51
|
Jodar M, Selvaraju S, Sendler E, Diamond MP, Krawetz SA. The presence, role and clinical use of spermatozoal RNAs. Hum Reprod Update 2013; 19:604-24. [PMID: 23856356 DOI: 10.1093/humupd/dmt031] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Spermatozoa are highly differentiated, transcriptionally inert cells characterized by a compact nucleus with minimal cytoplasm. Nevertheless they contain a suite of unique RNAs that are delivered to oocyte upon fertilization. They are likely integrated as part of many different processes including genome recognition, consolidation-confrontation, early embryonic development and epigenetic transgenerational inherence. Spermatozoal RNAs also provide a window into the developmental history of each sperm thereby providing biomarkers of fertility and pregnancy outcome which are being intensely studied. METHODS Literature searches were performed to review the majority of spermatozoal RNA studies that described potential functions and clinical applications with emphasis on Next-Generation Sequencing. Human, mouse, bovine and stallion were compared as their distribution and composition of spermatozoal RNAs, using these techniques, have been described. RESULTS Comparisons highlighted the complexity of the population of spermatozoal RNAs that comprises rRNA, mRNA and both large and small non-coding RNAs. RNA-seq analysis has revealed that only a fraction of the larger RNAs retain their structure. While rRNAs are the most abundant and are highly fragmented, ensuring a translationally quiescent state, other RNAs including some mRNAs retain their functional potential, thereby increasing the opportunity for regulatory interactions. Abundant small non-coding RNAs retained in spermatozoa include miRNAs and piRNAs. Some, like miR-34c are essential to the early embryo development required for the first cellular division. Others like the piRNAs are likely part of the genomic dance of confrontation and consolidation. Other non-coding spermatozoal RNAs include transposable elements, annotated lnc-RNAs, intronic retained elements, exonic elements, chromatin-associated RNAs, small-nuclear ILF3/NF30 associated RNAs, quiescent RNAs, mse-tRNAs and YRNAs. Some non-coding RNAs are known to act as epigenetic modifiers, inducing histone modifications and DNA methylation, perhaps playing a role in transgenerational epigenetic inherence. Transcript profiling holds considerable potential for the discovery of fertility biomarkers for both agriculture and human medicine. Comparing the differential RNA profiles of infertile and fertile individuals as well as assessing species similarities, should resolve the regulatory pathways contributing to male factor infertility. CONCLUSIONS Dad delivers a complex population of RNAs to the oocyte at fertilization that likely influences fertilization, embryo development, the phenotype of the offspring and possibly future generations. Development is continuing on the use of spermatozoal RNA profiles as phenotypic markers of male factor status for use as clinical diagnostics of the father's contribution to the birth of a healthy child.
Collapse
Affiliation(s)
- Meritxell Jodar
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
52
|
Giraldo AM, DeCourcy K, Ball SF, Hylan D, Ayares DL. Gene expression of Dnmt1 isoforms in porcine oocytes, embryos, and somatic cells. Cell Reprogram 2013; 15:309-21. [PMID: 23808878 DOI: 10.1089/cell.2012.0088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the mouse, the dynamics of genomic methylation and the initial events of gametic imprinting are controlled by the activity of an oocyte isoform of the DNA methyltransferase-1 (Dnmt1o) enzyme. The objectives of this study were to identify the alternative splicing variants of Dnmt1 in porcine oocytes and determine the gene expression pattern of the different Dnmt1 isoforms during embryo development. A rapid amplification of cDNA ends (RACE ) system was used to amplify the 5' cDNA end of Dnmt1 isoforms in porcine oocytes. RNA levels of the Dnmt1 isoforms were analyzed in porcine oocytes and embryos. DNMT1 protein expression of oocytes and somatic cells were analyzed by western blot and immunostaining. Two new Dnmt1o RNA isoforms were identified--Dnmt1o1 and Dnmt1o2. The previously reported somatic Dnmt1 isoform (Dnmt1s) was expressed at low but constant levels in oocytes and embryos from the two-cell to the blastocyst stage. Abundant RNA levels of Dnmt1o1 and Dnmt1o2 were detected in oocytes and embryos from the two- to the eight- to 16-cell stage. Levels of these Dnmt1o transcripts were low at the morula and blastocyst stages. Although Dnmt1s was present in all the somatic cell types analyzed, Dnmt1o1 and Dnmt1o2 were not detected in any somatic tissues. As predicted by the RNA sequence and verified by western blot analysis, Dnmt1o1 and Dnmt1o2 RNAs translate one DNMT1o enzyme. Western blot analysis confirmed that both the oocyte and the somatic forms of DNMT1 protein are present in porcine oocytes and early embryos, whereas somatic cells produce only DNMT1s protein. DNMT1o is localized mainly in the nuclei of oocytes and early embryos, whereas DNMT1s is expressed in the ooplasm cortex of oocytes and cytoplasm of early embryos.
Collapse
|
53
|
Lucas E. Epigenetic effects on the embryo as a result of periconceptional environment and assisted reproduction technology. Reprod Biomed Online 2013; 27:477-85. [PMID: 23933034 DOI: 10.1016/j.rbmo.2013.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/17/2013] [Accepted: 06/06/2013] [Indexed: 01/04/2023]
Abstract
The early embryonic environment has been shown to be remarkably influential on the developing organism, despite the relative brevity of this developmental stage. The cells of the zygote and cleavage-stage embryo hold the potential to form all cell lineages of the embryonic and extra-embryonic tissues, with gradual fate restriction occurring from the time of compaction and blastocyst formation. As such, these cells carry with them the potential to influence the phenotype of all successive cell types as the organism grows, differentiates and ages. The implication is, therefore, that sublethal adverse conditions which alter the developmental trajectory of these cells may have long-term implications for the health and development of the resulting offspring. One confirmed mechanism for the translation of environmental cues to phenotypic outcome is epigenetic modification of the genome to modulate chromatin packaging and gene expression in a cell- and lineage-specific manner. The influence of the periconceptional milieu on the epigenetic profile of the developing embryo has become a popular research focus in the quest to understand the effects of environment, nutrition and assisted reproduction technology on human development and health.
Collapse
Affiliation(s)
- Emma Lucas
- Division of Reproductive Health, Warwick Medical School, The University of Warwick, Coventry CV2 2DX, United Kingdom.
| |
Collapse
|
54
|
The impact of culture on epigenetic properties of pluripotent stem cells and pre-implantation embryos. Biochem Soc Trans 2013; 41:711-9. [DOI: 10.1042/bst20130049] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cultured pluripotent stem cells hold great promise for regenerative medicine. Considerable efforts have been invested into the refinement and definition of improved culture systems that sustain self-renewal and avoid differentiation of pluripotent cells in vitro. Recent studies have, however, found that the choice of culture condition has a significant impact on epigenetic profiles of cultured pluripotent cells. Mouse and human ESCs (embryonic stem cells) show substantial epigenetic differences that are dependent on the culture condition, including global changes to DNA methylation and histone modifications and, in female human ESCs, to the epigenetic process of X chromosome inactivation. Epigenetic perturbations have also been detected during culture of pre-implantation embryos; limited research undertaken in mouse suggests a direct effect of the in vitro environment on epigenetic processes in this system. Widespread epigenetic changes induced by the culture condition in stem cells thus emphasize the necessity for extensive research into both immediate and long-term epigenetic effects of embryo culture during assisted reproductive technologies.
Collapse
|
55
|
Feuer S, Camarano L, Rinaudo P. ART and health: clinical outcomes and insights on molecular mechanisms from rodent studies. Mol Hum Reprod 2013; 19:189-204. [PMID: 23264495 PMCID: PMC3598410 DOI: 10.1093/molehr/gas066] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/07/2012] [Accepted: 12/11/2012] [Indexed: 12/23/2022] Open
Abstract
Since the birth of the first IVF-conceived child in 1978, the use of assisted reproductive technologies (ART) has grown dramatically, contributing to the successful birth of 5 million individuals worldwide. However, there are several reported associations of ART with pregnancy complications, such as low birthweight (LBW), preterm birth, birth defects, epigenetic disorders, cancer and poor metabolic health. Whether this is attributed to ART procedures or to the subset of the population seeking ART remains a controversy, but the most relevant question today concerns the potential long-term implications of assisted conception. Recent evidence has emerged suggesting that ART-conceived children have distinct metabolic profiles that may predispose to cardiovascular pathologies in adulthood. Because the eldest IVF individuals are still too young to exhibit components of chronic middle-aged syndromes, the use of animal models has become particularly useful in describing the effects of unusual or stressful preimplantation experiences on adult fitness. Elucidating the molecular mechanisms by which embryos integrate environmental signals into development and metabolic gene expression programs will be essential for optimizing ART procedures such as in vitro culture conditions, embryo selection and transfer. In the future, additional animal studies to identify mechanisms underlying unfavorable ART outcomes, as well as more epidemiological reviews to monitor the long-term health of ART children are required, given that ART procedures have become routine medical practice.
Collapse
Affiliation(s)
- S.K. Feuer
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, 2356 Sutter St, 7th floor, San Francisco, CA 94115, USA
| | - L. Camarano
- Samuel Merritt University, School of Nursing, Oakland, CA, USA
- Fertility Physicians of Northern California, San Jose, CA, USA
| | - P.F. Rinaudo
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, 2356 Sutter St, 7th floor, San Francisco, CA 94115, USA
| |
Collapse
|
56
|
Shi X, Chen S, Zheng H, Wang L, Wu Y. Aberrant DNA methylation of imprinted loci in human in vitro matured oocytes after long agonist stimulation. Eur J Obstet Gynecol Reprod Biol 2013; 167:64-8. [DOI: 10.1016/j.ejogrb.2012.10.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/18/2012] [Accepted: 10/30/2012] [Indexed: 11/27/2022]
|
57
|
Abstract
The last three decades have witnessed a dramatic increase in the use of assisted reproductive technology (ART) so that now, in developed countries, 1.7% to 4.0% of all children are born after ART. Although absolute risks appear small, data from prospective and retrospective studies indicate increased risks of adverse maternal and perinatal outcomes after ART as compared with spontaneous conception. Recent studies suggest that underlying maternal factors and subfertility play an important role in some of these outcomes rather than the ART procedure itself. A significant risk of assisted conception is multiple pregnancies, but even singleton pregnancies achieved by ART are at a higher risk of hypertensive disease, diabetes, prematurity, low birth weight, and perinatal mortality even after adjusting for confounders. Couples undergoing ART procedures should be counseled in advance regarding increased risks of pregnancy complications and higher rates of obstetric interventions. Although conflicting data exist, studies of children born from ART suggest increased rates of congenital malformations, imprinting disorders (Beckwith-Wiedemann syndrome and Angelman syndrome), and marginally increased risk of cancer. However, the current evidence is inadequate, and prospective long-term studies are needed to eliminate the effect of confounders and draw definite conclusions about the long-term outcomes after ART. The absolute risk of imprinting disorders remains small, and routine screening is not recommended at present. The long-term outcomes after ART are difficult to evaluate because of the variability in ART methods and data reporting, and there is a need for standardized methodology for follow-up after ART.
Collapse
|
58
|
El Hajj N, Haaf T. Epigenetic disturbances in in vitro cultured gametes and embryos: implications for human assisted reproduction. Fertil Steril 2013; 99:632-41. [PMID: 23357453 DOI: 10.1016/j.fertnstert.2012.12.044] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/21/2012] [Accepted: 12/26/2012] [Indexed: 01/01/2023]
Abstract
Although assisted reproductive technology (ART) has become a routine practice for human infertility treatment, the etiology of the increased risks for perinatal problems in ART-conceived children is still poorly understood. Data from mouse experiments and the in vitro production of livestock provide strong evidence that imprint establishment in late oocyte stages and reprogramming of the two germline genomes for somatic development after fertilization are vulnerable to environmental cues. In vitro culture and maturation of oocytes, superovulation, and embryo culture all represent artificial intrusions upon the natural development, which can be expected to influence the epigenome of the resultant offspring. However, in this context it is difficult to define the normal range of epigenetic variation in humans from conception throughout life. With the notable exception of a few highly penetrant imprinting mutations, the phenotypic consequences of any observed epigenetic differences between ART and non-ART groups remain largely unclear. The periconceptional period is not only critical for embryonal, placental, and fetal development, as well as the outcome at birth, but suboptimal in vitro culture conditions may also lead to persistent changes in the epigenome influencing disease susceptibilities later in life. The epigenome appears to be most plastic in the late stages of oocyte and the early stages of embryo development; this plasticity steadily decreases during prenatal and postnatal life. Therefore, when considering the safety of human ART from an epigenetic point of view, our main concern should not be whether or not a few rare imprinting disorders are increased, but rather we must be aware of a functional link between interference with epigenetic reprogramming in very early development and adult disease.
Collapse
Affiliation(s)
- Nady El Hajj
- Institute of Human Genetics, Julius Maximilians University, Wuerzburg, Germany
| | | |
Collapse
|
59
|
Besenfelder U, Havlicek V, Brem G. Role of the oviduct in early embryo development. Reprod Domest Anim 2013; 47 Suppl 4:156-63. [PMID: 22827365 DOI: 10.1111/j.1439-0531.2012.02070.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the role of the oviduct in early embryo development, which has to fulfil many aligned and well-tuned tasks during early embryogenesis. The oviductal lining is subjected to dynamic changes to timely accomplish gamete transport, fertilization and embryo development and to deliver a competent and healthy conceptus to the endometrium which can implant and develop to term. Although knowledge about the role of the oviduct is limited, we know that embryos are very sensitive to the environment in which they develop. The success of in vitro embryo production techniques demonstrates that it is possible to bypass the oviduct during early development and, to a certain extent, replicate the conditions in vitro. However, comparative studies show that embryos developed in vivo are superior to their in vitro produced counterparts, underlining our relatively poor knowledge of the biology of the oviduct. Oviduct activity is orchestrated by various factors, depending on cyclic dynamics, which crucially affect the success of tubal transfer and/or (re-)collection of embryos in embryo transfer studies. This paper reviews data which demonstrate that in vivo culture of embryos in the bovine oviduct is a useful tool for the assessment of embryos developed under various conditions (e.g. superovulation vs single ovulation, lactating dairy cows vs non-lactating cows). It is concluded that more work in the field of early embryo development within the oviduct would contribute to improved ART protocols leading to healthy pregnancies and offspring.
Collapse
Affiliation(s)
- U Besenfelder
- Reproduction Centre Wieselburg, Department for Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria.
| | | | | |
Collapse
|
60
|
Feuer S, Rinaudo P. Preimplantation stress and development. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2012; 96:299-314. [PMID: 24203919 PMCID: PMC3824155 DOI: 10.1002/bdrc.21022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 11/12/2012] [Indexed: 02/04/2023]
Abstract
The developmental origins of health and disease hypothesis holds that inappropriate environmental cues in utero, a period marked by tremendous developmental sensitivity, facilitate cellular reprogramming to ultimately predispose disease in adulthood. In this review, we analyze if stress during early stages of development can affect future health. This has wide clinical importance, given that 5 million children have been conceived with assisted reproductive technologies (ART). Because the primary outcome of assisted reproduction procedures is delivery at term of a live, healthy baby, the postnatal effects occurring outside ofthe neonatal period are often overlooked. To this end, the long-term outcome of ART is appropriately the most relevant concern of the field today. Evidence of adverse consequences is controversial. The majority of studies have concluded no obvious problems in IVF-conceived children, although a number of isolated cases of imprinted diseases, cancers, or malformations have been reported. Given that animal studies suggest alteration of metabolic pathways following preimplantation stress, it will be of great importance to follow-up ART individuals as they enter later stages of adult life.
Collapse
Affiliation(s)
- Sky Feuer
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Endocrinology and Infertility, University of California, San Francisco, California 94115
| | - Paolo Rinaudo
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California 94143
| |
Collapse
|
61
|
Linke M, May A, Reifenberg K, Haaf T, Zechner U. The Impact of Ovarian Stimulation on the Expression of Candidate Reprogramming Genes in Mouse Preimplantation Embryos. Cytogenet Genome Res 2012; 139:71-9. [DOI: 10.1159/000343755] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2012] [Indexed: 11/19/2022] Open
|
62
|
Denomme MM, Mann MRW. Genomic imprints as a model for the analysis of epigenetic stability during assisted reproductive technologies. Reproduction 2012; 144:393-409. [DOI: 10.1530/rep-12-0237] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Gamete and early embryo development are important stages when genome-scale epigenetic transitions are orchestrated. The apparent lack of remodeling of differential imprinted DNA methylation during preimplantation development has lead to the argument that epigenetic disruption by assisted reproductive technologies (ARTs) is restricted to imprinted genes. We contend that aberrant imprinted methylation arising from assisted reproduction or infertility may be an indicator of more global epigenetic instability. Here, we review the current literature on the effects of ARTs, including ovarian stimulation,in vitrooocyte maturation, oocyte cryopreservation, IVF, ICSI, embryo culture, and infertility on genomic imprinting as a model for evaluating epigenetic stability. Undoubtedly, the relationship between impaired fertility, ARTs, and epigenetic stability is unquestionably complex. What is clear is that future studies need to be directed at determining the molecular and cellular mechanisms giving rise to epigenetic errors.
Collapse
|
63
|
Gad A, Hoelker M, Besenfelder U, Havlicek V, Cinar U, Rings F, Held E, Dufort I, Sirard MA, Schellander K, Tesfaye D. Molecular Mechanisms and Pathways Involved in Bovine Embryonic Genome Activation and Their Regulation by Alternative In Vivo and In Vitro Culture Conditions1. Biol Reprod 2012; 87:100. [DOI: 10.1095/biolreprod.112.099697] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
64
|
Diederich M, Hansmann T, Heinzmann J, Barg-Kues B, Herrmann D, Aldag P, Baulain U, Reinhard R, Kues W, Weißgerber C, Haaf T, Niemann H. DNA methylation and mRNA expression profiles in bovine oocytes derived from prepubertal and adult donors. Reproduction 2012; 144:319-30. [DOI: 10.1530/rep-12-0134] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The developmental capacity of oocytes from prepubertal cattle is reduced compared with their adult counterparts, and epigenetic mechanisms are thought to be involved herein. Here, we analyzed DNA methylation in three developmentally important, nonimprinted genes (SLC2A1, PRDX1, ZAR1) and two satellite sequences, i.e. ‘bovine testis satellite I’ (BTS) and ‘Bos taurus alpha satellite I’ (BTαS). In parallel, mRNA expression of the genes was determined by quantitative real-time PCR. Oocytes were retrieved from prepubertal calves and adult cows twice per week over a 3-week period by ultrasound-guided follicular aspiration after treatment with FSH and/or IGF1. Both immature and in vitro matured prepubertal and adult oocytes showed a distinct hypomethylation profile of the three genes without differences between the two types of donors. The methylation status of the BTS sequence changed according to the age and treatment while the methylation status of BTαS sequence remained largely unchanged across the different age and treatment groups. Relative transcript abundance of the selected genes was significantly different in immature and in vitro matured oocytes; only minor changes related to origin and treatment were observed. In conclusion, methylation levels of the investigated satellite sequences were high (>50%) in all groups and showed significant variation depending on the age, treatment, or in vitro maturation. To what extent this is involved in the acquisition of developmental competence of bovine oocytes needs further study.
Collapse
|
65
|
Calle A, Miranda A, Fernandez-Gonzalez R, Pericuesta E, Laguna R, Gutierrez-Adan A. Male mice produced by in vitro culture have reduced fertility and transmit organomegaly and glucose intolerance to their male offspring. Biol Reprod 2012; 87:34. [PMID: 22649070 DOI: 10.1095/biolreprod.112.100743] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
It has been reported that suboptimal in vitro culture (IVC) of mouse embryos can affect the postnatal expression of epigenetically sensitive alleles, resulting in altered postnatal growth, organ dimensions, health, and behavior in the offspring. Although these detrimental impacts on the offspring are well described, the relative contribution of the IVC-produced fathers is unclear. In this work, we have analyzed if suboptimal IVC (achieved by altering the culture medium by the addition of FCS) can affect male fertility and if organ size and glucose clearance, two of the adverse effects produced by suboptimal IVC conditions, were transmitted to the next two generations. IVC-produced males had lower sperm concentrations (5.8 × 10(6) spermatozoa in IVC vs. 14.5 × 10(6) spermatozoa in control), and these sperm exhibited decreased overall motility (49.6% vs. 72.8% in control) and progressive motility (22.6% vs. 32.2% in control). Fertility tests demonstrated that the percentage of pregnancies was reduced for IVC males (35% for IVC-produced males vs. 86% for in vivo controls). These features were related to a modified gene expression pattern in adult male testes, showing an altered gene expression in genes involved in DNA repair and apoptosis that was confirmed by TUNEL assay. Regarding the IVC related adverse phenotype transmitted to offspring, male glucose intolerance was shown only in F1 and F2 male but not female offspring. The same occurred with male abnormalities in the organ size of the liver, which were transmitted to F1 and F2 males but not to F1 females; moreover, analysis of the F0, F1, and F2 males revealed greater coefficients of variance in body weight and glucose intolerance than the control group. Finally, we analyzed, through gene silencing, the effect of IVC on the mRNA expression at the blastocyst stage for 11 known gene expression modifiers of epigenetic reprogramming. Suboptimal IVC reduced the expression of Kap1, Sox2, Hdac1, Dnmt1, and Dnmt3a, suggesting a molecular epigenetic role for gene expression modifiers in the origin and transmission of these abnormal phenotypes.
Collapse
Affiliation(s)
- Alexandra Calle
- Department de Reproducción Animal y Conservación de Recursos Zoogenéticos, INIA, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
66
|
Champagne FA. Epigenetics and developmental plasticity across species. Dev Psychobiol 2012; 55:33-41. [PMID: 22711291 DOI: 10.1002/dev.21036] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 03/28/2012] [Indexed: 01/12/2023]
Abstract
Plasticity is a typical feature of development and can lead to divergent phenotypes. There is increasing evidence that epigenetic mechanisms, such as DNA methylation, are present across species, are modifiable by the environment, and are involved in developmental plasticity. Thus, in the context of the concept of developmental homology, epigenetic mechanisms may serve to create a process homology between species by providing a common molecular pathway through which environmental experiences shape development, ultimately leading to phenotypic diversity. This article will highlight evidence derived from across-species investigations of epigenetics, development, and plasticity which may contribute to our understanding of the homology that exists between species and between ancestors and descendants.
Collapse
Affiliation(s)
- Frances A Champagne
- Department of Psychology, Columbia University, 1190 Amsterdam Avenue, Room 406 Schermerhorn Hall, New York, NY 10027, USA.
| |
Collapse
|
67
|
Ivanov P, Tsvyatkovska T, Konova E, Komsa-Penkova R. Inherited Thrombophilia and IVF Failure: The Impact of Coagulation Disorders On Implantation Process. Am J Reprod Immunol 2012; 68:189-98. [DOI: 10.1111/j.1600-0897.2012.01156.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 04/12/2012] [Accepted: 04/15/2012] [Indexed: 12/24/2022] Open
|
68
|
Reis e Silva AR, Bruno C, Fleurot R, Daniel N, Archilla C, Peynot N, Lucci CM, Beaujean N, Duranthon V. Alteration of DNA demethylation dynamics by in vitro culture conditions in rabbit pre-implantation embryos. Epigenetics 2012; 7:440-6. [PMID: 22419129 DOI: 10.4161/epi.19563] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Alterations to DNA methylation have been attributed to in vitro culture and may affect normal embryo development. We chose to analyze DNA methylation reprogramming in the rabbit which, of the species with delayed transcriptional activation of the embryonic genome, allows easy comparisons between in vivo-developed (IVD) and in vitro-cultured (IVC) embryos. In this species, variations in DNA methylation had not previously been quantified, even in IVD embryos. IVD and IVC embryos were recovered at the 2, 4, 8 and 16-cell, morula and blastocyst stages. Immunostaining for 5-methyl-cytidine and normalization of the quantity of methylated DNA vs. the total DNA content were then performed. Our quantitative results evidenced DNA demethylation during pre-implantation development in both IVD and IVC embryos, but with different kinetics. Demethylation occurred earlier in vitro than in vivo between the 2 and 8-cell stages in IVC embryos, reaching its lowest level, while it only started at the 4-cell stage and ended at the 16-cell stage in IVD embryos. We also showed that an absence of serum from the culture medium significantly altered the degree of DNA demethylation. Finally, at the blastocyst stage, ICM was more methylated than the trophectoderm in all cases. Despite a morphological delay observed in in vitro cultured blastocysts, the difference in DNA methylation between ICM and trophectoderm cells appeared at the same time post-fertilization in IVD and IVC embryos, which may reflect another difference in the dynamics of DNA methylation during blastocyst formation. Our data thus clearly establish an effect of embryonic environment on DNA methylation reprogramming during pre-implantation development in a non-rodent species.
Collapse
|
69
|
Novakovic B, Saffery R. DNA methylation profiling highlights the unique nature of the human placental epigenome. Epigenomics 2012; 2:627-38. [PMID: 22122048 DOI: 10.2217/epi.10.45] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As the 'gateway' to the fetus, the placenta is subject to a myriad of environmental factors, each with the potential to alter placental epigenetic and gene expression profile. This can have direct consequences for the developing fetus and potentially even long-term health implications. As a result, interest in placental epigenetics generally, and changes occurring in placenta-associated disease, has intensified over recent years. This article will discuss the general features of placental DNA methylation and will describe current technologies for profiling genome-wide DNA methylation patterns in this tissue, the approaches to data analysis and some of the major findings from recent studies.
Collapse
Affiliation(s)
- Boris Novakovic
- Developmental Epigenetics, Murdoch Childrens Research Institute, Royal Children's Hospital & Department of Paediatrics, University of Melbourne, Parkville, Victoria, 3052, Australia.
| | | |
Collapse
|
70
|
Ma JY, Liang XW, Schatten H, Sun QY. Active DNA demethylation in mammalian preimplantation embryos: new insights and new perspectives. Mol Hum Reprod 2012; 18:333-40. [PMID: 22447119 DOI: 10.1093/molehr/gas014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DNA methylation and demethylation are crucial for modulating gene expression and regulating cell differentiation. Functions and mechanisms of DNA methylation/demethylation in mammalian embryos are still far from being understood clearly. In this review we firstly describe new insights into DNA demethylation mechanisms, and secondly introduce the differences in active DNA methylation patterns in zygotes and early embryos in various mammalian species. Thirdly, we attempt to clarify the functions of DNA demethylation in early embryos. Most importantly we summarize the importance of active DNA demethylation and its possible relevance to human IVF clinics. Finally research perspectives regarding DNA demethylation are also discussed.
Collapse
Affiliation(s)
- Jun-Yu Ma
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
71
|
Chu T, Dufort I, Sirard MA. Effect of ovarian stimulation on oocyte gene expression in cattle. Theriogenology 2012; 77:1928-38. [PMID: 22444561 DOI: 10.1016/j.theriogenology.2012.01.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 11/01/2011] [Accepted: 01/21/2012] [Indexed: 11/19/2022]
Abstract
The objective was to analyze the impact of follicle stimulating hormone (FSH, ovarian stimulation) on the transcriptome of in vivo bovine oocytes three times around the luteinizing hormone (LH) surge. In vivo bovine oocytes were collected 2 h pre-LH surge, 6 h post-LH surge, and 22 h post-LH surge in both naturally ovulating and superovulated animals. To assess potential changes in gene levels, samples were hybridized using a custom bovine microarray. Two series of hybridizations were performed: the first comparing natural vs. stimulated cycles, the second according to time of collection. Among the potential candidates, 13 genes were selected according to their degree of differential expression and their potential link to oocyte competence. Measurements of their relative mRNA levels was made using QPCR. Gene candidates BTG4 (P = 0.0006), PTTG1 (P = 0.0027), PAPOLA (P = 0.0245), and LEO1 (P = 0.0393) had higher mRNA levels in oocytes treated with FSH for all collection times when compared to oocytes produced through the natural cycle. Among our selected candidates, only one gene, GDF9 (P = 0.0261), was present at a higher level in oocytes collected at -2 h and 6 h than 22 h post-LH for all treatments, regardless of the presence of FSH. Although the number of genes influenced by ovarian stimulation seemed low, the observed differences occurred at a time of minimal transcriptional activity and supported the potential impact on the future embryo. These impacts could have been epigenetic in nature, as embryo quality was not reported to be different from stimulated animals.
Collapse
Affiliation(s)
- T Chu
- Centre de Recherche en Biologie de la Reproduction, Dèpartement des Sciences Animales, Université Laval, Quebec, Quebec, Canada
| | | | | |
Collapse
|
72
|
Calle A, Fernandez-Gonzalez R, Ramos-Ibeas P, Laguna-Barraza R, Perez-Cerezales S, Bermejo-Alvarez P, Ramirez MA, Gutierrez-Adan A. Long-term and transgenerational effects of in vitro culture on mouse embryos. Theriogenology 2012; 77:785-93. [DOI: 10.1016/j.theriogenology.2011.07.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 06/27/2011] [Accepted: 07/05/2011] [Indexed: 01/10/2023]
|
73
|
Abstract
During preimplantation development, major epigenetic reprogramming occurs, erasing gametic modifications, and establishing embryonic epigenetic modifications. Given the plasticity of these modifications, they are susceptible to disruption by assisted reproductive technologies, including embryo culture. The current state of evidence is presented for the effects of embryo culture on global DNA methylation and histone modifications, retroviral silencing, X-inactivation, and genomic imprinting. Several salient points emerge from the literature; that culture in the absence of other procedures can lead to epigenetic perturbations; that all media are suboptimal; and that embryo response to in vitro culture is stochastic. We propose that embryos adapt to the suboptimal environment generated by embryo culture, including epigenetic adaptations, and that "quiet" embryos may be the least epigenetically compromised by in vitro culture.
Collapse
|
74
|
Batcheller A, Cardozo E, Maguire M, DeCherney AH, Segars JH. Are there subtle genome-wide epigenetic alterations in normal offspring conceived by assisted reproductive technologies? Fertil Steril 2011; 96:1306-11. [PMID: 22035969 PMCID: PMC3576017 DOI: 10.1016/j.fertnstert.2011.09.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 09/25/2011] [Accepted: 09/26/2011] [Indexed: 10/15/2022]
Abstract
OBJECTIVE To review recent data regarding subtle, but widespread, epigenetic alterations in phenotypically normal offspring conceived by assisted reproductive technologies (ART) compared with offspring conceived in vivo. DESIGN A PubMed computer search was performed to identify relevant articles. SETTING Research institution. PATIENT(S) Not applicable. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Not applicable. RESULT(S) Studies in animals indicate that in vitro culture may be associated with widespread alterations in imprinted genes compared with in vivo-conceived offspring. Recently, studies in humans have likewise demonstrated widespread changes in DNA methylation, including genes linked to adipocyte development, insulin signaling, and obesity in offspring conceived by ART compared with in vivo-conceived children. Changes in multiple imprinted genes after ART also were noted in additional studies, which suggested that the diagnosis of infertility may explain the differences between in vivo-conceived and ART offspring. CONCLUSION(S) These data suggest that ART is associated with widespread epigenetic modifications in phenotypically normal children, and that these modifications may increase the risk of adverse cardiometabolic outcomes. Further research is needed to elucidate the possible relationship between ART, genome-wide alterations in imprinted genes, and their potential relevance to subtle cardiometabolic consequences reported in ART offspring.
Collapse
Affiliation(s)
- April Batcheller
- Department of Obstetrics and Gynecology, William Beaumont Hospital, Royal Oak, Michigan, USA
| | | | | | | | | |
Collapse
|
75
|
Chason RJ, Csokmay J, Segars JH, DeCherney AH, Armant DR. Environmental and epigenetic effects upon preimplantation embryo metabolism and development. Trends Endocrinol Metab 2011; 22:412-20. [PMID: 21741268 PMCID: PMC3183171 DOI: 10.1016/j.tem.2011.05.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/10/2011] [Accepted: 05/25/2011] [Indexed: 12/20/2022]
Abstract
In vitro fertilization has provided a unique window into the metabolic processes that drive embryonic growth and development from a fertilized ovum to a competent blastocyst. Post-fertilization development is dependent upon a dramatic reshuffling of the parental genomes during meiosis, as well as epigenetic changes that provide a new and autonomous set of instructions to guide cellular differentiation both in the embryo and beyond. Although early literature focused simply on the substrates and culture conditions required for progress through embryonic development, more recent insights lead us to suggest that the surrounding environment can alter the epigenome, which can, in turn, impact upon embryonic metabolism and developmental competence.
Collapse
Affiliation(s)
- Rebecca J Chason
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
76
|
Embryonic imprinting perturbations do not originate from superovulation-induced defects in DNA methylation acquisition. Fertil Steril 2011; 96:734-738.e2. [DOI: 10.1016/j.fertnstert.2011.06.055] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 06/21/2011] [Accepted: 06/21/2011] [Indexed: 01/16/2023]
|
77
|
Affiliation(s)
- Frank H. Bloomfield
- Liggins Institute and Department of Paediatrics: Child and Youth Health, University of Auckland, Auckland 1142 and the National Research Centre for Growth and Development, New Zealand;
| |
Collapse
|
78
|
Kuentz P, Bailly A, Faure AC, Blagosklonov O, Amiot C, Bresson JL, Roux C. Child with Beckwith-Wiedemann syndrome born after assisted reproductive techniques to an human immunodeficiency virus serodiscordant couple. Fertil Steril 2011; 96:e35-8. [PMID: 21550040 DOI: 10.1016/j.fertnstert.2011.04.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 03/25/2011] [Accepted: 04/05/2011] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To report a child with Beckwith-Wiedemann syndrome (BWS) born after assisted reproductive technology (ART) to an HIV serodiscordant couple. DESIGN Case report. SETTING Academic medical center. PATIENT(S) A child with BWS born after ART to an HIV serodiscordant couple. INTERVENTION(S) Assisted reproductive techniques. MAIN OUTCOME MEASURE(S) ART and HIV. RESULT(S) Since 2003, it has been suggested that there is an association between ART and BWS, which is a congenital overgrowth syndrome characterized by macrosomia, macroglossia, visceromegaly, umbilical and abdominal wall abnormalities, and an increased risk of developing embryonal tumors in childhood. It is a multigenic disorder resulting from genetic or epigenetic alterations of genes on chromosome 11p15. Methylation errors account for 50%-60% of sporadic cases and almost 100% of cases born after ART. We report the birth of a child diagnosed with BWS arising from an ART cycle to an HIV serodiscordant couple with no history of infertility. This case cannot constitute conclusive evidence but it raises various questions. CONCLUSION(S) Assisted reproductive technology seems to be in the causal pathway but a male/female factor or an iatrogenic factor is also possible.
Collapse
Affiliation(s)
- Paul Kuentz
- Service de Génétique Histologie Biologie du Développement et de la Reproduction (CECOS Franche-Comté Bourgogne), Hôpital Saint-Jacques, Besançon University Regional Hospital, Besançon, France
| | | | | | | | | | | | | |
Collapse
|
79
|
Zheng HY, Shi XY, Wang LELE, Wu YQ, Chen SL, Zhang L. Study of DNA methylation patterns of imprinted genes in children born after assisted reproductive technologies reveals no imprinting errors: A pilot study. Exp Ther Med 2011; 2:751-755. [PMID: 22977570 DOI: 10.3892/etm.2011.261] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 04/26/2011] [Indexed: 01/20/2023] Open
Abstract
Assisted reproductive technology (ART) including in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) have been shown to be associated with abnormal genomic imprinting, thus increasing the incidence of imprinting disorders such as Beckwith-Wiedemann syndrome (BWS) and Angelman syndrome (AS) in ART-conceived children. Furthermore, a recent study described abnormal DNA methylation in clinically normal children conceived by ART. However, data from different studies are conflicting or inconclusive. This study examined DNA methylation patterns of multiple imprinted genes in children born after ART to primarily evaluate the impact of ART on genomic imprinting. A total of 101 newborns conceived by ART (40 ICSI and 61 IVF) and 60 naturally conceived newborns were involved in our study. After obtaining the approval of the Institutional Ethics Committee, umbilical cord blood was collected from each infant. Genomic DNA was isolated from each blood sample and treated using sodium bisulfite. Subsequently, using methylation-specific PCR (MS-PCR), we analyzed six differentially methylated regions (DMRs) including KvDMR1, SNRPN, MEST, MEG3, TNDM and XIST. Meanwhile, information regarding twin pregnancies, gestational age, and birth weight of the neonates was documented. None of the cases presented with phenotypic abnormalities. Children conceived by ART were more likely to have low birth weight and to be born before term, compared with children conceived spontaneously. However, 7 months to 3 years of clinical follow-up showed that none of the children had clinical symptoms of any imprinting diseases. Furthermore, the MS-PCR results showed that all 161 children had normal DNA methylation patterns at six DMRs despite the different mode of conception. Our data did not indicate a higher risk of DNA-methylation defects in children born after ART. However, further studies using quantitative methods are needed to confirm these results.
Collapse
Affiliation(s)
- Hai-Yan Zheng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, and
| | | | | | | | | | | |
Collapse
|
80
|
Jammes H, Junien C, Chavatte-Palmer P. Epigenetic control of development and expression of quantitative traits. Reprod Fertil Dev 2011; 23:64-74. [PMID: 21366982 DOI: 10.1071/rd10259] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In recent years, it has become increasingly clear that epigenetic regulation of gene expression is critical during embryo development and subsequently during pre- and post-natal life. The phenotype of an individual is the result of complex interactions between genotype and current, past and ancestral environment leading to a lifelong remodelling of its epigenome. Practically, if the genome was compared with the hardware in a computer, the epigenome would be the software that directs the computer's operation. This review points to the importance of epigenetic processes for genome function in various biological processes, such as embryo development and the expression of quantitative traits.
Collapse
Affiliation(s)
- Hélène Jammes
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78352 Jouy-en-Josas, France.
| | | | | |
Collapse
|
81
|
Milroy C, Liu L, Hammoud S, Hammoud A, Peterson CM, Carrell DT. Differential methylation of pluripotency gene promoters in in vitro matured and vitrified, in vivo-matured mouse oocytes. Fertil Steril 2011; 95:2094-9. [PMID: 21457962 DOI: 10.1016/j.fertnstert.2011.02.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 02/02/2011] [Accepted: 02/03/2011] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To assess the methylation patterns of four pluripotency gene promoters in mouse oocytes after in vivo maturation, in vitro maturation (IVM), and vitrification followed by IVM. DESIGN Experimental study. SETTING Research laboratory. ANIMAL(S) Three populations of metaphase II mouse oocytes were analyzed after in vivo maturation, IVM, and vitrification followed by IVM (V-IVM). Cumulus cells and blastocyst embryos were controls. INTERVENTION(S) The CpG methylation patterns (overall and CpG specific) in the promoters of four pluripotency genes (Oct4, Nanog, Foxd3, and Sox2) were analyzed for each cell type by traditional DNA bisulfite sequencing. MAIN OUTCOME MEASURE(S) Differences for overall methylation were evaluated using the Student's t-test and for individual CpG sites by χ2 analysis. RESULT(S) Significantly lower levels of overall methylation in promoters of Oct4 (25%) and Sox2 (4.5%) were noted in V-IVM oocytes compared with in vivo-matured oocytes (62.5% and 8.5%, respectively). Cumulus cell promoters were generally hypomethylated at Nanog, Foxd3. and Sox2, but hypermethylated at Oct4. CONCLUSION(S) The methylation status of Oct4 and Sox2 promoters of V-IVM mouse oocytes are altered when compared with in vivo-matured oocytes. The biological risk and significance of these changes are unknown and this study indicates caution and that further analyses are warranted.
Collapse
Affiliation(s)
- Colleen Milroy
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, School of Medicine, University of Utah, Salt Lake City, Utah 84108, USA
| | | | | | | | | | | |
Collapse
|
82
|
Heinzmann J, Hansmann T, Herrmann D, Wrenzycki C, Zechner U, Haaf T, Niemann H. Epigenetic profile of developmentally important genes in bovine oocytes. Mol Reprod Dev 2011; 78:188-201. [PMID: 21290475 DOI: 10.1002/mrd.21281] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/25/2010] [Indexed: 12/29/2022]
Abstract
Assisted reproductive technologies are associated with an increased incidence of epigenetic aberrations, specifically in imprinted genes. Here, we used the bovine oocyte as a model to determine putative epigenetic mutations at three imprinted gene loci caused by the type of maturation, either in vitro maturation (IVM) in Tissue Culture Medium 199 (TCM) or modified synthetic oviduct fluid (mSOF) medium, or in vivo maturation. We applied a limiting dilution approach and direct bisulfite sequencing to analyze the methylation profiles of individual alleles (DNA molecules) for H19/IGF2, PEG3, and SNRPN, which are each associated with imprinting defects in humans and/or the mouse model, and are known to be differentially methylated in bovine embryos. Altogether, we obtained the methylation patterns of 203 alleles containing 4,512 CpG sites from immature oocytes, 213 alleles with 4,779 CpG sites from TCM-matured oocytes, 215 alleles/4,725 CpGs in mSOF-matured oocytes, and 78 alleles/1,672 CpGs from in vivo-matured oocytes. The total rate of individual CpGs and entire allele methylation errors did not differ significantly between the two IVM and the in vivo group, indicating that current IVM protocols have no or only marginal effects on these critical epigenetic marks. Furthermore, the mRNA expression profiles of the three imprinted genes and a panel of eight other genes indicative of oocyte competence were determined by quantitative real-time PCR. We found different mRNA expression profiles between in vivo-matured oocytes versus their in vitro-matured counterparts, suggesting an influence on regulatory mechanisms other than DNA methylation.
Collapse
Affiliation(s)
- J Heinzmann
- Institute of Farm Animal Genetics (Friedrich-Loeffler-Institut, FLI), Mariensee, Neustadt, Germany.
| | | | | | | | | | | | | |
Collapse
|
83
|
Frost J, Monk D, Moschidou D, Guillot PV, Stanier P, Minger SL, Fisk NM, Moore HD, Moore GE. The effects of culture on genomic imprinting profiles in human embryonic and fetal mesenchymal stem cells. Epigenetics 2011; 6:52-62. [PMID: 20864803 DOI: 10.4161/epi.6.1.13361] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Human embryonic stem (hES) cells and fetal mesenchymal stem cells (fMSC) offer great potential for regenerative therapy strategies. It is therefore important to characterise the properties of these cells in vitro. One major way the environment impacts on cellular physiology is through changes to epigenetic mechanisms. Genes subject to epigenetic regulation via genomic imprinting have been characterised extensively. The integrity of imprinted gene expression therefore provides a measurable index for epigenetic stability. Allelic expression of 26 imprinted genes and DNA methylation at associated differentially methylated regions (DMRs) was measured in fMSC and hES cell lines. Both cell types exhibited monoallelic expression of 13 imprinted genes, biallelic expression of six imprinted genes, and there were seven genes that differed in allelic expression between cell lines. fMSCs exhibited the differential DNA methylation patterns associated with imprinted expression. This was unexpected given that gene expression of several imprinted genes was biallelic. However, in hES cells, differential methylation was perturbed. These atypical methylation patterns did not correlate with allelic expression. Our results suggest that regardless of stem cell origin, in vitro culture affects the integrity of imprinted gene expression in human cells. We identify biallelic and variably expressed genes that may inform on overall epigenetic stability. As differential methylation did not correlate with imprinted expression changes we propose that other epigenetic effectors are adversely influenced by the in vitro environment. Since DMR integrity was maintained in fMSC but not hES cells, we postulate that specific hES cell derivation and culturing practices result in changes in methylation at DMRs.
Collapse
Affiliation(s)
- Jennifer Frost
- Institute of Reproductive and Developmental Biology, Imperial Colleg, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Robins JC, Marsit CJ, Padbury JF, Sharma SS. Endocrine disruptors, environmental oxygen, epigenetics and pregnancy. Front Biosci (Elite Ed) 2011; 3:690-700. [PMID: 21196344 DOI: 10.2741/e279] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The placenta and its myriad functions are central to successful reproductive outcomes. These functions can be influenced by the environment encountered throughout pregnancy, thereby altering the appropriate genetic programming needed to allow for sustained pregnancy and appropriate fetal development. This altered programming may result from epigenetic alterations related to environmental exposures. Epigenetic alterations are now being linked to several important reproductive outcomes, including early pregnancy loss, intrauterine growth restriction, congenital syndromes, preterm birth, and preeclampsia. The diversity of environmental exposures linked to adverse reproductive effects continues to grow. Much attention has focused on the role of endocrine disruptors in infertility, but recent work suggests that these chemicals may also have adverse effects in pregnancy and development. Environmental oxygen is also critical in pregnancy success. There are clear links between altered oxygen levels and placentation amongst other effects. As research continues to enhance our understanding of the molecular processes including epigenetic regulation that influence pregnancy, it will be critical to specifically examine how the environment, broadly defined, may play a role in altering these critical functions.
Collapse
Affiliation(s)
- Jared C Robins
- Division of Reproductive Endocrinology and Infertility, Women and Infants Hospital of Rhode Island, Providence, RI, USA
| | | | | | | |
Collapse
|
85
|
Hansmann T, Heinzmann J, Wrenzycki C, Zechner U, Niemann H, Haaf T. Characterization of differentially methylated regions in 3 bovine imprinted genes: a model for studying human germ-cell and embryo development. Cytogenet Genome Res 2010; 132:239-47. [PMID: 21160170 DOI: 10.1159/000322627] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2010] [Indexed: 02/01/2023] Open
Abstract
Correct imprinting is crucial for normal fetal and placental development in mammals. Experimental evidence in animal models and epidemiological studies in humans suggest that assisted reproductive technologies (ARTs) can interfere with imprinted gene regulation in gametogenesis and early embryogenesis. Bos taurus is an agriculturally important species in which ARTs are commonly employed. Because this species exhibits a similar preimplantation development and gestation length as humans, it is increasingly being used as a model for human germ-cell and embryo development. However, in contrast to humans and mice, there is relatively little information on bovine imprinted genes. Here, we characterized the bovine intergenic IGF2-H19 imprinting control region (ICR) spanning approximately 3 kb. We identified a 300-bp differentially methylated region (DMR) approximately 6 kb upstream of the H19 promoter, containing a CpG island with CTCF-binding site and high sequence similarity with the human intergenic ICR. Additional differentially methylated CpG islands lie -6 kb to -3 kb upstream of the promoter, however these are less conserved. Both classical bisulfite sequencing and bisulfite pyrosequencing demonstrated complete methylation of the IGF2-H19 ICR in sperm, complete demethylation in parthenogenetic embryos having only the female genome, and differential methylation in placental and somatic tissues. In addition, we established pyrosequencing assays for the previously reported bovine SNRPN and PEG3 DMRs. The observed methylation patterns were consistent with genomic imprinting in all analyzed tissues/cell types. The identified IGF2-H19 ICR and the developed quantitative methylation assays may prove useful for further studies on the relationship between ARTs and imprinting defects in the bovine model.
Collapse
Affiliation(s)
- T Hansmann
- Institute of Human Genetics, Biocenter, University of Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
86
|
Imprintingstörungen in der Reproduktionsmedizin. MED GENET-BERLIN 2010. [DOI: 10.1007/s11825-010-0248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Zusammenfassung
Stochastische, Umwelt- und/oder genetisch bedingte Fehler (Epimutationen) bei der Genomreprogrammierung in den Keimzellen und unmittelbar nach der Befruchtung sind eine wichtige Quelle für phänotypische Variation und Krankheitssuszeptibilität. Tierexperimente belegen eindrucksvoll, dass assistierte Reproduktionstechniken (ART) mit sensitiven Phasen der epigenetischen Reprogrammierung interferieren. Epidemiologische Studien beim Menschen berichten über ein erhöhtes Risiko für Beckwith-Wiedemann- und Angelman-Syndrom, aber das absolute Risiko für ein ART-Kind mit Imprintingkrankheit bleibt gering. Zumindest einige Gene zeigen statistisch signifikante Methylierungsunterschiede innerhalb der normalen Methylierungsvariabilität zwischen ART und Nicht-ART-Schwangerschaften. Das heißt, entweder ART selbst oder mit der elterlichen Infertilität assoziierte Faktoren haben Einfluss auf das Epigenom der nächsten Generation. Fehlerhafte Methylierungsmuster in geprägten Genen zeigen eine signifikante Assoziation mit abnormalen Spermaparametern. Dies unterstützt die Vermutung, dass Epimutationen von der Keimbahn in den Embryo transferiert werden können.
Collapse
|
87
|
Chen SL, Shi XY, Zheng HY, Wu FR, Luo C. Aberrant DNA methylation of imprinted H19 gene in human preimplantation embryos. Fertil Steril 2010; 94:2356-8, 2358.e1. [DOI: 10.1016/j.fertnstert.2010.01.120] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 01/13/2010] [Accepted: 01/29/2010] [Indexed: 10/19/2022]
|
88
|
Chen X, Wang J, Li R, Ding F, Li S, Zhang L, Dai Y, Li N. Effect of microinjection of a single IVF-derived blastomere on the development of cloned embryos at the eight-cell stage in bovine. Cell Reprogram 2010; 12:719-27. [PMID: 20969452 DOI: 10.1089/cell.2010.0032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
This study was conducted to determine the effect of microinjection of a single blastomere from in vitro fertilization (IVF)-derived eight-cell embryo into eight-cell cloned embryos harboring the gene encoding recombinant human lactoferrin (rhLF), GFP, and NEO markers in bovine. The reconstructed chimeric embryos were assessed for their development to blastocyst, or to term after transfer, and tissues of offspring were evaluated by polymerase chain reaction (PCR) for the presence of nuclear transfer (NT)-derived transgenic cells, and the cloned embryos without microinjection were used as controls. The chimeric embryos showed slightly higher blastocyst rate than that for controls. The single IVF-derived blastomere appeared to preferential contribute to inner cell mass (ICM) in the chimeric blastocysts. After transfer, the rates of development of chimeric embryos to day 60, to term, and to weaning were significantly higher than those of controls. Sixty-three chimeric blastocysts were transferred and 11 calves were born: 7 calves of them were dead, and the remaining 4 calves are apparently normal and healthy. Most of the tissues collected from dead fetus were transgenic, whereas NT-derived transgenic cells were not detected in some tissues of the living calves. Our results indicated that a single blastomere from IVF-derived eight-cell embryo improves the in vivo developmental potential of transgenic cloned eight-cell embryos in bovine; however, the single IVF-derived blastomere appears to be better able to populate the ICM and many tissues of offspring than NT-derived blastomeres.
Collapse
Affiliation(s)
- Xiuping Chen
- State Key Laboratory for AgroBiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Beaujean N, Mason K, Bonnet-Garnier A, Salvaing J, Debey P. [Embryonic genome organization after fertilization in mammals]. Biol Aujourdhui 2010; 204:205-13. [PMID: 20950564 DOI: 10.1051/jbio/2010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Indexed: 11/15/2022]
Abstract
In mammals, the embryonic genome is first transcriptionally inactive after fertilization. Embryonic development is then strictly dependent on the maternally inherited RNA and proteins accumulated before ovulation and present in the oocyte cytoplasm. The onset of embryonic gene expression is initiated later during development, i.e. during the "embryonic genome activation (EGA)". EGA takes place at various preimplantation stages according to species and is dependent on the presence of the basal transcriptional machinery components but also on parental genomes reorganizations after fertilization. Indeed, during the first embryonic cycles, nuclei undergo intense remodeling that could be a key regulator of embryonic development.
Collapse
Affiliation(s)
- Nathalie Beaujean
- INRA, UMR1198 Biologie du Développement et Reproduction, 78352 Jouy-en-Josas, France.
| | | | | | | | | |
Collapse
|
90
|
Ferreira A, Machado G, Diesel T, Carvalho J, Rumpf R, Melo E, Dode M, Franco M. Allele-specific expression of the MAOA gene and X chromosome inactivation in in vitro produced bovine embryos. Mol Reprod Dev 2010; 77:615-21. [DOI: 10.1002/mrd.21192] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
91
|
Aston KI, Li GP, Hicks BA, Sessions BR, Davis AP, Rickords LF, Stevens JR, White KL. Abnormal levels of transcript abundance of developmentally important genes in various stages of preimplantation bovine somatic cell nuclear transfer embryos. Cell Reprogram 2010; 12:23-32. [PMID: 20132010 DOI: 10.1089/cell.2009.0042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Based on microarray data comparing gene expression of fibroblast donor cells and bovine somatic cell nuclear transfer (SCNT) and in vivo produced (AI) blastocysts, a group of genes including several transcription factors was selected for evaluation of transcript abundance. Using SYBR green-based real-time polymerase chain reaction (Q-PCR) the levels of POU domain class 5 transcription factor (Oct4), snail homolog 2 (Snai2), annexin A1 (Anxa1), thrombospondin (Thbs), tumor-associated calcium signal transducer 1 (Tacstd1), and transcription factor AP2 gamma (Tfap2c) were evaluated in bovine fibroblasts, oocytes, embryos 30 min postfusion (SCNT), 12 h postfertilization/activation, as well as two-cell, four-cell, eight-cell, morula, and blastocyst-stage in vitro fertilized (IVF) and SCNT embryos. For every gene except Oct4, levels of transcript were indistinguishable between IVF and SCNT embryos at the blastocyst stage; however, in many cases levels of these genes during stages prior to blastocyst differed significantly. Altered levels of gene transcripts early in development likely have developmental consequences downstream. These results indicate that experiments evaluating gene expression differences between control and SCNT blastocysts may underestimate the degree of difference between clones and controls, and further offer insights into the dynamics of transcript regulation following SCNT.
Collapse
Affiliation(s)
- Kenneth I Aston
- Department of Animal, Dairy, and Veterinary Sciences and Center for Integrated Biosystems, Utah State University, Logan, Utah 84322-4815, USA
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Methylation patterns in 5′ terminal regions of pluripotency-related genes in bovine in vitro fertilized and cloned embryos. J Genet Genomics 2010; 37:297-304. [DOI: 10.1016/s1673-8527(09)60047-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 01/20/2010] [Accepted: 02/10/2010] [Indexed: 11/17/2022]
|
93
|
Santos MA, Kuijk EW, Macklon NS. The impact of ovarian stimulation for IVF on the developing embryo. Reproduction 2010; 139:23-34. [PMID: 19710204 DOI: 10.1530/rep-09-0187] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The use of assisted reproductive technologies (ART) has been increasing over the past three decades, and, in developed countries, ART account for 1-3% of annual births. In an attempt to compensate for inefficiencies in IVF procedures, patients undergo ovarian stimulation using high doses of exogenous gonadotrophins to allow retrieval of multiple oocytes in a single cycle. Although ovarian stimulation has an important role in ART, it may also have detrimental effects on oogenesis, embryo quality, endometrial receptivity and perinatal outcomes. In this review, we consider the evidence for these effects and address possible underlying mechanisms. We conclude that such mechanisms are still poorly understood, and further knowledge is needed in order to increase the safety of ovarian stimulation and to reduce potential effects on embryo development and implantation, which will ultimately be translated into increased pregnancy rates and healthy offspring.
Collapse
Affiliation(s)
- Margarida Avo Santos
- University Medical Centre Utrecht, Reproductive Medicine and Gynaecology, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | | | | |
Collapse
|
94
|
Williams C, Sutcliffe A, Sebire NJ. Congenital malformations after assisted reproduction: risks and implications for prenatal diagnosis and fetal medicine. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2010; 35:255-259. [PMID: 20205201 DOI: 10.1002/uog.7589] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
95
|
Pliushch G, Schneider E, Weise D, El Hajj N, Tresch A, Seidmann L, Coerdt W, Müller AM, Zechner U, Haaf T. Extreme methylation values of imprinted genes in human abortions and stillbirths. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1084-90. [PMID: 20093482 DOI: 10.2353/ajpath.2010.090764] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Imprinted genes play an important role in fetal and placental development. Using quantitative bisulfite pyrosequencing assays, we determined the DNA methylation levels at two paternally methylated (H19 and MEG3) and four maternally methylated (LIT1, NESP55, PEG3, and SNRPN) imprinted regions in fetal muscle samples from abortions and stillbirths. Two of 55 (4%) spontaneous abortions and 10 of 57 (18%) stillbirths displayed hypermethylation in multiple genes. Interestingly, none of 34 induced abortions had extreme methylation values in multiple genes. All but two abortions/stillbirths with multiple methylation abnormalities were male, indicating that the male embryo may be more susceptible to excess methylation. Hypermethylation of multiple imprinted genes is consistent with stochastic failures of the mechanism, which normally protects the hypomethylated allele from de novo methylation after fertilization. Two of six informative abortions/stillbirths with H19 hypermethylation revealed significant biallelic expression of the autocrine growth factor IGF2. In two other cases hypermethylation of MEG3 was associated with transcriptional down-regulation. We propose that primary epimutations resulting in inappropriate methylation and expression patterns of imprinted genes may contribute to both normal human variation and disease, in particular spontaneous pregnancy loss.
Collapse
Affiliation(s)
- Galyna Pliushch
- Institute of Human Genetics, Department of Pediatric Pathology, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Zechner U, Pliushch G, Schneider E, El Hajj N, Tresch A, Shufaro Y, Seidmann L, Coerdt W, Müller AM, Haaf T. Quantitative methylation analysis of developmentally important genes in human pregnancy losses after ART and spontaneous conception. Mol Hum Reprod 2009; 16:704-13. [PMID: 20007506 DOI: 10.1093/molehr/gap107] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To study possible effects of assisted reproductive technologies (ART) on epigenetic reprogramming, we have analyzed the DNA methylation levels of differentially methylated regions (DMRs) of seven imprinted genes (H19, MEG3, LIT1, MEST, NESP55, PEG3 and SNRPN) as well as the promoter regions of the pluripotency gene NANOG and the tumor suppressor gene APC in chorionic villus samples (CVS) of 42 spontaneous miscarriages and stillbirths after ART and 29 abortions/stillbirths after spontaneous conception. We did not find an increased rate of faulty methylation patterns after ART, but significant and trend differences (ROC curve analysis, Wilcoxon test) in the methylation levels of LIT1 (P = 0.006) and H19 (P = 0.085) between ART and non-ART samples. With the possible exception of NANOG, we did not observe a gestational age effect on the methylation levels of the studied genes. The frequency of extreme methylation values in PEG3 and APC was markedly higher than in the other studied genes, indicating an increased susceptibility of some genes to epigenetic alterations. Most methylation abnormalities in CVS represented either hypermethylated DMRs of paternally and maternally imprinted genes or hypomethylated promoters of non-imprinted genes. The observed methylation abnormalities (mosaicism) are consistent with methylation reprogramming defects during early embryogenesis.
Collapse
Affiliation(s)
- Ulrich Zechner
- Institute of Human Genetics, Johannes Gutenberg University, 55101 Mainz, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Abstract
Assisted reproductive technologies (ART) have become widely used in the treatment of subfertility over the last 30 years. Currently 1.7% of all births in the UK occur after assisted conception. This review summarises work that has been undertaken to investigate health outcomes of these children and summarises areas where uncertainty continues to exist. Much of the adverse health outcomes of children born after ART are related to higher order birth; however evidence suggests adverse perinatal outcomes in singletons as well as twins and triplets. The cause of adverse health outcomes in ART conceived children is as yet unclear and studies investigating causal factors such as underlying subfertility are discussed.
Collapse
Affiliation(s)
- Carrie Williams
- Institute of Child Health, UCL, General Paediatric & Adolescent Unit, 30 Guilford Road, London, WC1N 1EH, UK.
| | | |
Collapse
|
98
|
Kuznetsova IS, Noniashvili EM, Gavrilova EV, Dyban AP. Modifications in major satellite methylation in the nucleus of a two-cell mouse embryo with respect to developmental conditions. Russ J Dev Biol 2009. [DOI: 10.1134/s1062360409050051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
99
|
Bressan FF, De Bem THC, Perecin F, Lopes FL, Ambrosio CE, Meirelles FV, Miglino MA. Unearthing the roles of imprinted genes in the placenta. Placenta 2009; 30:823-34. [PMID: 19679348 DOI: 10.1016/j.placenta.2009.07.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 07/22/2009] [Indexed: 11/17/2022]
Abstract
Mammalian fetal survival and growth are dependent on a well-established and functional placenta. Although transient, the placenta is the first organ to be formed during pregnancy and is responsible for important functions during development, such as the control of metabolism and fetal nutrition, gas and metabolite exchange, and endocrine control. Epigenetic marks and gene expression patterns in early development play an essential role in embryo and fetal development. Specifically, the epigenetic phenomenon known as genomic imprinting, represented by the non-equivalence of the paternal and maternal genome, may be one of the most important regulatory pathways involved in the development and function of the placenta in eutherian mammals. A lack of pattern or an imprecise pattern of genomic imprinting can lead to either embryonic losses or a disruption in fetal and placental development. Genetically modified animals present a powerful approach for revealing the interplay between gene expression and placental function in vivo and allow a single gene disruption to be analyzed, particularly focusing on its role in placenta function. In this paper, we review the recent transgenic strategies that have been successfully created in order to provide a better understanding of the epigenetic patterns of the placenta, with a special focus on imprinted genes. We summarize a number of phenotypes derived from the genetic manipulation of imprinted genes and other epigenetic modulators in an attempt to demonstrate that gene-targeting studies have contributed considerably to the knowledge of placentation and conceptus development.
Collapse
Affiliation(s)
- F F Bressan
- Department of Basic Sciences, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | | | | | | | | | | | | |
Collapse
|
100
|
Apoptotic processes and DNA cytosine methylation in mouse embryos arrested at the 2-cell stage. ZYGOTE 2009; 17:269-79. [DOI: 10.1017/s0967199409005413] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryThe present study evaluates the role of apoptotic cell death and DNA methylation reprogramming in early developmental failures occurring in embryos at the 2-cell stage. Mouse 2-cell embryos were culturedin vitroand treated with chemicals that cause developmental arrest and apoptosis (α-amanitin, actinomycin D, TNF-α). After 24 h, 48 h and 72 h culture, embryos were analysed using cell-death assays (annexin V staining, TUNEL labelling and immunodetection of active caspase-3) and genome methylation assay (immunodetection of 5-methylcytosine). The ability of embryos at the 2-cell stage to undergo apoptotic processes was very low. In arrested embryos, the presence of all evaluated features of apoptosis was recorded only after 72 h culture and their incidence was sporadical. Interestingly, the most frequently observed apoptotic sign was nuclear condensation and the timing of its appearance preceded even the phosphatidylserine flip. Both normally developing and arrested embryos displayed reduction in DNA cytosine methylation. In arrested embryos, this process was independent of cellular cleavage, was more pronounced and finished in almost complete demethylation of the embryonic genome. The timing of the demethylation overlapped with the onset of major apoptotic events. Although observed apoptotic cells showed either demethylated or methylated DNA cytosine in their nuclei, at blastocyst stage the demethylated status appeared more frequently in them.
Collapse
|