51
|
Suzuki K, Araki Y, Zhu MY, Lareyre JJ, Matusik RJ, Orgebin-Crist MC. The 5'-flanking region of the murine epididymal protein of 17 kilodaltons gene targets transgene expression in the epididymis. Endocrinology 2003; 144:877-86. [PMID: 12586764 DOI: 10.1210/en.2002-220757] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A murine epididymal retinoic-acid-binding protein (mE-RABP) is specifically expressed in the mid/distal caput epididymidis and is androgen regulated. The murine epididymal protein of 17 kDa (mEP17) gene, a novel gene homologous to mE-RABP, is located within 5 kb of the 5'-flanking region of the mE-RABP gene. In contrast, expression of the mEP17 gene is restricted to the initial segment and regulated by factor(s) contained in testicular fluid. To identify cis-DNA regulatory element(s) involved in the tissue- and region-specific expression of the mEP17 gene in transgenic mice, we have studied the expression of a transgene containing 5.3 kb of the 5'-flanking region of the mEP17 gene (5.3mEP17) linked to chloramphenicol acetyltransferase (CAT) reporter gene. Significant caput epididymidis-specific CAT activity was detected in transgenic mouse lines; and CAT gene expression is restricted to the initial segment, as is the expression of the endogenous mEP17 gene. Ontogenic expression and testicular factor dependency also mimic that of endogenous mEP17 gene. These results suggest that the 5.3mEP17 fragment contains all the information required for spatial and temporal expression in the mouse epididymis. The 5.3mEP17 fragment will be useful to express a foreign gene of interest in the epididymis in an initial segment-specific manner.
Collapse
Affiliation(s)
- Kichiya Suzuki
- Center for Reproductive Biology Research and Department of Obstetrics and Gynecology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232-2633, USA.
| | | | | | | | | | | |
Collapse
|
52
|
Yudin AI, Li MW, Robertson KR, Tollner T, Cherr GN, Overstreet JW. Identification of a novel GPI-anchored CRISP glycoprotein, MAK248, located on the posterior head and equatorial segment of cynomolgus macaque sperm. Mol Reprod Dev 2002; 63:488-99. [PMID: 12412052 DOI: 10.1002/mrd.10193] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To identify a sperm-surface component that is highly antigenic, we immunized female cynomolgus macaques with glycosylphosphatidylinositol (GPI)-anchored sperm surface proteins that were released following treatment with phosphatidylinositol-specific phospholipase C (PI-PLC). Five different adjuvants were used in combination with the PI-PLC-released proteins, and three of these proteins (24, 48, and 53 kDa) were shown to be potent antigens for immunization of female monkeys. The 53 kDa protein was found to be a surface coating protein and not a GPI-anchored protein. Polyclonal antibodies to the 24 kDa protein and the 48 kDa protein were produced in rabbits. The two antibodies recognized both proteins on Western blots. The same rabbit antibodies recognized 28, 18, and 10 kDa bands on a Western blot of chemically reduced PI-PLC-released proteins, suggesting that the 48 kDa protein is a dimer of the 24 kDa protein, which we refer to as MAK248. Rabbit polyclonal antibodies developed to reduced fragments of the 24 kDa protein showed that the 18 and 10 kDa bands are proteolytic peptide fragments of the 24 kDa protein. Screening of tissues from male macaques showed that MAK248 is expressed only in the epididymis. Microsequencing of two proteolytic fragments of the 18 kDa component showed 100% amino acid homology to a 233 deduced amino acid sequence previously identified in human testes genome. Antibodies to MAK248 recognized a 24 kDa protein released from human sperm exposed to PI-PLC. Antibodies to MAK248 recognized the equatorial segment and posterior head regions of capacitated cynomolgus macaque sperm. Structural analysis suggests that MAK248 is a novel CRISP protein and a member of the CAP (CRISP, Ag 5, PR-1) family of proteins. Based on amino acid sequence homology, it is possible that MAK248 functions as a protease inhibitor.
Collapse
Affiliation(s)
- A I Yudin
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, University of California, Davis, California, USA.
| | | | | | | | | | | |
Collapse
|
53
|
Ellerman DA, Da Ros VG, Cohen DJ, Busso D, Morgenfeld MM, Cuasnicú PS. Expression and Structure-Function Analysis of DE, a Sperm Cysteine-Rich Secretory Protein That Mediates Gamete Fusion1. Biol Reprod 2002; 67:1225-31. [PMID: 12297540 DOI: 10.1095/biolreprod67.4.1225] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Rat sperm epididymal glycoprotein DE belongs to the cysteine-rich secretory protein (CRISP) family and participates in sperm-egg fusion through its binding to complementary sites on the egg surface. To investigate the molecular mechanisms underlying the role of DE in gamete fusion, in the present work we expressed DE in a prokaryotic system, and examined the relevance of carbohydrates and disulfide bonds for the biological activity of the protein. Immunofluorescence and sperm-egg fusion assays carried out in the presence of recombinant DE (recDE) revealed that this protein exhibits the ability to bind to the DE-egg binding sites and to inhibit gamete fusion, as does native DE (nDE). Comparison of the proteins indicated, however, that the inhibitory ability of recDE was significantly lower than that of nDE. This difference would not be due to the lack of carbohydrates in the bacterially expressed protein because enzymatically deglycosylated nDE was as able as the untreated protein to inhibit gamete fusion. To examine whether disulfide bridges are involved in DE activity, the presence of sulfhydryls in nDE and recDE was evaluated by the biotin-maleimide technique. Results indicated that, unlike nDE, in which all cysteines are involved in disulfide bonds, recDE contains free thiol groups. Subsequent experiments showed that reduction of nDE with dithiothreitol significantly decreased the ability of the protein to inhibit gamete fusion. Together, these results indicate that whereas carbohydrates do not have a role in DE-mediated gamete fusion, disulfide bridges are required for full biological activity of the protein. To our knowledge, this is the first study reporting the relevance of structural components for the function of a CRISP member.
Collapse
Affiliation(s)
- Diego A Ellerman
- Instituto de Biología y Medicina Experimental, 1428 Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
54
|
Udby L, Calafat J, Sørensen OE, Borregaard N, Kjeldsen L. Identification of human cysteine‐rich secretory protein 3 (CRISP‐3) as a matrix protein in a subset of peroxidase‐negative granules of neutrophils and in the granules of eosinophils. J Leukoc Biol 2002. [DOI: 10.1189/jlb.72.3.462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Lene Udby
- Granulocyte Research Laboratory, Department of Hematology, Rigshospitalet, Copenhagen, Denmark; and
| | - Jero Calafat
- Department of Cell Biology, The Netherlands Cancer Institute, Amsterdam
| | - Ole E. Sørensen
- Granulocyte Research Laboratory, Department of Hematology, Rigshospitalet, Copenhagen, Denmark; and
| | - Niels Borregaard
- Granulocyte Research Laboratory, Department of Hematology, Rigshospitalet, Copenhagen, Denmark; and
| | - Lars Kjeldsen
- Granulocyte Research Laboratory, Department of Hematology, Rigshospitalet, Copenhagen, Denmark; and
| |
Collapse
|
55
|
Roberts KP, Ensrud KM, Hamilton DW. A comparative analysis of expression and processing of the rat epididymal fluid and sperm-bound forms of proteins D and E. Biol Reprod 2002; 67:525-33. [PMID: 12135891 DOI: 10.1095/biolreprod67.2.525] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The mammalian epididymis secretes numerous proteins important for sperm maturation. Among these are proteins D and E, which belong to the CRISP family (cysteine-rich secretory proteins) and are the product of the Crisp-1 gene. These proteins have been the focus of a number of studies and have been implicated in sperm/egg fusion. Protein D and protein E have been purified to apparent homogeneity in several laboratories. Polyclonal antibodies raised against each protein typically cross-reacted with both proteins, suggesting that they were immunologically similar, if not identical. Our laboratory has previously reported the generation of a monoclonal antibody (mAb 4E9) that recognizes only protein E. Using mAb 4E9, the localization of protein E was shown to be domain specific on the sperm surface and there is processing of the protein in the fluid, with only the lowest molecular weight form associating with sperm. Subsequent purification and amino acid sequencing of protein D confirmed that proteins D and E are nearly identical and differ only by presence of the 4E9 epitope on protein E. Here we report the generation of antibodies to regions of amino acid sequence identity in proteins D and E. Using these antibodies, we demonstrate that protein D associates with the sperm head and that a portion of this protein may be proteolytically processed. In addition, we demonstrate that the proteolytic processing of protein E occurs in the carboxy terminal region of this protein. The data also suggest that a portion of protein D may also undergo processing, similar to that of protein E. Finally, we use these antibodies to demonstrate that proteins D and E are differentially expressed by the epididymal epithelium. Taken together, these data suggest that proteins D and E may have individual roles in sperm function.
Collapse
Affiliation(s)
- Kenneth P Roberts
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 321 Church Street SW, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
56
|
Ramanathan B, Archunan G. Analysis of epididymal proteins during sexual maturation in male albino mice. ACTA PHYSIOLOGICA HUNGARICA 2002; 88:73-80. [PMID: 11811849 DOI: 10.1556/aphysiol.88.2001.1.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Androgen dependent epididymal proteins act as antigen to produce autoantibodies and affect normal fertility. In the present study, epididymal proteins were analyzed during the time of sexual maturation and their androgen dependency was studied in male albino mice. Epididymis of 21 days (Pre-pubertal), 45 days (Pubertal), 60 days (Post-pubertal), orchidectomized (15 days after surgery) and orchidectomized with testosterone-treated (15 days after treatment) mice were dissected out and analyzed. Caput, corpus and cauda epididymidis were separated and the protein extract was prepared with 0.1 M PBS for 10% SDS-PAGE analysis. Testosterone assay was performed in the experimental groups except the testosterone treated group. The electrophoretic analysis of proteins in caput, corpus and cauda epididymidis of orchidectomized animals showed the disappearance of several proteins as compared to the adult. However, the disappeared proteins started to reappear in testosterone treated animals. The results suggest that removal of testis depletes the testosterone level and causes significant alteration in epididymal proteins. These proteins need further investigation for the purpose of immunocontraception by using them as antigens.
Collapse
Affiliation(s)
- B Ramanathan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamilnadu, India
| | | |
Collapse
|
57
|
Udby L, Cowland JB, Johnsen AH, Sørensen OE, Borregaard N, Kjeldsen L. An ELISA for SGP28/CRISP-3, a cysteine-rich secretory protein in human neutrophils, plasma, and exocrine secretions. J Immunol Methods 2002; 263:43-55. [PMID: 12009203 DOI: 10.1016/s0022-1759(02)00033-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Specific granule protein of 28 kDa (SGP28), also termed cysteine-rich secretory protein 3 (CRISP-3), is a glycoprotein that belongs to a family of cysteine-rich secretory proteins (CRISPs). SGP28 was originally discovered in human neutrophils, but transcripts are widely distributed in exocrine glands (salivary glands, pancreas, and prostate) and also found at lower levels in epididymis, ovary, thymus, and colon. The function of SGP28/CRISP-3 is not yet known. Similarities to pathogenesis-related proteins in plants and the expression in neutrophils and exocrine glands suggest that SGP28/CRISP-3 may play a role in innate host defense. We describe here the production of a recombinant, C-terminally truncated form of CRISP-3 (rCRISP-3Delta) and the generation of polyclonal antibodies against rCRISP-3Delta that are useful in immunoblotting and immunocytochemistry. We present a specific, accurate, and reproducible enzyme-linked immunosorbant assay (ELISA) for the measurement of CRISP-3 with a detection limit of 2 ng/ml. We further demonstrate the presence of CRISP-3 protein in human plasma (6.3 microg/ml), saliva (21.8 microg/ml), seminal plasma (11.2 microg/ml), and sweat (0.15 microg/ml), and describe the coexistence of two different molecular weight forms of CRISP-3, representing an N-glycosylated and a non-glycosylated form of the mature protein.
Collapse
Affiliation(s)
- Lene Udby
- Granulocyte Research Laboratory, Department of Hematology L-9322, Rigshospitalet, 9 Blegdamsvej, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
58
|
Tapinos NI, Polihronis M, Thyphronitis G, Moutsopoulos HM. Characterization of the cysteine-rich secretory protein 3 gene as an early-transcribed gene with a putative role in the pathophysiology of Sjögren's syndrome. ARTHRITIS AND RHEUMATISM 2002; 46:215-22. [PMID: 11817594 DOI: 10.1002/1529-0131(200201)46:1<215::aid-art10024>3.0.co;2-m] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To identify genes that may participate in the pathophysiology of Sjögren's syndrome (SS), the technique of differential display was applied to labial minor salivary gland (MSG) biopsy samples. METHODS Total RNA was isolated from MSG biopsy samples from a woman with primary SS and a control subject, and the differential display protocol with 8 different random oligonucleotide primers was performed. One particular differentially expressed fragment showed 98% homology with the cysteine-rich secretory protein 3 (CRISP-3) gene. The result was verified by reverse transcription-polymerase chain reaction (RT-PCR) with messenger RNA (mRNA) samples from MSG biopsy tissues obtained from 4 women with primary SS. A CRISP-3 RNA probe was synthesized for in situ hybridization of 7 MSG biopsy samples from patients with primary SS. In an attempt to interpret the expression of CRISP-3, normal peripheral blood lymphocytes (PBLs) were activated in vitro at different time points and assayed for CRISP-3 expression. Finally, B cells were transfected with the coding region of CRISP-3 and monitored for the up-regulation of different B cell activation markers. RESULTS The CRISP-3 gene was detected by RT-PCR in all SS patients tested. Mainly the mononuclear cells infiltrating the MSGs of patients expressed CRISP-3 mRNA. In addition, CRISP-3 was detected by RT-PCR between 30 minutes and 6 hours in phorbol myristate acetate-activated normal PBLs, while staurosporine inhibited this expression. CRISP-3-transfected B cells exhibited an up-regulation in CD25 surface expression. CONCLUSION The CRISP-3 gene is identified as a novel early response gene that may participate in the pathophysiology of the autoimmune lesions of SS.
Collapse
|
59
|
Lahti PP, Shariatmadari R, Penttinen JK, Drevet JR, Haendler B, Vierula M, Parvinen M, Huhtaniemi IT, Poutanen M. Evaluation of the 5'-flanking regions of murine glutathione peroxidase five and cysteine-rich secretory protein-1 genes for directing transgene expression in mouse epididymis. Biol Reprod 2001; 64:1115-21. [PMID: 11259257 DOI: 10.1095/biolreprod64.4.1115] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Based on strong epididymal expression of the mouse glutathione peroxidase 5 (GPX5) and cysteine-rich secretory protein-1 (CRISP-1) genes, we evaluated whether the 5.0-kilobase (kb)-long GPX5 and 3.8-kb-long CRISP-1 gene 5'-flanking regions could be used to target expression of genes of interest into the epididymis in transgenic mice. Of the two candidate promoters investigated, the CRISP-1 promoter-driven enhanced green fluorescent protein (EGFP) reporter gene was highly expressed in the tubular compartment of the testis in all stages of the seminiferous epithelial cycle between pachytene spermatocytes at stage VII to elongated spermatids at step 16. In contrast to CRISP-1, the 5.0-kb 5' region of the mouse GPX5 gene directed EGFP expression to the epididymis. In the various GPX5-EGFP mouse lines, strongest expression of EGFP mRNA was found in the epididymis, but low levels of reporter gene mRNA were detected in several other tissues. Strong EGFP fluorescence was found in the principal cells of the distal caput region of epididymis, and few fluorescent cells were also detected in the cauda region. No EGFP fluorescence was detected in the corpus region or in the other tissues analyzed. Hence, it is evident that the 5.0-kb 5'-flanking region of GPX5 promoter is suitable for directing the expression of structural genes of interest into the caput epididymidis in transgenic mice.
Collapse
Affiliation(s)
- P P Lahti
- Department of Physiology, Institute of Biomedicine, University of Turku, FIN-20520 Turku, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Keah HH, O'Bryan MK, de Kretser DM, Hearn MT. Synthesis and application of peptide immunogens related to the sperm tail protein tpx-1, a member of the CRISP superfamily of proteins. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2001; 57:1-10. [PMID: 11168883 DOI: 10.1034/j.1399-3011.2001.00779.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The synthesis of peptides containing 0, 1 and 2 cysteine residues related to the human sperm tail protein, tpx-1, is described. These synthetic peptides, following conjugation to keyhole limpet hemocyanin modified with maleimidobenzoic acid N-hydroxysuccinimide ester, were used as immunogens to generate polyclonal antibodies in female New Zealand white rabbits. The binding characteristics of the derived antipeptide sera were evaluated using indirect and competitive ELISA procedures. Western immunoblot experiments also confirmed that these synthetic peptide immunogens are able to generate high-titer polyclonal antibodies capable of cross-reacting with the mature tpx-1 protein present in crude rat sperm tail/testis preparations as well as in outer dense fiber preparations. Consequently, these synthetic peptides represent promising candidates for investigations into the role of tpx-1 in the immunoregulation of sperm function in the rat and other mammalian models, with the derived antisera also providing an avenue to explore possible sites of expression of tpx-1 proteins in other tissues.
Collapse
Affiliation(s)
- H H Keah
- Center for Bioprocess Technology, Department of Biochemistry and Molecular Biology Monash University, Clayton, Australia
| | | | | | | |
Collapse
|
61
|
Cohen DJ, Rochwerger L, Ellerman DA, Morgenfeld MM, Busso D, Cuasnicú PS. Relationship between the association of rat epididymal protein "DE" with spermatozoa and the behavior and function of the protein. Mol Reprod Dev 2000; 56:180-8. [PMID: 10813850 DOI: 10.1002/(sici)1098-2795(200006)56:2<180::aid-mrd9>3.0.co;2-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Rat epididymal glycoprotein DE associates with the dorsal region of the sperm head during sperm maturation, migrates to the equatorial segment (ES) with the acrosome reaction (AR), and is involved in gamete membrane fusion. In the present study we examined the association of DE with the sperm surface and the relationship of this interaction with the behavior and function of the protein. Cloning and sequencing of DE revealed a lack of hydrophobic domains and the presence of 16 cysteine residues in the molecule. Experiments in which cauda epididymal sperm were subjected to different extraction procedures indicated that while most of the protein is removable from sperm by mild ionic strength, a low amount of DE, resistant to even 2 M NaCl, can be completely extracted by agents that remove integral proteins. However, the lack of hydrophobic domains in the molecule and the failure of DE to interact with liposomes, does not support a direct insertion of the protein into the lipid bilayer. These results, and the complete extraction of the tightly bound protein by dithiothreitol, suggest that this population would correspond to a peripheral protein bound to a membrane component by strong noncovalent interactions that involve disulfide bonds. While ELISA experiments showed that no protein could be extracted by NaCl from capacitated sperm, indirect immunofluorescence studies revealed the ability of the NaCl-resistant protein to migrate to the ES. Together, these results support the existence of two populations of DE: a major, loosely bound population that is released during capacitation, and a minor strongly bound population that remains after capacitation, migrates to the ES with the AR, and thus would correspond to the one with a role in gamete fusion.
Collapse
Affiliation(s)
- D J Cohen
- Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
62
|
Smyth JR, McNeil M. Alopecia areata and universalis in the Smyth chicken model for spontaneous autoimmune vitiligo. J Investig Dermatol Symp Proc 1999; 4:211-5. [PMID: 10674368 DOI: 10.1038/sj.jidsp.5640213] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Smyth line (SL) chicken model for spontaneous, postnatal expression of vitiligo may also show varying incidences and degrees of severity ranging from alopecia areata-like to universalis-like integumental changes. Although human vitiligo patients are known to have a four times greater chance of having alopecia areata than do people without vitiligo, in the SL model, feather loss is limited to birds that show some degree of amelanosis of feather and skin tissue. Both the vitiligo and the alopecia have an autoimmune component, as shown by histologic and immunologic studies, including the correctional influences of corticosterone and cyclosporine-A. The major histocompatibility haplotype (MHC) has a major effect on the incidence and expression of the vitiligo, as well as the alopecia that occurs within vitiliginous birds. Three different MHC haplotypes were identified in the original line that was selected for vitiligo, and from these, three sublines were developed, each homozygous for a different haplotype. Of the three sublines (SL101, SL102, and SL103) the vitiligo has a significantly earlier onset and severity in the SL101 than in the other two lines. The incidence of alopecia, however, is significantly lower in the SL101 subline than in the other two. Inheritance of the vitiligo is polygenic with an additional genetic component for the alopecia trait. It is hypothesized, but as yet unproven, that a feather development defect interacts with the SL melanization and immunologic defects to initiate the partial (areata) and complete (universalis) alopecias. The alopecia universalis is rarely seen until adulthood and is characterized by short (<0.5 cm), undeveloped feathers. If feather growth resumes in these birds, the feathers dry up, cease to grow, and often break off.
Collapse
Affiliation(s)
- J R Smyth
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst 01003-7250, USA
| | | |
Collapse
|
63
|
Abstract
In eutherian mammals billions of sperm are deposited at ejaculation in the female reproductive tract, but only a few thousand enter the oviduct. A few reach the ampulla at the time of fertilization and only one sperm fertilizes the egg. In most mammalian species the lower isthmus of the fallopian tubes has taken over the function of a reservoir in which sperm are stored under conditions that save sperm energy by suppressing motility and increase viability. Close to the time when the egg is ovulated into the ampulla, the sperm undergo a complex sequence of processes, named capacitation. Capacitation is a prerequisite for fertilization, enabling the sperm to recognize the egg and to respond to the egg signals in the appropriate manner. Sperm bind to the egg extracellular matrix, the zona pellucida, and upon binding undergo the acrosome reaction, followed by the passage of the zona pellucida and binding to and fusion with the egg oolemma, thus triggering the embryonic developmental program. The oviduct and the egg itself appear to coordinate sperm function to ensure that two functional competent gametes will meet, leading to fertilization. For the communication between sperm and somatic cells as well as between both gametes the information potential of carbohydrates is utilized, and this event probably prepares the next level of interactions, e.g., capacitation, acrosome reaction, egg binding, and fusion. The current perspective focuses on the role of molecules possibly implicated in sperm-oviduct and sperm-egg interactions. J. Exp. Zool. (Mol. Dev. Evol.) 285:259-266, 1999.
Collapse
Affiliation(s)
- E Töpfer-Petersen
- Institute of Reproductive Medicine, School of Veterinary Medicine, Hannover D-30559, Germany.
| |
Collapse
|
64
|
McGrew LL, Takemaru K, Bates R, Moon RT. Direct regulation of the Xenopus engrailed-2 promoter by the Wnt signaling pathway, and a molecular screen for Wnt-responsive genes, confirm a role for Wnt signaling during neural patterning in Xenopus. Mech Dev 1999; 87:21-32. [PMID: 10495268 DOI: 10.1016/s0925-4773(99)00136-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The co-activation of Wnt signaling and concomitant inhibition of BMP signaling has previously been implicated in vertebrate neural patterning, as evidenced by the combinatorial induction of engrailed-2 and krox-20 in Xenopus. However, screens have not previously been conducted to identify additional potential target genes. Using a PCR-based screening method we determined that XA-1, xCRISP, UVS.2, two UVS.2-related genes, and xONR1 are induced in response to Xwnt-3a and a BMP-antagonist, noggin. Two additional genes, connexin 30 and retinoic acid receptor gamma were induced by Xwnt-3a alone. To determine whether any of the induced genes are direct targets of Wnt signaling, we focussed on engrailed-2. In the present study we show that the Xenopus engrailed-2 promoter contains three consensus binding sites for LEF/TCF, which are HMG box transcription factors which bind to beta-catenin in response to activation of the Wnt- 1 signaling pathway. An engrailed-2 promoter luciferase reporter construct containing these LEF/TCF sites is induced in embryo explant assays by the combination of Xwnt-3a or beta-catenin and noggin. These LEF/TCF sites are required for expression of engrailed-2, as a dominant negative Xtcf-3 blocks expression of endogenous engrailed-2 as well as expression of the reporter construct. Moreover, mutation of these three LEF/TCF sites abrogates expression of the reporter construct in response to noggin and Xwnt-3a or beta-catenin. We conclude that the engrailed-2 gene is a direct target of the Wnt signaling pathway, and that Wnt signaling works with BMP antagonists to regulate gene expression during patterning of the developing nervous system of Xenopus.
Collapse
Affiliation(s)
- L L McGrew
- Howard Hughes Medical Institute, Department of Pharmacology and Center for Developmental Biology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
65
|
Hawdon JM, Narasimhan S, Hotez PJ. Ancylostoma secreted protein 2: cloning and characterization of a second member of a family of nematode secreted proteins from Ancylostoma caninum. Mol Biochem Parasitol 1999; 99:149-65. [PMID: 10340481 DOI: 10.1016/s0166-6851(99)00011-0] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Invading infective third-stage larvae (L3) of parasitic nematodes execute a series of programmed developmental events in response to a host-specific signal encountered during infection. One of these early events is the release of excretory/secretory products. Using an in vitro feeding assay that mimics these early events of infection, a protein released by in vitro activated larvae of the hookworm Ancylostoma caninum was identified. This protein, Ac-ASP-2, was partially sequenced, and the cDNA encoding it isolated by PCR and screening of an A. caninum L3 cDNA library. The Ac-asp-2 cDNA encodes a protein of 219 amino acids that is related to a previously identified protein, Ac-ASP-1, from hookworms. Both molecules are members of an evolutionarily diverse family of molecules that include the venom allergens of the Hymenoptera, and the testes specific proteins/sperm-coating glycoproteins of mammals. Homologues are present in nearly all nematodes tested, as demonstrated by PCR-hybridization and database searching. The Ac-asp-2 mRNA is synthesized in all life history stages, but the gene product is released only by L3 activated to feed in vitro. The wide distribution of the Ac-asp-2 in nematodes and its release in response to host specific signals suggests that Ac-ASP-2 serves an important function in nematode physiology and development, and possibly in the infective process of parasitic species.
Collapse
Affiliation(s)
- J M Hawdon
- Medical Helminthology Laboratory, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
66
|
Abstract
The epididymis is a tubular organ exhibiting vectorial functions of sperm concentration, maturation, transport, and storage. The molecular basis for these functions is poorly understood. However, it has become increasingly clear that regional differences along the length of the duct play a role in epididymal physiology and that region-specific gene expression is involved in the formation of these differences. Although not an overtly segmented organ, the epididymis consists of a series of highly coiled "zones," separated by connective tissue septulae and distinct by cell morphology and their pattern of gene expression. Thus, it constitutes an interesting mammalian model to study how pattern formation is achieved by differential gene activity. A large number of epididymis-expressed genes have been cloned and analyzed at the molecular level, most of them have been characterized by a distinct temporal and spatial expression pattern within the organ. Only recently have theories been developed about how and when during ontogenesis this pattern formation takes place and what its significance might be. This review summarizes the current knowledge on regionalized gene expression in the epididymis and presents hypotheses concerning its ontogenetic origin and regulation in the adult.
Collapse
Affiliation(s)
- C Kirchhoff
- IHF Institute for Hormone and Fertility Research, Hamburg, Germany
| |
Collapse
|
67
|
Schambony A, Gentzel M, Wolfes H, Raida M, Neumann U, Töpfer-Petersen E. Equine CRISP-3: primary structure and expression in the male genital tract. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1387:206-16. [PMID: 9748582 DOI: 10.1016/s0167-4838(98)00122-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although originally described in the male rodent genital tract, cysteine-rich secretory proteins (CRISPs) are expressed in a variety of mammalian tissue and cell types. The proteins of the male genital tract have been observed associated to spermatozoa and are believed to play a role in mammalian fertilization. Here we describe the identification and primary structure of the first equine member of the CRISP family. Equine CRISP-3 is transcribed and expressed in the stallion salivary gland, in the ampulla and the seminal vesicle. It displays all 16 conserved cysteine residues and shows 82% homology to human and 78% to guinea pig CRISP-2 (AA1, TPX 1) and 77% to human CRISP-3. In contrast to other mammalia, in the horse CRISP-3 is synthesized in great amounts in the accessory sexual glands, ampulla and seminal vesicle, thus allowing the isolation of equine CRISP-3 in amounts suitable for biochemical, physiological and structural studies from stallion seminal plasma.
Collapse
Affiliation(s)
- A Schambony
- Institut für Reproduktionsmedizin, Tierärztliche Hochschule, Bünteweg 15, D-30559 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
68
|
O'Bryan MK, Loveland KL, Herszfeld D, McFarlane JR, Hearn MT, de Kretser DM. Identification of a rat testis-specific gene encoding a potential rat outer dense fibre protein. Mol Reprod Dev 1998; 50:313-22. [PMID: 9621307 DOI: 10.1002/(sici)1098-2795(199807)50:3<313::aid-mrd7>3.0.co;2-m] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Screening of a rat testis expression library with an antiserum specific for an outer dense fibre (ODF) has led to the identification of a gene encoding for a putative protein previously unknown as a component of the sperm tail. This gene has been designated tpx-1 by virtue of its homology with the mouse and human gene of the same name (79 and 73%, respectively). The tpx-1-like gene encoded a 1.6-kb mRNA and a 243-amino-acid protein that had significant homology with members of the cysteine-rich secretory protein (CRISP) family and partial homology with several venom/allergen proteins from both plants and insects. During rat spermatogenesis, the tpx-1-like transcript was first detected by in situ hybridization in low levels in late pachytene spermatocytes. Low but detectable levels of expression continued up to step 5 round spermatids, after which expression levels increased dramatically to a maximum in step 11-12 spermatids. Progressively decreasing levels of expression were detected in up to step 17 elongating spermatids. Testicular somatic cells did not contain detectable tpx-1-like transcript. This pattern of expression is consistent with published data on the development of the ODF in spermatogenesis and, when taken together with a comparison of the predicted amino acid sequence of tpx-1 with the amino acid analysis of a 29-kDa rat ODF protein, suggests that the tpx-1-like gene may encode for this protein.
Collapse
Affiliation(s)
- M K O'Bryan
- Institute of Reproduction and Development, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
69
|
Magdaleno L, Gasset M, Varea J, Schambony AM, Urbanke C, Raida M, Töpfer-Petersen E, Calvete JJ. Biochemical and conformational characterisation of HSP-3, a stallion seminal plasma protein of the cysteine-rich secretory protein (CRISP) family. FEBS Lett 1997; 420:179-85. [PMID: 9459306 DOI: 10.1016/s0014-5793(97)01514-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
HSP-3 is a member of the cysteine-rich secretory protein (CRISP) family from stallion seminal plasma. We report a large-scale purification protocol for native HSP-3. This protein is a non-glycosylated polypeptide chain with a pI of 8-9 and an isotope-averaged molecular mass of 24987 +/- 3 Da. The molecular mass of HSP-3, determined by equilibrium sedimentation, is 26 kDa, showing that the protein exists in solution as a monomer. The concentration of HSP-3 in the seminal plasma of different stallions ranged from 0.3 to 1.3 mg/ml. On average, 0.9-9 million HSP-3 molecules/cell coat the postacrosomal and mid-piece regions of an ejaculated, washed stallion spermatozoon, suggesting a role in sperm physiology. Conformational characterisation of purified HSP-3 was assessed by combination of circular dichroism and Fourier-transform infrared spectroscopies and differential scanning microcalorimetry. Based on secondary structure assignment, HSP-3 may belong to the alpha+beta class of proteins. Thermal denaturation of HSP-3 is irreversible and follows a non-two state transition characterised by a Tm of 64 degrees C, an enthalpy change of 75 kcal/mol, and a van 't Hoff enthalpy of 184 kcal/mol. Analysis of the spectroscopic and calorimetric data indicates the occurrence of aggregation of denatured HSP-3 molecules and suggests the monomer as the cooperative unfolding unit.
Collapse
Affiliation(s)
- L Magdaleno
- Instituto de Química-Física Rocasolano, C.S.I.C., Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Haendler B, Habenicht UF, Schwidetzky U, Schüttke I, Schleuning WD. Differential androgen regulation of the murine genes for cysteine-rich secretory proteins (CRISP). EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 250:440-6. [PMID: 9428696 DOI: 10.1111/j.1432-1033.1997.0440a.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The androgen dependency of the genes coding for the cysteine-rich secretory proteins (CRISP) was analysed in their main sites of expression. Male mice were treated with the gonadotropin-releasing hormone antagonist Ac-DNapAla-DClPhAla-DPyrAla-Ser-Tyr-DCtl-Leu-Lys (Mor)-Pro-DAla-NH2 [DNapAla, D-2-naphthyl-Ala; DClPhAla, D-4-chlorphenyl-Ala; DPyrAla, D-pyridyn-3-yl-Ala; DCtl, D-citrulline; Lys(Mor), L-2-amino-6-(morpholin-4-yl)-hexanoic acid], and CRISP RNA levels were assessed by northern blot and competitive reverse transcriptase-mediated (RT)-PCR. In the salivary gland, CRISP-1 and to a lesser extent CRISP-3 expression was markedly reduced, in spite of an up-regulation of androgen receptor transcript levels. A down-regulation of CRISP-1 expression was also observed in the epididymis. Conversely, the levels of the testicular CRISP-2 transcripts were hardly affected at all. Female mice were ovariectomised and treated with testosterone propionate, and their salivary gland RNAs analysed. CRISP-1 and CRISP-3 RNA levels were significantly increased, and these effects were prevented by a concomitant treatment with the antiandrogen flutamide. Androgen receptor transcript levels were not affected by androgen administration but increased following antiandrogen treatment. CRISP expression during postnatal development was monitored by northern blot analysis. CRISP-1 and CRISP-2 transcripts were detected as early as 22 days after birth in the epididymis and testis, respectively, whereas CRISP-3 mRNA was visible only from day 30 in the salivary gland. A sharp increase of all CRISP levels was noted on day 40, coincident with the onset of sexual maturity. Altogether these results indicate that despite their high similarity, the CRISP genes are differentially regulated by androgens.
Collapse
Affiliation(s)
- B Haendler
- Research Laboratories of Schering AG, Berlin, Germany.
| | | | | | | | | |
Collapse
|
71
|
McLeskey SB, Dowds C, Carballada R, White RR, Saling PM. Molecules involved in mammalian sperm-egg interaction. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 177:57-113. [PMID: 9378618 DOI: 10.1016/s0074-7696(08)62231-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To achieve fertilization, sperm and egg are equipped with specific molecules which mediate the steps of gamete interaction. In mammals, the first interaction between sperm and egg occurs at an egg-specific extracellular matrix, the zona pellucida (zp). The three glycoproteins, ZP1, ZP2, and ZP3, that comprise the zp have been characterized from many species and assigned different roles in gamete interaction. A large number of candidate-binding partners for the zp proteins have been described; a subset of these have been characterized structurally and functionally. Galactosyltransferase, sp56, zona receptor kinase, and spermadhesins are thought to participate in the primary binding between sperm and zp and may initiate the exocytotic release of hydrolytic enzymes in the sperm head, the acrosome reaction. Digestion of the zp by these enzymes enables sperm to traverse the zp, at which time the proteins PH20, proacrosin, sp38, and Sp17 are thought to participate in secondary binding between the acrosome-reacted sperm and zp. Once through the zp, sperm and egg plasma membranes meet and fuse in a process reported to involve the egg integrin alpha 6 beta 1 and the sperm proteins DE and fertilin. These molecules and the processes involved in gamete interaction are reviewed in this chapter within a physiological context.
Collapse
Affiliation(s)
- S B McLeskey
- Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
72
|
Schwidetzky U, Schleuning WD, Haendler B. Isolation and characterization of the androgen-dependent mouse cysteine-rich secretory protein-1 (CRISP-1) gene. Biochem J 1997; 321 ( Pt 2):325-32. [PMID: 9020862 PMCID: PMC1218072 DOI: 10.1042/bj3210325] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In mice, cysteine-rich secretory protein-1 (CRISP-1) is mainly found in the epididymis and also, to a lesser extent, in the salivary gland of males, where androgens control its expression. We have now isolated and characterized overlapping phage clones covering the entire length of the CRISP-1 gene. DNA sequencing revealed that the gene is organized into eight exons, ranging between 55 and 748 bp in size, and seven introns. All exon-intron junctions conformed to the GT/AG rule established for eukaryotic genes. The intron length, as determined by PCR, varied between 1.05 and 4.0 kb so that the CRISP-1 gene spans over 20 kb of the mouse genome. The transcription-initiation site was determined by primer extension and localized at the expected distance downstream of a consensus TATA box. Approximately 3.7 kb of the CRISP-1 promoter region were isolated and sequenced, and several stretches fitting the androgen-responsive element consensus were found. Those that most resembled the consensus were analysed by electrophoretic mobility-shift assay and found to form specific complexes with the liganded androgen receptor in vitro, but with different affinities. Putative binding elements for the transcription factors Oct, GATA, PEA3, CF1. AP-1 and AP-3 were also found in the promoter region.
Collapse
Affiliation(s)
- U Schwidetzky
- Research Laboratories of Schering AG, Berlin, Germany
| | | | | |
Collapse
|
73
|
Pfisterer P, König H, Hess J, Lipowsky G, Haendler B, Schleuning WD, Wirth T. CRISP-3, a protein with homology to plant defense proteins, is expressed in mouse B cells under the control of Oct2. Mol Cell Biol 1996; 16:6160-8. [PMID: 8887646 PMCID: PMC231619 DOI: 10.1128/mcb.16.11.6160] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Oct2 transcription factor is expressed throughout the B-lymphoid lineage and plays an essential role during the terminal phase of B-cell differentiation. Several genes specifically expressed in B lymphocytes have been identified that contain a functional octamer motif in their regulatory elements. However, expression of only a single gene, the murine CD36 gene, has been shown to date to be dependent on Oct2. Here, we present the identification and characterization of a further gene, coding for cysteine-rich secreted protein 3 (CRISP-3), whose expression in B cells is regulated by Oct2. We show that CRISP-3 is expressed in the B-lymphoid lineage specifically at the pre-B-cell stage. By using different experimental strategies, including nuclear run-on experiments, we demonstrate that this gene is transcriptionally activated by Oct2. Furthermore, analysis of CRISP-3 expression in primary B cells derived from either wild-type or Oct2-deficient mice demonstrates the dependence on Oct2. Two variant octamer motifs were identified in the upstream promoter region of the crisp-3 gene, and Oct2 interacts with both of them in vitro. Cotransfection experiments with expression vectors for Oct1 and Oct2 together with a reporter driven by the crisp-3 promoter showed that transcriptional activation of this promoter can only be achieved with Oct2. The C-terminal transactivation domain of Oct2 is required for this activation. Finally, introducing specific mutations in the two variant octamer motifs revealed that both of them are important for full transcriptional activation by Oct2.
Collapse
Affiliation(s)
- P Pfisterer
- Zentrum für Molekulare Biologie, Universität Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
74
|
Krätzschmar J, Haendler B, Eberspaecher U, Roosterman D, Donner P, Schleuning WD. The human cysteine-rich secretory protein (CRISP) family. Primary structure and tissue distribution of CRISP-1, CRISP-2 and CRISP-3. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 236:827-36. [PMID: 8665901 DOI: 10.1111/j.1432-1033.1996.t01-1-00827.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We report the isolation and characterisation of cDNAs encoding three different, human members of the cysteine-rich secretory protein (CRISP) family. The novel CRISP-1 exists in five cDNA subtypes differing by the presence or absence of a stretch coding for a C-terminal cysteine-rich domain so far found in all members of the family, and by the length of their 3'-untranslated region. CRISP-2 cDNA corresponds to the previously described TPX1 form, with so far unreported 5'-untranslated sequence heterogeneities while CRISP-3 cDNA codes for a new, unique protein. Northern blot analysis of various human organs indicates that CRISP-1 transcripts are epididymis-specific whereas CRISP-2/TPX1 transcripts are detected mainly in the testis and also in the epididymis. CRISP-3 transcripts are more widely distributed and found predominantly in the salivary gland, pancreas and prostate, and in less abundance in the epididymis, ovary, thymus and colon. A protein reacting with an anti-mouse CRISP-1 antibody was isolated from human epididymal extracts and N-terminal sequencing revealed that it corresponded to the CRISP-1 cDNA we have isolated. In contrast to findings on its rat counterpart epididymal protein DE/acidic epididymal glycoprotein (AEG), no significant association of CRISP-1 with human spermatozoa was observed.
Collapse
Affiliation(s)
- J Krätzschmar
- Research Laboratories of Schering AG, Berlin, Germany
| | | | | | | | | | | |
Collapse
|