
Cai X, Qiao J, Knox T, Iriah S, Kulkarni P, Madularu D, Morrison T, Waszczak B, Hartner JC, Ferris CF. In search of early neuroradiological biomarkers for Parkinson’s Disease: Alterations in resting state functional connectivity and gray matter microarchitecture in PINK1 −/− rats. Brain Res 2019; 1706:58-67. [DOI: 10.1016/j.brainres.2018.10.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022]
|
56
|
Wilson H, Niccolini F, Pellicano C, Politis M. Cortical thinning across Parkinson's disease stages and clinical correlates. J Neurol Sci 2019; 398:31-38. [PMID: 30682518 DOI: 10.1016/j.jns.2019.01.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/20/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Imaging studies have revealed cortical thinning and subcortical atrophy occurring in Parkinson's disease (PD); however, the topographical distribution and clinical associations related to advancing stages of PD remains unclear. OBJECTIVE We aimed to investigate the topographical distribution of cortical and subcortical morphometric changes, and their clinical associations, related to increasing disease severity. METHODS In this cross-sectional imaging study, T1-weighted structural magnetic resonance imaging data for 80 non-demented PD patients and 30 age-matched healthy controls were analysed using FreeSurfer software suite to derive morphometric changes using whole-brain vertex-wise analysis, and surface-based (cortical) and volume-based (subcortical) parcellation maps. PD patients were divided into three groups of mild (n = 27), moderate (n = 27), and severe (n = 26) PD based disease duration and Hoehn and Yahr and Unified Parkinson's Disease Rating Scale Part-III motor severity scores. RESULTS Whole-brain vertex-wise analysis revealed cortical thinning in the orbitofrontal cortex in early PD (P = .011), and in the superior frontal (P = .002), caudal middle frontal gyrus (P = .001) and inferior parietal cortex (P = .006) in moderate PD. Severe PD patients showed additional cortical thinning in temporal and occipital cortices (P < .005). Subcortical volume loss was detected in the thalamus (P = .012) and hippocampus (P = .032) in moderate PD, which extended to the caudate (P = .012), putamen (P = .042) and amygdala (P = .008) in severe PD. Increasing disease duration and motor severity scores, correlated with cortical thinning in frontal, temporal, parietal and occipital cortices, and subcortical volumetric loss in the thalamus, caudate, putamen, amygdala and hippocampus. Lower global cognitive status, measured with MMSE, correlated with cortical thinning in temporal, parietal, frontal and cingulate cortices, and with volumetric loss in the hippocampus (r = 0.31; P = .009); suggesting subclinical pathogenic changes occur prior to the onset of cognitive impairment. CONCLUSION In conclusion, in more severe disease stages PD patients exhibit progressive cortical thinning and subcortical volume loss which could have relevance to the development of cognitive impairment.
Collapse
Affiliation(s)
- Heather Wilson
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Flavia Niccolini
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Clelia Pellicano
- Department of Neuroscience, Mental Health and Secnsory Organs-(NESMOS), Sapienza University, Rome, Italy
| | - Marios Politis
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
57
|
Gao Y, Nie K, Mei M, Guo M, Huang Z, Wang L, Zhao J, Huang B, Zhang Y, Wang L. Changes in Cortical Thickness in Patients With Early Parkinson's Disease at Different Hoehn and Yahr Stages. Front Hum Neurosci 2018; 12:469. [PMID: 30542273 PMCID: PMC6278611 DOI: 10.3389/fnhum.2018.00469] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 11/07/2018] [Indexed: 12/30/2022] Open
Abstract
Objectives: This study was designed to explore changes in cortical thickness in patients with early Parkinson’s disease (PD) at different Hoehn and Yahr (H-Y) stages and to demonstrate the association of abnormally altered brain regions with part III of the Unified Parkinson’s Disease Rating Scale (UPDRS-III). Materials and Methods: Sixty early PD patients and 29 age- and gender-matched healthy controls (HCs) were enrolled in this study. All PD patients underwent comprehensive clinical and neuropsychological evaluations and 3.0 T magnetic resonance scanning. Patients with H-Y stage ≤1.5 were included in the mild group, and all other patients were included in the moderate group. FreeSurfer software was used to calculate cortical thickness. We assessed the relationship between UPDRS-III and regional changes in cortical thinning, including the bilateral fusiform and the temporal lobe. Results: The average cortical thickness of the temporal pole, fusiform gyrus, insula of the left hemisphere and fusiform gyrus, isthmus cingulate cortex, inferior temporal gyrus, middle temporal cortex and posterior cingulate cortex of the right hemisphere exhibited significant decreasing trends in HCs group and PD groups (i.e., the mild group and moderate group). After controlling for the effects of age, gender, and disease duration, the UPDRS-III scores in patients with early PD were correlated with the cortical thickness of the left and right fusiform gyrus and the left temporal pole (p < 0.05). Conclusion: The average cortical thickness of specific brain regions reduced with increasing disease severity in early PD patients at different H-Y stages, and the UPDRS-III scores of early PD patients were correlated with cortical thickness of the bilateral fusiform gyrus and the left temporal pole.
Collapse
Affiliation(s)
- Yuyuan Gao
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Kun Nie
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Mingjin Mei
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Manli Guo
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Zhiheng Huang
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Limin Wang
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Jiehao Zhao
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Biao Huang
- Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuhu Zhang
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Lijuan Wang
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| |
Collapse
|
58
|
Kunst J, Marecek R, Klobusiakova P, Balazova Z, Anderkova L, Nemcova-Elfmarkova N, Rektorova I. Patterns of Grey Matter Atrophy at Different Stages of Parkinson's and Alzheimer's Diseases and Relation to Cognition. Brain Topogr 2018; 32:142-160. [PMID: 30206799 DOI: 10.1007/s10548-018-0675-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/04/2018] [Indexed: 11/25/2022]
Abstract
Using MRI, a characteristic pattern of grey matter (GM) atrophy has been described in the early stages of Alzheimer's disease (AD); GM patterns at different stages of Parkinson's disease (PD) have been inconclusive. Few studies have directly compared structural changes in groups with mild cognitive impairment (MCI) caused by different pathologies (AD, PD). We used several analytical methods to determine GM changes at different stages of both PD and AD. We also evaluated associations between GM changes and cognitive measurements. Altogether 144 subjects were evaluated: PD with normal cognition (PD-NC; n = 23), PD with MCI (PD-MCI; n = 24), amnestic MCI (aMCI; n = 27), AD (n = 12), and age-matched healthy controls (HC; n = 58). All subjects underwent structural MRI and cognitive examination. GM volumes were analysed using two different techniques: voxel-based morphometry (VBM) and source-based morphometry (SBM), which is a multivariate method. In addition, cortical thickness (CT) was evaluated to assess between-group differences in GM. The cognitive domain z-scores were correlated with GM changes in individual patient groups. GM atrophy in the anterior and posterior cingulate, as measured by VBM, in the temporo-fronto-parietal component, as measured by SBM, and in the posterior cortical regions as well as in the anterior cingulate and frontal region, as measured by CT, differentiated aMCI from HC. Major hippocampal and temporal lobe atrophy (VBM, SBM) and to some extent occipital atrophy (SBM) differentiated AD from aMCI and from HC. Correlations with cognitive deficits were present only in the AD group. PD-MCI showed greater GM atrophy than PD-NC in the orbitofrontal regions (VBM), which was related to memory z-scores, and in the left superior parietal lobule (CT); more widespread limbic and fronto-parieto-occipital neocortical atrophy (all methods) differentiated this group from HC. Only CT revealed subtle GM atrophy in the anterior cingulate, precuneus, and temporal neocortex in PD-NC as compared to HC. None of the methods differentiated PD-MCI from aMCI. Both MCI groups showed distinct limbic and fronto-temporo-parietal neocortical atrophy compared to HC with no specific between-group differences. AD subjects displayed a typical pattern of major temporal lobe atrophy which was associated with deficits in all cognitive domains. VBM and CT were more sensitive than SBM in identifying frontal and posterior cortical atrophy in PD-MCI as compared to PD-NC. Our data support the notion that the results of studies using different analytical methods cannot be compared directly. Only CT measures revealed some subtle differences between HC and PD-NC.
Collapse
Affiliation(s)
- Jonas Kunst
- Medical Faculty, Masaryk University, Brno, Czech Republic.,Brain and Mind Research Programme, CEITEC Masaryk University, Brno, Czech Republic
| | - Radek Marecek
- Brain and Mind Research Programme, CEITEC Masaryk University, Brno, Czech Republic
| | - Patricia Klobusiakova
- Medical Faculty, Masaryk University, Brno, Czech Republic.,Brain and Mind Research Programme, CEITEC Masaryk University, Brno, Czech Republic
| | - Zuzana Balazova
- Brain and Mind Research Programme, CEITEC Masaryk University, Brno, Czech Republic
| | - Lubomira Anderkova
- Brain and Mind Research Programme, CEITEC Masaryk University, Brno, Czech Republic
| | | | - Irena Rektorova
- Brain and Mind Research Programme, CEITEC Masaryk University, Brno, Czech Republic. .,Movement Disorders Centre, First Department of Neurology, St Anne's University Hospital, Masaryk University, Pekarska 53, 656 91, Brno, Czech Republic.
| |
Collapse
|
59
|
Cerebral Imaging Markers of GBA and LRRK2 Related Parkinson's Disease and Their First-Degree Unaffected Relatives. Brain Topogr 2018; 31:1029-1036. [PMID: 29846835 DOI: 10.1007/s10548-018-0653-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/26/2018] [Indexed: 12/12/2022]
Abstract
Cerebral atrophy has been detected in patients with Parkinson's disease (PD) both with and without dementia, however differentiation based on genetic status has thus far not yielded robust findings. We assessed cortical thickness and subcortical volumes in a cohort of PD patients and healthy controls carriers of the G2019S mutation in the LRRK2 gene and the common GBA mutations, in an attempt to determine whether genetic status influences structural indexes. Cortical thickness and subcortical volumes were computed and compared between six groups of participants; idiopathic PD, GBA-PD, LRRK2-PD, non-manifesting non-carriers (NMNC), GBA-non-manifesting carriers (NMC) and LRRK2-NMC utilizing the FreeSurfer software program. All participants were cognitively intact based on a computerized cognitive assessment battery. Fifty-seven idiopathic PD patients, 9 LRRK2-PD, 12 GBA-PD, 49 NMNC, 41 LRRK2-NMC and 14 GBA-NMC participated in this study. Lower volumes among patients with PD compared to unaffected participants were detected in bilateral hippocampus, nucleus accumbens, caudate, thalamus, putamen and amygdala and the right pallidum (p = 0.016). PD patients demonstrated lower cortical thickness indexes in a majority of regions assessed compared with non-manifesting participants. No differences in cortical thickness and subcortical volumes were detected within each of the groups of participants based on genetic status. Mutations in the GBA and LRRK2 genes are not important determinants of cortical thickness and subcortical volumes in both patients with PD and non-manifesting participants. PD is associated with a general reduction in cortical thickness and sub-cortical atrophy even in cognitively intact patients.
Collapse
|
60
|
Cortical atrophy patterns in early Parkinson's disease patients using hierarchical cluster analysis. Parkinsonism Relat Disord 2018; 50:3-9. [DOI: 10.1016/j.parkreldis.2018.02.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/26/2018] [Accepted: 02/02/2018] [Indexed: 11/21/2022]
|
61
|
Siderowf A, Aarsland D, Mollenhauer B, Goldman JG, Ravina B. Biomarkers for cognitive impairment in Lewy body disorders: Status and relevance for clinical trials. Mov Disord 2018; 33:528-536. [DOI: 10.1002/mds.27355] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/13/2018] [Accepted: 01/26/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Andrew Siderowf
- Department of Neurology, Perelman School of Medicine; University of Pennsylvania; Philadelphia Philadelphia USA
| | - Dag Aarsland
- Department of Old Age Psychiatry; Kings College; London United Kingdom
- Centre for Age-Related Diseases, Stavanger University Hospital, Stavanger, Norway
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel, Klinikstrasse 16, 34128 Kassel and University Medical Center, Department of Neurology; Göttingen Germany
| | - Jennifer G. Goldman
- Department of Neurological Sciences; Rush University Medical Center; Chicago Illinois
| | | |
Collapse
|
62
|
Vavougios GD, Doskas T, Kormas C, Krogfelt KA, Zarogiannis SG, Stefanis L. Identification of a prospective early motor progression cluster of Parkinson's disease: Data from the PPMI study. J Neurol Sci 2018; 387:103-108. [DOI: 10.1016/j.jns.2018.01.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 10/25/2017] [Accepted: 01/22/2018] [Indexed: 12/15/2022]
|
63
|
Uribe C, Segura B, Baggio HC, Abos A, Garcia-Diaz AI, Campabadal A, Marti MJ, Valldeoriola F, Compta Y, Bargallo N, Junque C. Gray/White Matter Contrast in Parkinson's Disease. Front Aging Neurosci 2018; 10:89. [PMID: 29636679 PMCID: PMC5881246 DOI: 10.3389/fnagi.2018.00089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/16/2018] [Indexed: 12/24/2022] Open
Abstract
Gray/white matter contrast (GWC) decreases with aging and has been found to be a useful MRI biomarker in Alzheimer’s disease (AD), but its utility in Parkinson’s disease (PD) patients has not been investigated. The aims of the study were to test whether GWC is sensitive to aging changes in PD patients, if PD patients differ from healthy controls (HCs) in GWC, and whether the use of GWC data would improve the sensitivity of cortical thickness analyses to differentiate PD patients from controls. Using T1-weighted structural images, we obtained individual cortical thickness and GWC values from a sample of 90 PD patients and 27 controls. Images were processed with the automated FreeSurfer stream. GWC was computed by dividing the white matter (WM) by the gray matter (GM) values and projecting the ratios onto a common surface. The sample characteristics were: 52 patients and 14 controls were males; mean age of 64.4 ± 10.6 years in PD and 64.7 ± 8.6 years in controls; 8.0 ± 5.6 years of disease evolution; 15.6 ± 9.8 UPDRS; and a range of 1.5–3 in Hoehn and Yahr (H&Y) stage. In both PD and controls we observed significant correlations between GWC and age involving almost the entire cortex. When applying a stringent cluster-forming threshold of p < 0.0001, the correlation between GWC and age also involved the entire cortex in the PD group; in the control group, the correlation was found in the parahippocampal gyrus and widespread frontal and parietal areas. The GWC of PD patients did not differ from controls’, whereas cortical thickness analyses showed thinning in temporal and parietal cortices in the PD group. Cortical thinning remained unchanged after adjusting for GWC. GWC is a very sensitive measure for detecting aging effects, but did not provide additional information over other parameters of atrophy in PD.
Collapse
Affiliation(s)
- Carme Uribe
- Medical Psychology Unit, Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Barbara Segura
- Medical Psychology Unit, Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Hugo C Baggio
- Medical Psychology Unit, Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Alexandra Abos
- Medical Psychology Unit, Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Anna I Garcia-Diaz
- Medical Psychology Unit, Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Anna Campabadal
- Medical Psychology Unit, Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain
| | - Maria J Marti
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic de Barcelona, Barcelona, Spain.,Parkinson's Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Francesc Valldeoriola
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic de Barcelona, Barcelona, Spain.,Parkinson's Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Yaroslau Compta
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic de Barcelona, Barcelona, Spain.,Parkinson's Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Nuria Bargallo
- Centre de Diagnòstic per la Imatge, Hospital Clínic, Barcelona, Spain
| | - Carme Junque
- Medical Psychology Unit, Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
64
|
Li X, Xing Y, Martin-Bastida A, Piccini P, Auer DP. Patterns of grey matter loss associated with motor subscores in early Parkinson's disease. Neuroimage Clin 2017; 17:498-504. [PMID: 29201638 PMCID: PMC5700824 DOI: 10.1016/j.nicl.2017.11.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 09/13/2017] [Accepted: 11/08/2017] [Indexed: 12/22/2022]
Abstract
Classical motor symptoms of Parkinson's disease (PD) such as tremor, rigidity, bradykinesia, and axial symptoms are graded in the Movement Disorders Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) III. It is yet to be ascertained whether parkinsonian motor symptoms are associated with different anatomical patterns of neurodegeneration as reflected by brain grey matter (GM) alteration. This study aimed to investigate associations between motor subscores and brain GM at voxel level. High resolution structural MRI T1 scans from the Parkinson's Progression Markers Initiative (PPMI) repository were employed to estimate brain GM intensity of PD subjects. Correlations between GM intensity and total MDS-UPDRS III and its four subscores were computed. The total MDS-UPDRS III score was significantly negatively correlated bilaterally with putamen and caudate GM density. Lower anterior striatal GM intensity was significantly associated with higher rigidity subscores, whereas left-sided anterior striatal and precentral cortical GM reduction were correlated with severity of axial symptoms. No significant morphometric associations were demonstrated for tremor subscores. In conclusion, we provide evidence for neuroanatomical patterns underpinning motor symptoms in early PD.
Collapse
Affiliation(s)
- Xingfeng Li
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK; Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; NIHR Nottingham Biomedical Research Centre, Nottingham NG7 2UH, UK.
| | - Yue Xing
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK; Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Antonio Martin-Bastida
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Paola Piccini
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Dorothee P Auer
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK; Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; NIHR Nottingham Biomedical Research Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
65
|
Chung SJ, Choi YH, Kwon H, Park YH, Yun HJ, Yoo HS, Moon SH, Ye BS, Sohn YH, Lee JM, Lee PH. Sleep Disturbance May Alter White Matter and Resting State Functional Connectivities in Parkinson's Disease. Sleep 2017; 40:2962411. [PMID: 28364425 DOI: 10.1093/sleep/zsx009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Study Objectives To clarify whether sleep disturbance would alter the patterns of structural and functional networks underlying cognitive dysfunction in patients with Parkinson's disease (PD). Methods Among the 180 patients with nondemented PD in our cohort, 45 patients were classified as the group with sleep disturbance according to the 5-item scales for outcomes in Parkinson's disease nighttime scale. Based on propensity scores, another 45 PD patients without sleep disturbance were matched to this group. We performed a comparative analysis of cortical thickness, diffusion tensor imaging-based white matter integrity, resting-state functional connectivity, and cognitive performance between PD patients with and without sleep disturbance. Results PD patients with sleep disturbance showed poorer performance in attention and working memory and a tendency toward a lower score in frontal executive function relative to those without sleep disturbance. The PD with sleep disturbance group exhibited widespread white matter disintegration compared to the PD without sleep disturbance group, although there were no significant differences in cortical thickness between the PD subgroups. On functional network analysis, PD patients with sleep disturbance exhibited less severely decreased cortical functional connectivity within the default mode network, central executive network, and dorsal attention network when compared to those without sleep disturbance. Conclusions The present study suggests that sleep disturbance in PD patients could be associated with white matter and functional network alterations in conjunction with cognitive impairment.
Collapse
Affiliation(s)
- Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Jangseong Public Health Center, Jangseong, South Korea
| | - Yong-Ho Choi
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Hunki Kwon
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Yeong-Hun Park
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Hyuk Jin Yun
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
66
|
Abstract
OBJECTIVES Executive dysfunction is a common feature in Parkinson's disease (PD). However, there is a lack of brief validated instruments for executive dysfunction in PD. METHODS The aim of the present study was to assess the relation of Frontal Assessment Battery (FAB) scores to age and education, to verify the utility of FAB in the evaluation of executive dysfunction in PD and to differentiate between controls (n=41), PD patients with normal cognition (PD-NC; n=41; Hoehn and Yahr stages 2-3) and PD with mild cognitive impairment (PD-MCI; n=32; Hoehn and Yahr stages 2-3). In addition, we studied the relation between voxel-based morphometric (VBM) data and FAB results in PD. RESULTS We found that FAB scores are significantly related to age and education. The FAB has shown discriminative validity for the differentiation of PD-MCI from PD-NC and controls (area under the curve >.80). Also, the VBM analysis revealed lower FAB scores are specifically related to lower gray matter density in the right ventromedial prefrontal areas and precuneus. CONCLUSIONS The FAB can be recommended as a valid instrument for PD-MCI Level I screening. FAB is sensitive to frontal lobe involvement in PD as reflected by lower gray matter density in prefrontal areas. (JINS, 2017, 23, 675-684).
Collapse
|
67
|
Sauerbier A, Rosa-Grilo M, Qamar MA, Chaudhuri KR. Nonmotor Subtyping in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 133:447-478. [PMID: 28802928 DOI: 10.1016/bs.irn.2017.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Nonmotor symptoms are integral to Parkinson's disease. Several subtypes dominated by specific nonmotor symptoms have emerged. In this chapter, the rationale behind nonmotor subtyping and currently proposed nonmotor subgroups within Parkinson's disease based on data-driven cluster analysis and clinical observations will be summarized. Furthermore, the concept of seven clinical nonmotor subtypes will be discussed in detail including the clinical presentation, potential biomarkers, and the clinical relevance. In future, nonmotor subtypes will possibly play a major role within the aim to achieve personalized medicine.
Collapse
Affiliation(s)
- Anna Sauerbier
- Parkinson's Centre of Excellence, King's College Hospital Foundation Trust, London, United Kingdom; Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom.
| | - Miguel Rosa-Grilo
- Parkinson's Centre of Excellence, King's College Hospital Foundation Trust, London, United Kingdom; Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Mubasher A Qamar
- Parkinson's Centre of Excellence, King's College Hospital Foundation Trust, London, United Kingdom; Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - K Ray Chaudhuri
- Parkinson's Centre of Excellence, King's College Hospital Foundation Trust, London, United Kingdom; Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| |
Collapse
|
68
|
Caspell-Garcia C, Simuni T, Tosun-Turgut D, Wu IW, Zhang Y, Nalls M, Singleton A, Shaw LA, Kang JH, Trojanowski JQ, Siderowf A, Coffey C, Lasch S, Aarsland D, Burn D, Chahine LM, Espay AJ, Foster ED, Hawkins KA, Litvan I, Richard I, Weintraub D, the Parkinson’s Progression Markers Initiative (PPMI). Multiple modality biomarker prediction of cognitive impairment in prospectively followed de novo Parkinson disease. PLoS One 2017; 12:e0175674. [PMID: 28520803 PMCID: PMC5435130 DOI: 10.1371/journal.pone.0175674] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/29/2017] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES To assess the neurobiological substrate of initial cognitive decline in Parkinson's disease (PD) to inform patient management, clinical trial design, and development of treatments. METHODS We longitudinally assessed, up to 3 years, 423 newly diagnosed patients with idiopathic PD, untreated at baseline, from 33 international movement disorder centers. Study outcomes were four determinations of cognitive impairment or decline, and biomarker predictors were baseline dopamine transporter (DAT) single photon emission computed tomography (SPECT) scan, structural magnetic resonance imaging (MRI; volume and thickness), diffusion tensor imaging (mean diffusivity and fractional anisotropy), cerebrospinal fluid (CSF; amyloid beta [Aβ], tau and alpha synuclein), and 11 single nucleotide polymorphisms (SNPs) previously associated with PD cognition. Additionally, longitudinal structural MRI and DAT scan data were included. Univariate analyses were run initially, with false discovery rate = 0.2, to select biomarker variables for inclusion in multivariable longitudinal mixed-effect models. RESULTS By year 3, cognitive impairment was diagnosed in 15-38% participants depending on the criteria applied. Biomarkers, some longitudinal, predicting cognitive impairment in multivariable models were: (1) dopamine deficiency (decreased caudate and putamen DAT availability); (2) diffuse, cortical decreased brain volume or thickness (frontal, temporal, parietal, and occipital lobe regions); (3) co-morbid Alzheimer's disease Aβ amyloid pathology (lower CSF Aβ 1-42); and (4) genes (COMT val/val and BDNF val/val genotypes). CONCLUSIONS Cognitive impairment in PD increases in frequency 50-200% in the first several years of disease, and is independently predicted by biomarker changes related to nigrostriatal or cortical dopaminergic deficits, global atrophy due to possible widespread effects of neurodegenerative disease, co-morbid Alzheimer's disease plaque pathology, and genetic factors.
Collapse
Affiliation(s)
- Chelsea Caspell-Garcia
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, United States of America
| | - Tanya Simuni
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Duygu Tosun-Turgut
- University of California, San Francisco, San Francisco, CA, United States of America
| | - I-Wei Wu
- University of California, San Francisco, San Francisco, CA, United States of America
| | - Yu Zhang
- University of California, San Francisco, San Francisco, CA, United States of America
| | - Mike Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States of America
| | - Andrew Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States of America
| | - Leslie A. Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Ju-Hee Kang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Pharmacology & Clinical Pharmacology, Inha University School of Medicine, Incheon, Republic of Korea
| | - John Q. Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Andrew Siderowf
- Avid Radiopharmaceuticals, Philadelphia, PA, United States of America
| | - Christopher Coffey
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, United States of America
| | - Shirley Lasch
- Institute for Neurodegenerative Disorders (IND) and Molecular NeuroImaging, LLC (MNI), New Haven CT, United States of America
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, England
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - David Burn
- Institute for Ageing and Health, Newcastle University, Newcastle, England
| | - Lana M. Chahine
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Alberto J. Espay
- Department of Neurology, University of Cincinnati Academic Health Center, Cincinnati, OH, United States of America
| | - Eric D. Foster
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, United States of America
| | - Keith A. Hawkins
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States of America
| | - Irene Litvan
- UCSD Movement Disorder Center, Department of Neurosciences, University of California San Diego, San Diego, CA, United States of America
| | - Irene Richard
- Departments of Neurology and Psychiatry, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| | - Daniel Weintraub
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
- Parkinson’s Disease Research, Education and Clinical Center (PADRECC and MIRECC), Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, United States of America
- Mental Illness Research, Education and Clinical Center (MIRECC), Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, United States of America
| | | |
Collapse
|
69
|
Nürnberger L, Gracien RM, Hok P, Hof SM, Rüb U, Steinmetz H, Hilker R, Klein JC, Deichmann R, Baudrexel S. Longitudinal changes of cortical microstructure in Parkinson's disease assessed with T1 relaxometry. Neuroimage Clin 2016; 13:405-414. [PMID: 28116233 PMCID: PMC5226811 DOI: 10.1016/j.nicl.2016.12.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/23/2016] [Accepted: 12/19/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Histological evidence suggests that pathology in Parkinson's disease (PD) goes beyond nigrostriatal degeneration and also affects the cerebral cortex. Quantitative MRI (qMRI) techniques allow the assessment of changes in brain tissue composition. However, the development and pattern of disease-related cortical changes have not yet been demonstrated in PD with qMRI methods. The aim of this study was to investigate longitudinal cortical microstructural changes in PD with quantitative T1 relaxometry. METHODS 13 patients with mild to moderate PD and 20 matched healthy subjects underwent high resolution T1 mapping at two time points with an interval of 6.4 years (healthy subjects: 6.5 years). Data from two healthy subjects had to be excluded due to MRI artifacts. Surface-based analysis of cortical T1 values was performed with the FreeSurfer toolbox. RESULTS In PD patients, a widespread decrease of cortical T1 was detected during follow-up which affected large parts of the temporo-parietal and occipital cortices and also frontal areas. In contrast, age-related T1 decrease in the healthy control group was much less pronounced and only found in lateral frontal, parietal and temporal areas. Average cortical T1 values did not differ between the groups at baseline (p = 0.17), but were reduced in patients at follow-up (p = 0.0004). Annualized relative changes of cortical T1 were higher in patients vs. healthy subjects (patients: - 0.72 ± 0.64%/year; healthy subjects: - 0.17 ± 0.41%/year, p = 0.007). CONCLUSIONS In patients with PD, the development of widespread changes in cortical microstructure was observed as reflected by a reduction of cortical T1. The pattern of T1 decrease in PD patients exceeded the normal T1 decrease as found in physiological aging and showed considerable overlap with the pattern of cortical thinning demonstrated in previous PD studies. Therefore, cortical T1 might be a promising additional imaging marker for future longitudinal PD studies. The biological mechanisms underlying cortical T1 reductions remain to be further elucidated.
Collapse
Affiliation(s)
- Lucas Nürnberger
- Department of Neurology, Goethe University, Frankfurt/Main, Germany
- Brain Imaging Center, Goethe University, Frankfurt/Main, Germany
| | - René-Maxime Gracien
- Department of Neurology, Goethe University, Frankfurt/Main, Germany
- Brain Imaging Center, Goethe University, Frankfurt/Main, Germany
| | - Pavel Hok
- Department of Neurology, Goethe University, Frankfurt/Main, Germany
- Brain Imaging Center, Goethe University, Frankfurt/Main, Germany
- Department of Neurology, Palacky University, Olomouc, Czech Republic
| | - Stephanie-Michelle Hof
- Department of Neurology, Goethe University, Frankfurt/Main, Germany
- Brain Imaging Center, Goethe University, Frankfurt/Main, Germany
| | - Udo Rüb
- Dr. Senckenberg Chronomedical Institute, Goethe University, Frankfurt/Main, Germany
| | | | - Rüdiger Hilker
- Department of Neurology, Goethe University, Frankfurt/Main, Germany
- Brain Imaging Center, Goethe University, Frankfurt/Main, Germany
| | - Johannes C. Klein
- Department of Neurology, Goethe University, Frankfurt/Main, Germany
- Brain Imaging Center, Goethe University, Frankfurt/Main, Germany
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Ralf Deichmann
- Brain Imaging Center, Goethe University, Frankfurt/Main, Germany
| | - Simon Baudrexel
- Department of Neurology, Goethe University, Frankfurt/Main, Germany
- Brain Imaging Center, Goethe University, Frankfurt/Main, Germany
| |
Collapse
|