51
|
Sagray E, Wackel PL, Cannon BC. Cardiac arrhythmias in Primary Hypokalemic Periodic Paralysis: Case report and Literature Review. HeartRhythm Case Rep 2022; 8:719-723. [PMID: 36310724 PMCID: PMC9596356 DOI: 10.1016/j.hrcr.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
52
|
Ribeiro A, Suetterlin KJ, Skorupinska I, Tan S, Morrow JM, Matthews E, Hanna MG, Fialho D. The long exercise test as a functional marker of periodic paralysis. Muscle Nerve 2022; 65:581-585. [PMID: 34817893 PMCID: PMC7614949 DOI: 10.1002/mus.27465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 11/07/2022]
Abstract
AIMS The aim of this study was to evaluate the sensitivity of the long exercise test (LET) in the diagnosis of periodic paralysis (PP) and assess correlations with clinical phenotypes and genotypes. METHODS From an unselected cohort of 335 patients who had an LET we analyzed 67 patients with genetic confirmation of PP and/or a positive LET. RESULTS 32/45 patients with genetically confirmed PP had a significant decrement after exercise (sensitivity of 71%). Performing the short exercise test before the LET in the same hand confounded results in four patients. Sensitivity was highest in patients with frequent (daily or weekly) attacks (8/8, 100%), intermediate with up to monthly attacks (15/21, 71%) and lowest in those with rare attacks (9/16, 56%) (p = .035, Mann-Whitney U-test). Patients with a positive LET without confirmed PP mutation comprised those with typical PP phenotype and a group with atypical features. DISCUSSION In our cohort, the LET is strongly correlated with the frequency of paralytic attacks suggesting a role as a functional marker. A negative test in the context of frequent attacks makes a diagnosis of PP unlikely but it does not rule out the condition in less severely affected patients.
Collapse
Affiliation(s)
- Ana Ribeiro
- Department of Clinical Neurophysiology, King’s College Hospital, London, UK
| | - Karen J Suetterlin
- Queen Square Centre for Neuromuscular Diseases, University College London, UK
- Department of Clinical Neurophysiology, Royal Victoria Infirmary, Newcastle Upon Tyne, UK
| | - Iwona Skorupinska
- Queen Square Centre for Neuromuscular Diseases, University College London, UK
| | - S.Veronica Tan
- Department of Neurology and Neurophysiology, St Thomas’ Hospital, Guy’s and St Thomas’ NHS Foundation Trust and Department of Academic Neurosciences, Kings College London, UK
| | - Jasper M Morrow
- Queen Square Centre for Neuromuscular Diseases, University College London, UK
| | - Emma Matthews
- Queen Square Centre for Neuromuscular Diseases, University College London, UK
- Atkinson-Morley Neuromuscular Centre, St George’s University Hospitals NHS Foundation Trust, London, UK
| | - Michael G Hanna
- Queen Square Centre for Neuromuscular Diseases, University College London, UK
| | - Doreen Fialho
- Department of Clinical Neurophysiology, King’s College Hospital, London, UK
- Queen Square Centre for Neuromuscular Diseases, University College London, UK
| |
Collapse
|
53
|
Villar-Quiles RN, Sternberg D, Tredez G, Beatriz Romero N, Evangelista T, Lafôret P, Cintas P, Sole G, Sacconi S, Bendahhou S, Franques J, Cances C, Noury JB, Delmont E, Blondy P, Perrin L, Hezode M, Fournier E, Fontaine B, Stojkovic T, Vicart S. Phenotypical variability and atypical presentations in a French cohort of Andersen-Tawil syndrome. Eur J Neurol 2022; 29:2398-2411. [PMID: 35460302 DOI: 10.1111/ene.15369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/31/2022] [Accepted: 04/18/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND PURPOSE Andersen-Tawil syndrome (ATS) is a skeletal muscle channelopathy caused by KCNJ2 mutations, characterized by a clinical triad of periodic paralysis, cardiac arrhythmias and dysmorphism. The muscle phenotype, particularly the atypical forms with prominent permanent weakness or predominantly painful symptoms, remains incompletely characterized. METHODS A retrospective clinical, histological, electroneuromyography (ENMG) and genetic analysis of molecularly confirmed ATS patients, diagnosed and followed up at neuromuscular reference centers in France, was conducted. RESULTS Thirty-five patients from 27 unrelated families carrying 17 different missense KCNJ2 mutations (four novel mutations) and a heterozygous KCNJ2 duplication are reported. The typical triad was observed in 42.9% of patients. Cardiac abnormalities were observed in 65.7%: 56.5% asymptomatic and 39.1% requiring antiarrhythmic drugs. 71.4% of patients exhibited dysmorphic features. Muscle symptoms were reported in 85.7%, amongst whom 13.3% had no cardiopathy and 33.3% no dysmorphic features. Periodic paralysis was present in 80% and was significantly more frequent in men. Common triggers were exercise, immobility and carbohydrate-rich diet. Ictal serum potassium concentrations were low in 53.6%. Of the 35 patients, 45.7% had permanent weakness affecting proximal muscles, which was mild and stable or slowly progressive over several decades. Four patients presented with exercise-induced pain and myalgia attacks. Diagnostic delay was 14.4 ± 9.5 years. ENMG long-exercise test performed in 25 patients (71.4%) showed in all a decremental response up to 40%. Muscle biopsy performed in 12 patients revealed tubular aggregates in six patients (associated in two of them with vacuolar lesions), dystrophic features in one patient and non-specific myopathic features in one patient; it was normal in four patients. DISCUSSION Recognition of atypical features (exercise-induced pain or myalgia and permanent weakness) along with any of the elements of the triad should arouse suspicion. The ENMG long-exercise test has a high diagnostic yield and should be performed. Early diagnosis is of utmost importance to improve disease prognosis.
Collapse
Affiliation(s)
- Rocio Nur Villar-Quiles
- Reference Center for Neuromuscular Disorders, APHP, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France.,Institute of Myology, Centre de Recherche en Myologie, UMRS974, Sorbonne Université - INSERM, Paris, France
| | - Damien Sternberg
- Reference Center for Muscle Channelopathies, Service de Biochimie et Centre de Génétique, APHP, Pitié-Salpêtrière Hospital, Paris, France
| | - Grégoire Tredez
- Reference Center for Neuromuscular Disorders, APHP, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France
| | - Norma Beatriz Romero
- Institute of Myology, Centre de Recherche en Myologie, UMRS974, Sorbonne Université - INSERM, Paris, France.,Neuromuscular Morphology Unit, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France
| | - Teresinha Evangelista
- Reference Center for Neuromuscular Disorders, APHP, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France.,Institute of Myology, Centre de Recherche en Myologie, UMRS974, Sorbonne Université - INSERM, Paris, France.,Neuromuscular Morphology Unit, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France
| | - Pascal Lafôret
- Reference Center for Neuromuscular Disorders, APHP, Raymond-Poincaré Hospital, Paris, France
| | - Pascal Cintas
- Neurology Department, Pierre-Paul Riquet Hospital, CHU Toulouse, Toulouse, France
| | - Guilhem Sole
- Reference Centre for Neuromuscular Disorders, Pellegrin Hospital CHU Bordeaux, Bordeaux, France
| | - Sabrina Sacconi
- Neuromuscular Diseases and ALS Specialized Center, University of Nice-Sophia Antipolis, Nice, France
| | - Said Bendahhou
- UMR7370 CNRS, LP2M, Labex ICST, Faculty of Medicine, University of Nice-Sophia Antipolis, Nice, France
| | - Jérôme Franques
- Assistance Publique-Hôpitaux de Marseille, Department of Neurology and Neuromuscular Diseases, La Timone Hospital, Marseille, France
| | - Claude Cances
- AOC (Atlantique-Occitanie-Caraïbe) Reference Centre for Neuromuscular Disorders, Neuropediatric Department, Toulouse University Hospital, Toulouse, France
| | - J B Noury
- Neurology Department, Neuromuscular Center, CHRU Cavale Blanche, Brest, France
| | - Emilien Delmont
- Department of Neurology, University Hospital Timone, Marseille, France
| | - Patricia Blondy
- Reference Center for Muscle Channelopathies, Service de Biochimie et Centre de Génétique, APHP, Pitié-Salpêtrière Hospital, Paris, France
| | - Laurence Perrin
- Pediatrics Department, APHP, Robert-Débré Hospital, Paris, France
| | - Marianne Hezode
- Reference Center for Neuromuscular Disorders, APHP, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France
| | - Emmanuel Fournier
- Reference Center for Neuromuscular Disorders, APHP, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France
| | - Bertrand Fontaine
- Reference Center for Neuromuscular Disorders, APHP, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France.,Institute of Myology, Centre de Recherche en Myologie, UMRS974, Sorbonne Université - INSERM, Paris, France.,Reference Center for Muscle Channelopathies, APHP, Institut de Myologie, Pitié-Salpêtrière Hospital, Paris, France
| | - Tanya Stojkovic
- Reference Center for Neuromuscular Disorders, APHP, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France.,Institute of Myology, Centre de Recherche en Myologie, UMRS974, Sorbonne Université - INSERM, Paris, France
| | - Savine Vicart
- Reference Center for Neuromuscular Disorders, APHP, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France.,Reference Center for Muscle Channelopathies, APHP, Institut de Myologie, Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
54
|
In silico, in vitro, and in vivo human metabolism of acetazolamide, a carbonic anhydrase inhibitor and common "diuretic and masking agent" in doping. Arch Toxicol 2022; 96:1989-2001. [PMID: 35410394 DOI: 10.1007/s00204-022-03289-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/23/2022] [Indexed: 01/07/2023]
Abstract
Acetazolamide (ACZ) is a carbonic anhydrase inhibitor prescribed for the treatment of various pathologies. It is also used in doping and is prohibited in and out of sportive competitions. ACZ was reported not to undergo metabolization. However, the detection of ACZ metabolites may be critical for documenting ACZ use. We aimed to further investigate ACZ metabolic fate in humans. ACZ putative metabolites were generated in silico to assist in metabolite identification. ACZ was incubated with primary human hepatocytes to identify in vitro metabolites (10 µmol/l ACZ and 106 cells/ml), and urine and plasma samples from patients receiving a single 5.0 mg/kg BW PO ACZ dose were analyzed to confirm the results in vivo. Analyses were performed with reversed-phase liquid chromatography and hydrophilic interaction chromatography coupled with high-resolution tandem mass spectrometry (RPLC-HRMS/MS and HILIC-HRMS/MS, respectively). Data were screened with a software-assisted targeted/untargeted workflow. ACZ was quantified in urine samples with creatinine normalization. We identified two metabolites in hepatocyte incubations and three additional metabolites in urine and plasma. Major transformations included cysteine conjugation, glucuronidation, and N-acetylation. All metabolites were detected in plasma, 1.5 h after intake. Major metabolites were detected in urine from 0.25 to 24 h (last collection) after intake. As opposed to the literature, ACZ does undergo metabolization in humans. We propose ACZ, ACZ-Cys, and N-acetyl-ACZ in urine, and ACZ and N-acetyl-ACZ in plasma as specific biomarkers of ACZ intake in doping.
Collapse
|
55
|
Upchurch WJ, Iaizzo PA. In vitro contractile studies within isolated tissue baths: Translational research from Visible Heart ® Laboratories. Exp Biol Med (Maywood) 2022; 247:584-597. [PMID: 35068214 PMCID: PMC9014520 DOI: 10.1177/15353702211070535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023] Open
Abstract
The isolated tissue bath research methodology was first developed in 1904. Since then, it has been recognized as an important tool in pharmacology and physiology research, including investigations into neuromuscular disorders. The tissue bath is still used routinely as the instrument for performing the "gold standard" test for clinical diagnosis of malignant hyperthermia susceptibility - the caffeine-halothane contracture test. Our research group has utilized this tool for several decades for a range of research studies, and we are currently one of four North American diagnostic centers for determining susceptibility for malignant hyperthermia. This review provides a brief summary of some of the historical uses of the tissue bath. Important experimental considerations for the operation of the tissue bath are further described. Finally, we discuss the different studies our group has performed using isolated tissue baths to highlight the broad potential applications.
Collapse
Affiliation(s)
- Weston J Upchurch
- Department of Surgery, University of
Minnesota, Minneapolis, MN 55455, USA
- Bioinformatics and Computational
Biology Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paul A Iaizzo
- Department of Surgery, University of
Minnesota, Minneapolis, MN 55455, USA
- Bioinformatics and Computational
Biology Program, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Engineering in Medicine,
University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
56
|
Liang KM, Liang BC. Sporadic adult-onset brainstem hyperkalemic periodic paralysis masquerading as recurrent transient ischemic attacks. Clin Case Rep 2022; 10:e05609. [PMID: 35317066 PMCID: PMC8925273 DOI: 10.1002/ccr3.5609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/17/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
Abstract
We report a case of adult-onset, sporadic, hyperkalemic periodic paralysis with primary brainstem musculature symptoms masquerading as recurrent transient ischemic attacks. Unilateral brainstem weakness could be induced with rapid eye blinking, which was followed by lower extremity weakness and cramping. Treatment with acetazolamide and albuterol ameliorated the patient's attacks.
Collapse
Affiliation(s)
- Kathryn M.A. Liang
- Program in Health Behavior and Health EducationSchool of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Bertrand C. Liang
- Department of NeurologyUniversity of Colorado School of MedicineColorado Springs BranchColorado SpringsColoradoUSA
| |
Collapse
|
57
|
Li J, Moten S, Rauf AA. The role of nephrologists in management of hypokalemic periodic paralysis: a case report. J Med Case Rep 2022; 16:65. [PMID: 35144692 PMCID: PMC8832865 DOI: 10.1186/s13256-022-03283-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/20/2022] [Indexed: 11/14/2022] Open
Abstract
Background Hypokalemic periodic paralysis is a chronic condition characterized by sporadic attacks of weakness associated with acute hypokalemia. Attacks are typically associated with specific triggers, such as prolonged rest following exercise or consumption of a high-carbohydrate meal. Most commonly, this condition is caused by an autosomal dominant calcium channel mutation, and patients typically have an established family medical history of hypokalemic periodic paralysis. Long-term complications include the development of progressive proximal myopathy. Oral potassium chloride may be considered for the treatment of an acute attack, with administration of acetazolamide or dichlorphenamide as long-term prophylaxis. Nephrologists can play an important role in the recognition and treatment of previously undiagnosed hypokalemic periodic paralysis. Case presentation We summarize the case of a 19-year-old white man who presented to the emergency department with undiagnosed attacks of hypokalemic periodic paralysis, and who reported, at follow-up, improvement in the severity and frequency of attacks with dichlorphenamide. Conclusions This case demonstrates the crucial role nephrologists can play, not only in the diagnosis of hypokalemic periodic paralysis, but also in the ongoing management of this condition. Patients should be advised to regularly follow up with their nephrology team for evaluation due to the risk of developing myopathy.
Collapse
Affiliation(s)
- Julia Li
- Midwestern University, Chicago College of Osteopathic Medicine, Downers Grove, IL, 60515, USA.
| | - Suha Moten
- Midwestern University, MABS, Downers Grove, IL, USA
| | - Anis A Rauf
- Nephrology Associates of Northern Illinois and Indiana, Hinsdale, IL, USA
| |
Collapse
|
58
|
Logigian E. The long exercise test: new insights on an old technique. Muscle Nerve 2022; 65:495-497. [PMID: 35064932 DOI: 10.1002/mus.27503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Eric Logigian
- Department of Neurology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Rochester, NY
| |
Collapse
|
59
|
Luís T, Linhares MI, Silva SR, Rodrigues F. Novel CACNA1S mutation in hypokalaemic periodic paralysis. BMJ Case Rep 2022; 15:e245952. [PMID: 35039355 PMCID: PMC8768461 DOI: 10.1136/bcr-2021-245952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2021] [Indexed: 11/03/2022] Open
Abstract
A 15-year-old girl was admitted to emergency department with an acute flaccid tetraparesis with no other symptoms. A history of recurrent similar episodes with spontaneous recovery was reported and no family history was known. Laboratory tests revealed severe hypokalaemia and hypokaluria. Symptoms resolution occurred after potassium replacement. The diagnosis of hypokalaemic periodic paralysis (HPP) was confirmed by genetic testing, which revealed a not previously described mutation in CACNA1S gene (c.3715C>G p.Arg1239Gly). HPP is a rare neuromuscular disorder that causes episodic attacks of flaccid paralysis with concomitant hypokalaemia. Primary forms of the disease are skeletal muscle ion channelopathies. HPP occurs due to a problem in potassium distribution rather than a total body potassium deficiency. Therefore potassium replacement should be carefully performed because of the risk of rebound hyperkalaemia. Knowing this rare entity is important in order to avoid diagnostic delays and so that proper treatment can be initiated to reduce morbidity and mortality.
Collapse
Affiliation(s)
- Telma Luís
- Department of Pediatrics, Centro Hospitalar do Baixo Vouga EPE, Aveiro, Portugal
| | - Maria Inês Linhares
- Centro Hospitalar e Universitario de Coimbra EPE Hospital Pediatrico de Coimbra, Coimbra, Portugal
| | - Sónia Regina Silva
- Department of Pediatrics, Centro Hospitalar do Baixo Vouga EPE, Aveiro, Portugal
| | - Filipa Rodrigues
- Department of Pediatrics, Centro Hospitalar do Baixo Vouga EPE, Aveiro, Portugal
- Child Development Unit-Neuropediatrics, Department of Pediatrics, Centro Hospitalar do Baixo Vouga, Aveiro, Portugal
| |
Collapse
|
60
|
Abbas F, Shafi O, Latief M, Hassan Z, Farooq S. Familial hypokalemic periodic paralysis: A case series and review. MEDICAL JOURNAL OF DR. D.Y. PATIL VIDYAPEETH 2022. [DOI: 10.4103/mjdrdypu.mjdrdypu_417_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
61
|
Kodintcev A. A clinical case of progressive hypokalemic myopathy due to Conn’s syndrome. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:149-154. [DOI: 10.17116/jnevro2022122111149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
62
|
Treatment and Management of Disorders of Neuromuscular Hyperexcitability and Periodic Paralysis. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00018-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
63
|
Su TH, Lee NC, Wu CS, Peng SSF, Fan PC. Episodic weakness and axonal sensorimotor neuropathy caused by a mitochondrial MT-ATP6 mutation. J Formos Med Assoc 2021; 121:2345-2350. [PMID: 34953645 DOI: 10.1016/j.jfma.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/18/2021] [Accepted: 12/02/2021] [Indexed: 11/26/2022] Open
Abstract
Episodic weakness is typically associated with a group of disorders so called periodic paralyses. Their major causes are mutation of ion channels, and have rarely been linked to mitochondrial disorders. We report a 20-year-old man with episodic weakness and axonal sensorimotor neuropathy since the age of 10 years. Analysis of the next generation sequencing data of the entire mitochondrial genome extracted from the blood revealed a homoplasmic m.9185T > C variant in MT-ATP6. Acetazolamide may be responsive for episodic weakness, and supplements with l-carnitine with coenzyme-Q10 seem to be beneficial as well. To the best of our knowledge, this is the first report in Taiwan which reveals episodic weakness and sensorimotor polyneuropathy as a unique phenotype of MT-ATP6 mutations.
Collapse
Affiliation(s)
- Tzu-Hsuan Su
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Ni-Chung Lee
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Chao-Szu Wu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | | | - Pi-Chuan Fan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
64
|
Stunnenberg BC, Merkus EC, Raaphorst J, Saris CG, Groenewoud H, Statland J, Weijma R, van Vlijmen B, Griggs R, van Engelen BGM, van der Wilt GJ. N-of-1 trial of salbutamol in hyperkalaemic periodic paralysis. J Neurol Neurosurg Psychiatry 2021; 92:1352-1353. [PMID: 34112717 DOI: 10.1136/jnnp-2021-326347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/15/2021] [Indexed: 11/04/2022]
Affiliation(s)
- Bas C Stunnenberg
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Esther C Merkus
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost Raaphorst
- Department of Neurology, Amsterdam UMC, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Christiaan Gj Saris
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans Groenewoud
- Department for Health Evidence, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeffrey Statland
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Robyn Weijma
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bas van Vlijmen
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robert Griggs
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gert Jan van der Wilt
- Department for Health Evidence, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
65
|
Wang Q, Zhao Z, Shen H, Bing Q, Li N, Hu J. The clinical and genetic heterogeneity analysis of five families with primary periodic paralysis. Channels (Austin) 2021; 15:20-30. [PMID: 33345742 PMCID: PMC7757828 DOI: 10.1080/19336950.2020.1857980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 11/23/2022] Open
Abstract
To explore the clinical and genetic characteristics of five families with primary periodic paralysis (PPP). We reviewed clinical manifestations, laboratory results, electrocardiogram, electromyography, muscle biopsy, and genetic analysis from five families with PPP. Five families with PPP included: hypokalemic periodic paralysis type 1 (HypoPP1, CACNA1S, 1/5), hypokalemic periodic paralysis type 2 (HypoPP2, SCN4A, 2/5), normokalemic periodic paralysis (NormoPP, SCN4A, 1/5), and Andersen-Tawil syndrome (ATS, KCNJ2, 1/5). The basic clinical manifestations of five families were consistent with PPP, presenting with paroxysmal muscle weakness, with or without abnormal serum potassium. ATS was accompanied by ventricular arrhythmias, and skeletal and craniofacial anomalies, developing with a permanent fixed myopathy later. The electromyography showed diffuse myopathic discharge, and muscle biopsy showed tubular aggregates. Genetic testing revealed five families with PPP carried CACNA1S (R1242S), SCN4A (R675Q, T704M), and KCNJ2 (R218Q) respectively. The novel heterozygous R1242S mutation in CACNA1S caused a conformational change in the protein structure, and the amino acid of this mutation site was highly conserved among different species. SCN4A mutations led to two phenotypes of HypoPP2 and NormoPP. PPPs are autosomal dominant disorders of ion channel dysfunction characterized by episodic flaccid muscle weakness secondary to abnormal sarcolemmal excitability. PPPs are caused by mutations in skeletal muscle calcium channel CaV1.1 gene (CACNA1S), sodium channel NaV1.4 gene (SCN4A), and potassium channels Kir2.1, Kir3.4 genes (KCNJ2, KCNJ5), including HypoPP1, HypoPP2, NormoPP, HyperPP, and ATS, which have significant clinical and genetic heterogeneity. Diagnosis is based on the characteristic clinical presentation then confirmed by genetic testing.
Collapse
Affiliation(s)
- Quanquan Wang
- Department of Neuromuscular Disease, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhe Zhao
- Department of Neuromuscular Disease, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hongrui Shen
- Department of Neuromuscular Disease, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qi Bing
- Department of Neuromuscular Disease, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Nan Li
- Department of Neuromuscular Disease, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jing Hu
- Department of Neuromuscular Disease, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
66
|
Jin JY, Guo BB, Dong Y, Sheng Y, Fan LL, Zhang LB. Case Report: A Novel CACNA1S Mutation Associated With Hypokalemic Periodic Paralysis in a Chinese Family. Front Genet 2021; 12:743184. [PMID: 34777470 PMCID: PMC8586648 DOI: 10.3389/fgene.2021.743184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Hypokalemic periodic paralysis (HypoPP) is a rare autosomal dominant disorder characterized by episodic flaccid paralysis with concomitant hypokalemia. More than half of patients were associated with mutations in CACNA1S that encodes the alpha-1-subunit of the skeletal muscle L-type voltage-dependent calcium channel. Mutations in CACNA1S may alter the structure of CACNA1S and affect the functions of calcium channels, which damages Ca2+-mediated excitation-contraction coupling. In this research, we identified and described a Chinese HypoPP patient with a novel frameshift mutation in CACNA1S [NM_000069.2: c.1364delA (p.Asn455fs)] by targeted sequencing. This study would expand the spectrum of CACNA1S mutations, further our understanding of HypoPP, and provided a new perspective for selecting effective treatments.
Collapse
Affiliation(s)
- Jie-Yuan Jin
- School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Bing-Bing Guo
- School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China.,CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yi Dong
- School of Life Sciences, Central South University, Changsha, China
| | - Yue Sheng
- School of Life Sciences, Central South University, Changsha, China
| | - Liang-Liang Fan
- School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Li-Bing Zhang
- Department of Pediatrics, Affiliated Hospital of Yangzhou University, Yangzhou, China
| |
Collapse
|
67
|
KCNG1-Related Syndromic Form of Congenital Neuromuscular Channelopathy in a Crossbred Calf. Genes (Basel) 2021; 12:genes12111792. [PMID: 34828398 PMCID: PMC8618021 DOI: 10.3390/genes12111792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Inherited channelopathies are a clinically and heritably heterogeneous group of disorders that result from ion channel dysfunction. The aim of this study was to characterize the clinicopathologic features of a Belgian Blue x Holstein crossbred calf with paradoxical myotonia congenita, craniofacial dysmorphism, and myelodysplasia, and to identify the most likely genetic etiology. The calf displayed episodes of exercise-induced generalized myotonic muscle stiffness accompanied by increase in serum potassium. It also showed slight flattening of the splanchnocranium with deviation to the right side. On gross pathology, myelodysplasia (hydrosyringomielia and segmental hypoplasia) in the lumbosacral intumescence region was noticed. Histopathology of the muscle profile revealed loss of the main shape in 5.3% of muscle fibers. Whole-genome sequencing revealed a heterozygous missense variant in KCNG1 affecting an evolutionary conserved residue (p.Trp416Cys). The mutation was predicted to be deleterious and to alter the pore helix of the ion transport domain of the transmembrane protein. The identified variant was present only in the affected calf and not seen in more than 5200 other sequenced bovine genomes. We speculate that the mutation occurred either as a parental germline mutation or post-zygotically in the developing embryo. This study implicates an important role for KCNG1 as a member of the potassium voltage-gated channel group in neurodegeneration. Providing the first possible KCNG1-related disease model, we have, therefore, identified a new potential candidate for related conditions both in animals and in humans. This study illustrates the enormous potential of phenotypically well-studied spontaneous mutants in domestic animals to provide new insights into the function of individual genes.
Collapse
|
68
|
Distal renal tubular acidosis and hypokalaemic periodic paralysis during pregnancy. J Nephrol 2021; 35:1725-1729. [PMID: 34748193 DOI: 10.1007/s40620-021-01184-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/20/2021] [Indexed: 10/19/2022]
|
69
|
Žakelj N, Osredkar D, Šuštar N. Mind the Gap: Acetazolamide Prolonged Periods without Paralysis in a Girl with Andersen-Tawil Syndrome. Case Rep Neurol 2021; 13:515-520. [PMID: 34720956 PMCID: PMC8460927 DOI: 10.1159/000517899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/13/2021] [Indexed: 11/19/2022] Open
Abstract
We present a case report of a 13-year-old girl with Andersen-Tawil Syndrome (ATS), a rare genetic disorder which is characterized by dysmorphic features, ventricular arrhythmias, and frequent episodes of muscle paralysis that interfere with daily activities and social engagement. After the introduction of off-label treatment with acetazolamide periods without paralysis lengthened, our patient became more independent of the help of her parents and required a wheelchair less frequently, thus improving her social life. Based on our experience, we recommend a trial of acetazolamide in patients with ATS.
Collapse
Affiliation(s)
- Nina Žakelj
- Department of Pediatric Neurology, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Damjan Osredkar
- Department of Pediatric Neurology, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, Centre for Developmental Neuroscience, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Šuštar
- Department of Pediatric Neurology, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
70
|
Nicole S, Lory P. New Challenges Resulting From the Loss of Function of Na v1.4 in Neuromuscular Diseases. Front Pharmacol 2021; 12:751095. [PMID: 34671263 PMCID: PMC8521073 DOI: 10.3389/fphar.2021.751095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
The voltage-gated sodium channel Nav1.4 is a major actor in the excitability of skeletal myofibers, driving the muscle force in response to nerve stimulation. Supporting further this key role, mutations in SCN4A, the gene encoding the pore-forming α subunit of Nav1.4, are responsible for a clinical spectrum of human diseases ranging from muscle stiffness (sodium channel myotonia, SCM) to muscle weakness. For years, only dominantly-inherited diseases resulting from Nav1.4 gain of function (GoF) were known, i.e., non-dystrophic myotonia (delayed muscle relaxation due to myofiber hyperexcitability), paramyotonia congenita and hyperkalemic or hypokalemic periodic paralyses (episodic flaccid muscle weakness due to transient myofiber hypoexcitability). These last 5 years, SCN4A mutations inducing Nav1.4 loss of function (LoF) were identified as the cause of dominantly and recessively-inherited disorders with muscle weakness: periodic paralyses with hypokalemic attacks, congenital myasthenic syndromes and congenital myopathies. We propose to name this clinical spectrum sodium channel weakness (SCW) as the mirror of SCM. Nav1.4 LoF as a cause of permanent muscle weakness was quite unexpected as the Na+ current density in the sarcolemma is large, securing the ability to generate and propagate muscle action potentials. The properties of SCN4A LoF mutations are well documented at the channel level in cellular electrophysiological studies However, much less is known about the functional consequences of Nav1.4 LoF in skeletal myofibers with no available pertinent cell or animal models. Regarding the therapeutic issues for Nav1.4 channelopathies, former efforts were aimed at developing subtype-selective Nav channel antagonists to block myofiber hyperexcitability. Non-selective, Nav channel blockers are clinically efficient in SCM and paramyotonia congenita, whereas patient education and carbonic anhydrase inhibitors are helpful to prevent attacks in periodic paralyses. Developing therapeutic tools able to counteract Nav1.4 LoF in skeletal muscles is then a new challenge in the field of Nav channelopathies. Here, we review the current knowledge regarding Nav1.4 LoF and discuss the possible therapeutic strategies to be developed in order to improve muscle force in SCW.
Collapse
Affiliation(s)
- Sophie Nicole
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics (ICST), Montpellier, France
| | - Philippe Lory
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics (ICST), Montpellier, France
| |
Collapse
|
71
|
[17-year-old patient with polymorphic premature ventricular contractions]. Herzschrittmacherther Elektrophysiol 2021; 32:484-488. [PMID: 34664083 DOI: 10.1007/s00399-021-00813-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
A 17-year-old patient with premature ventricular contractions and normal left ventricular function was referred for reablation after an unsuccessful catheter ablation attempt. Holter monitoring demonstrated a high burden of premature ventricular contractions, present throughout the whole recording. The patient reported occasional paralytic attacks; his face had a dysmorphic appearance with a wide distance between the eyes, a caudal insertion of the ears, and a high forehead. These three features resulted in a clinical diagnosis that was confirmed by molecular biology and completely changed the therapeutic strategy.
Collapse
|
72
|
Mutations associated with hypokalemic periodic paralysis: from hotspot regions to complete analysis of CACNA1S and SCN4A genes. Neurogenetics 2021; 23:19-25. [PMID: 34608571 DOI: 10.1007/s10048-021-00673-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/26/2021] [Indexed: 01/10/2023]
Abstract
Familial periodic paralyses (PPs) are inherited disorders of skeletal muscle characterized by recurrent episodes of flaccid muscle weakness. PPs are classified as hypokalemic (HypoPP), normokalemic (NormoPP), or hyperkalemic (HyperPP) according to the potassium level during the paralytic attacks. HypoPP is an autosomal dominant disease caused by mutations in the CACNA1S gene, encoding for Cav1.1 channel (HypoPP-1), or SCN4A gene, encoding for Nav1.4 channel (HypoPP-2). In the present study, we included 60 patients with a clinical diagnosis of HypoPP. Fifty-one (85%) patients were tested using the direct sequencing (Sanger method) of all reported HypoPP mutations in CACNA1S and SCN4A genes; the remaining 9 (15%) patients were analyzed through a next-generation sequencing (NGS) panel, including the whole CACNA1S and SCN4A genes, plus other genes rarely associated to PPs. Fifty patients resulted mutated: 38 (76%) cases showed p.R528H and p.R1239G/H CACNA1S mutations and 12 (24%) displayed p.R669H, p.R672C/H, p.R1132G/Q, and p.R1135H SCN4A mutations. Forty-one mutated cases were identified among the 51 patients managed with Sanger sequencing, while all the 9 cases directly analyzed with the NGS panel showed mutations in the hotspot regions of SCN4A and CACNA1S. Ten out of the 51 patients unresolved through the Sanger sequencing were further analyzed with the NGS panel, without the detection of any mutation. Hence, our data suggest that in HypoPP patients, the extension of genetic analysis from the hotspot regions using the Sanger method to the NGS sequencing of the entire CACNA1S and SCN4A genes does not lead to the identification of new pathological mutations.
Collapse
|
73
|
Katyal N, Singla P, Idiculla PS, Narula N, Govindarajan R. Dichlorphenamide for Refractory Hyperkalemic Periodic Paralysis. J Clin Neuromuscul Dis 2021; 23:58-59. [PMID: 34431807 DOI: 10.1097/cnd.0000000000000382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Nakul Katyal
- Department of Neurology, University of Missouri Health Care, Columbia, MO
| | - Pratibha Singla
- Department of Neurology, Gian Sagar Medical College and Hospital, Banur, Jansla, Patiala, Punjab, India
| | - Pretty Sara Idiculla
- Department of Neurology, University of Missouri School of Medicine, Columbia, MO
| | - Naureen Narula
- Department of Pulmonology and Critical Care Medicine, Staten Island University Hospital, Staten Island, NY
| | | |
Collapse
|
74
|
Kontbay T, Turan İ. Co-existence of Congenital Adrenal Hyperplasia and Familial Hypokalemic Periodic Paralysis due to CYP21A2 and SCN4A Pathogenic Variants. J Clin Res Pediatr Endocrinol 2021; 13:362-366. [PMID: 33389921 PMCID: PMC8388050 DOI: 10.4274/jcrpe.galenos.2020.2020.0219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Steroid 21-hydroxylase deficiency is the most common cause of congenital adrenal hyperplasia (CAH), usually due to biallelic variants in CYP21A2. Classical 21-hydroxylase deficiency is characterised by virilisation of the external genitalia in females and hypocortisolism. Hyponatremia and hyperkalemia are among the common biochemical findings. Familial hypokalemic periodic paralysis (FHPP) is a rare disorder in which affected individuals may experience paralytic episodes associated with hypokalemia, caused by pathogenic variants in SCN4A or CACNA1S. A 14-year-old female, who had been diagnosed with classical 21-hydroxylase deficiency and treated with hydrocortisone and fludrocortisone since early infancy, presented with acute onset weakness. The laboratory results revealed a remarkably low serum potassium level. The family history revealed that both her father and uncle had the same hypokalemic symptoms, which suggested an FHPP diagnosis. We found two previously reported homozygous variants in the CYP21A2 (p.Ile173Asn) and SCN4A (p.Arg672His) genes in the patient. Therefore, diagnoses of simple virilising 21-hydroxylase deficiency and FHPP were genetically confirmed. Here, FPHH and chronic overtreatment with fludrocortisone may explain the presentation of our patient with severe hypokalemia. The family’s medical history, which is always a valuable clue, should be investigated in detail since rare inherited conditions may co-occur in geographies where consanguineous marriages are common and the genetic pool is diverse. In patients with CAH, care should be taken to avoid overtreatment with fludrocortisone. Androgens may have triggered the hypokalemic attack in FHPP, as supported in a previous study.
Collapse
Affiliation(s)
- Tuğba Kontbay
- Şanlıurfa Training and Research Hospital, Clinic of Pediatric Endocrinology, Şanlıurfa, Turkey
| | - İhsan Turan
- Şanlıurfa Training and Research Hospital, Clinic of Pediatric Endocrinology, Şanlıurfa, Turkey,Çukurova University Faculty of Medicine, Department of Pediatric Endocrinology, Adana, Turkey,* Address for Correspondence: Çukurova University Faculty of Medicine, Department of Pediatric Endocrinology, Adana, Turkey Phone: +90 533 360 41 46 E-mail:
| |
Collapse
|
75
|
Cavaliere GA, Murali N, Bontempo LJ, Dezman ZDW. 19-year-old Woman with Intermittent Weakness. Clin Pract Cases Emerg Med 2021; 5:276-282. [PMID: 34437031 PMCID: PMC8373190 DOI: 10.5811/cpcem.2021.4.52011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/01/2021] [Indexed: 11/11/2022] Open
Abstract
Introduction Systemic weakness is a common chief complaint of patients presenting to the emergency department (ED). A well thought out approach to the assessment and workup of these patients is key to diagnostic accuracy and definitive therapy. Case Presentation In this case, a 19-year-old female presented to the ED with generalized weakness and near syncope. She had global weakness in her extremities and multiple electrolyte abnormalities. Discussion This case takes the reader through the differential diagnosis and evaluation of a patient with weakness and profound electrolyte derangements. It includes a discussion of the diagnostic studies and calculations that ultimately led to the patient’s diagnosis.
Collapse
Affiliation(s)
- Garrett A Cavaliere
- University of Maryland Medical Center, Department of Emergency Medicine, Baltimore, Maryland
| | - Neeraja Murali
- University of Maryland School of Medicine, Department of Emergency Medicine, Baltimore, Maryland
| | - Laura J Bontempo
- University of Maryland School of Medicine, Department of Emergency Medicine, Baltimore, Maryland
| | - Zachary D W Dezman
- University of Maryland School of Medicine, Department of Emergency Medicine, Baltimore, Maryland.,University of Maryland School of Medicine, Department of Epidemiology and Public Health, Baltimore, Maryland
| |
Collapse
|
76
|
Pini J, Siciliano G, Lahaut P, Braun S, Segovia-Kueny S, Kole A, Hérnando I, Selb J, Schirinzi E, Duong T, Hogrel JY, Olmedo JJS, Vissing J, Servais L, Vincent-Genod D, Vuillerot C, Bannwarth S, Eggenspieler D, Vicart S, Diaz-Manera J, Lochmüller H, Sacconi S. E-Health & Innovation to Overcome Barriers in Neuromuscular Diseases. Report from the 1st eNMD Congress: Nice, France, March 22-23, 2019. J Neuromuscul Dis 2021; 8:743-754. [PMID: 33843694 PMCID: PMC8385527 DOI: 10.3233/jnd-210655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
By definition, neuromuscular diseases are rare and fluctuating in terms of symptoms; patients are often lately diagnosed, do not have enough information to understand their condition and be proactive in their management. Usually, insufficient resources or services are available, leading to patients' social burden. From a medical perspective, the rarity of such diseases leads to the unfamiliarity of the medical staff and caregiver and an absence of consensus in disease assessment, treatment, and management. Innovations have to be developed in response to patients' and physicians' unmet needs.It is vital to improve several aspects of patients' quality of life with a better comprehension of their disease, simplify their management and follow-up, help their caregiver, and reduce the social and economic burden for living with a rare debilitating disease. Database construction regrouping patients' data and symptoms according to specific country registration on data privacy will be critical in establishing a clear consensus on neuromuscular disease treatment.Clinicians also need technological innovations to help them recognize neuromuscular diseases, find the best therapeutic approach based on medical consensus, and tools to follow patients' states regularly. Diagnosis also has to be improved by implementing automated systems to analyze a considerable amount of data, representing a significant step forward to accelerate the diagnosis and the patients' follow up. Further, the development of new tools able to precisely measure specific outcomes reliably is of the matter of importance in clinical trials to assess the efficacy of a newly developed compound.In this context, creation of an expert community is essential to communicate and share ideas. To this end, 97 clinicians, healthcare professionals, researchers, and representatives of private companies from 9 different countries met to discuss the new perspective and challenges to develop and implement innovative tools in the field of neuromuscular diseases.
Collapse
Affiliation(s)
- Jonathan Pini
- Université Côte d'Azur (UCA), Centre Hospitalier Universitaire de Nice, Peripheral Nervous System and Muscle Department, Rare Neuromuscular Disease Reference Center, ERN-Euro-NMD, Nice, France
| | - Gabriele Siciliano
- Neurological Clinic, Department of Clinical and Experimental Medicine, Ospedale Santa Chiara, University of Pisa, Pisa, Italy
| | - Pauline Lahaut
- Université Côte d'Azur (UCA), Centre Hospitalier Universitaire de Nice, Peripheral Nervous System and Muscle Department, Rare Neuromuscular Disease Reference Center, ERN-Euro-NMD, Nice, France
| | | | | | - Anna Kole
- Public Health Policy Director Rare 2030 Lead EURORDIS
| | | | - Julij Selb
- University Clinic Golnik, Golnik, Slovenia -Medical consultant Parsek, Vienna, Austria
| | - Erika Schirinzi
- Neurological Clinic, Department of Clinical and Experimental Medicine, Ospedale Santa Chiara, University of Pisa, Pisa, Italy
| | - Tina Duong
- Department of Neurology Stanford University, Palo Alto, CA, USA
| | - Jean-Yves Hogrel
- Neuromuscular Physiology and Evaluation Lab, Neuromuscular Investigation Centre, Institute of Myology, Paris, France
| | - José Javier Serrano Olmedo
- Laboratory of Bioinstrumentation and Nanomedicine, Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.,Networking Center for Biomedical Research on Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain.,Escuela Técnica Superior de Ingenieros de Telecomunicación, Madrid, Spain
| | - John Vissing
- Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Laurent Servais
- MDUK Oxford Neuromuscular Center Department of Pediatrics University of Oxford, Oxford, UK.,Division of Child Neurology Reference Center for Neuromuscular Disease, Centre Hospitalier Régional de Références des Maladies Neuromusculaires, Department of Paediatrics, University, Oxford, UK
| | | | - Carole Vuillerot
- Neuron Interaction Team, NeuroMyogène Institute, Lyon University, Lyon, France
| | - Sylvie Bannwarth
- Department of Medical Genetics, National Center for Mitochondrial Diseases, Nice University Hospital, Nice, France.,Institute for Research on Cancer and Aging of Nice (IRCAN), Faculty of Medicine, Université Côte D'Azur (UCA), Nice, France
| | | | - Savine Vicart
- Channelopahies Reference Center, Service of Neuro-Myology, University Hospital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jordi Diaz-Manera
- John Walton Muscular Dystrophy Research Center, Newcastle University, Newcastle, UK.,Neurology department. Hospital de la Santa Creu I Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain
| | | | - Hanns Lochmüller
- Childrens Hospital of Eastern Ontario Research Institute; Division of Neurology, Department of Medicine, The Ottawa Hospital; and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada.,Department of Neuropediatrics and Muscle Disorders, Medical Center -University of Freiburg, Faculty of Medicine, Freiburg, Germany.,Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Sabrina Sacconi
- Université Côte d'Azur (UCA), Centre Hospitalier Universitaire de Nice, Peripheral Nervous System and Muscle Department, Rare Neuromuscular Disease Reference Center, ERN-Euro-NMD, Nice, France.,Institute for Research on Cancer and Aging of Nice (IRCAN), Faculty of Medicine, Université Côte D'Azur (UCA), Nice, France.,Fédération Hospitalo-Universitaire Oncoage, Centre Hospitalier Universitaire de Nice, Université Côte d'Azur (UCA), Nice, France
| |
Collapse
|
77
|
Welland NL, Hæstad H, Fossmo HL, Giltvedt K, Ørstavik K, Nordstrøm M. The Role of Nutrition and Physical Activity as Trigger Factors of Paralytic Attacks in Primary Periodic Paralysis. J Neuromuscul Dis 2021; 8:457-468. [PMID: 33646174 PMCID: PMC8385530 DOI: 10.3233/jnd-200604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background: Primary periodic paralysis (PPP) are rare inherited neuromuscular disorders including Hypokalemic periodic paralysis (HypoPP), Hyperkalemic periodic paralysis (HyperPP) and Andersen-Tawil syndrome (ATS) characterised by attacks of weakness or paralysis of skeletal muscles. Limited effective pharmacological treatments are available, and avoidance of lifestyle related triggers seems important. Objective: Our aim was to search and assess the scientific literature for information on trigger factors related to nutrition and physical activity in PPP. Methods: We searched Ovid Medline and Embase database for scientific papers published between January 1, 1990, to January 31, 2020. Results: We did not identify published observation or intervention studies evaluating effect of lifestyle changes on attacks. Current knowledge is based on case-reports, expert opinions, and retrospective case studies with inadequate methods for description of nutrition and physical activity. In HypoPP, high carbohydrate and salt intake, over-eating, alcohol, dehydration, hard physical activity, and rest after exercise are frequently reported triggers. Regarding HyperPP, fasting, intake of potassium, alcohol, cold foods or beverages, physical activity, and rest after exercise are frequently reported triggers. No nutrition related triggers are reported regarding ATS, exercise can however induce ventricular arrhythmias. Conclusions: Our results support that dietary intake and physical activity may play a role in causing paralytic attacks in PPP, although the current scientific evidence is weak. To provide good evidence-based patient care, several lifestyle aspects need to be further assessed and described.
Collapse
Affiliation(s)
| | - Helge Hæstad
- National Neuromuscular Centre (NMK), University Hospital of North Norway, Norway
| | - Hanne Ludt Fossmo
- Unit for Congenital and Hereditary Neuromuscular Disorders (EMAN), Department of Neurology, Oslo University Hospital, Oslo, Norway.,Vikersund Rehabilitation Centre, Vikersund, Norway
| | - Kaja Giltvedt
- Frambu Resource Centre for Rare Disorders (Frambu), Siggerud, Norway
| | - Kristin Ørstavik
- Unit for Congenital and Hereditary Neuromuscular Disorders (EMAN), Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Marianne Nordstrøm
- Frambu Resource Centre for Rare Disorders (Frambu), Siggerud, Norway.,Unit for Congenital and Hereditary Neuromuscular Disorders (EMAN), Department of Neurology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
78
|
Kim HR, Jeon JW, Lee EJ, Ham YR, Na KR, Lee KW, Park KH, Kim SY, Choi DE. Confirming Genetic Abnormalities of Hypokalemic Periodic Paralysis Using Next-Generation Sequencing: A Case Report and Literature Review. Electrolyte Blood Press 2021; 19:10-14. [PMID: 34290819 PMCID: PMC8267070 DOI: 10.5049/ebp.2021.19.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 11/05/2022] Open
Abstract
Hypokalemic periodic paralysis (hypoPP) is a disorder characterized by episodic, short-lived, and hypo-reflexive skeletal muscle weakness. HypoPP is a rare disease caused by genetic mutations related to expression of sodium or calcium ion channels. Most mutations are associated with autosomal dominant inheritance, but some are found in patients with no relevant family history. A 28-year-old man who visited the emergency room for paralytic attack was assessed in this study. He exhibited motor weakness in four limbs. There was no previous medical history or family history. The initial electrocardiogram showed a flat T wave and QT prolongation. His blood test was delayed, and sudden hypotension and bradycardia were observed. The blood test showed severe hypokalemia. After correcting hypokalemia, his muscle paralysis recovered without any neurological deficits. The patient's thyroid function and long exercise test results were normal. However, because of the history of high carbohydrate diet and exercise, hypoPP was suspected. Hence, next-generation sequencing (NGS) was performed, and a mutation of Arg669His was noted in the SCN4A gene. Although hypoPP is a rare disease, it can be suspected in patients with hypokalemic paralysis, and iden tification of this condition is important for preventing further attacks and improving patient outcomes. Diagnosing hypoPP through targeted NGS is a cost-effective and useful method.
Collapse
Affiliation(s)
- Hae Ri Kim
- Department of Internal Medicine, Division of Nephrology, Chungnam National University Sejong Hospital, Sejong, Republic of Korea
| | - Jae Wan Jeon
- Department of Internal Medicine, Division of Nephrology, Chungnam National University Sejong Hospital, Sejong, Republic of Korea
| | - Eu Jin Lee
- Department of Internal Medicine, Division of Nephrology, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Young Rok Ham
- Department of Internal Medicine, Division of Nephrology, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Ki Ryang Na
- Department of Internal Medicine, Division of Nephrology, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Kang Wook Lee
- Department of Internal Medicine, Division of Nephrology, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Kee Hong Park
- Department of Neurology, Seoul Medical Center, Seoul, Republic of Korea
| | - Seon Young Kim
- Department of Laboratory Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Dae Eun Choi
- Department of Internal Medicine, Division of Nephrology, Chungnam National University Hospital, Daejeon, Republic of Korea
| |
Collapse
|
79
|
Sansone VA, Johnson NE, Hanna MG, Ciafaloni E, Statland JM, Shieh PB, Cohen F, Griggs RC. Long-term efficacy and safety of dichlorphenamide for treatment of primary periodic paralysis. Muscle Nerve 2021; 64:342-346. [PMID: 34129236 PMCID: PMC9290603 DOI: 10.1002/mus.27354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 06/04/2021] [Accepted: 06/13/2021] [Indexed: 11/09/2022]
Abstract
INTRODUCTION/AIM Long-term efficacy and safety of dichlorphenamide (DCP) were characterized in patients with primary periodic paralysis (PPP). METHODS Patients with PPP in a double-blind, placebo-controlled study were randomly assigned to receive DCP 50 mg twice daily or placebo for 9 weeks, followed by a 52-week open-label DCP treatment phase (DCP/DCP and placebo/DCP populations). Efficacy (attack rate, severity-weighted attack rate) and safety were assessed in patients completing the study (61 weeks). In this post hoc analysis, efficacy and safety data were pooled from hyperkalemic and hypokalemic substudies. RESULTS Sixty-three adults (age, 19-76 years) completed the double-blind phase; 47 (74.6%) of these patients completed 61 weeks. There were median decreases in weekly attack and severity-weighted attack rates from baseline to week 61 (DCP/DCP [n = 25], -1.00 [P < .0001]; placebo/DCP [n = 20], -0.63 [P = .01] and DCP/DCP, -2.25 [P < .0001]; placebo/DCP, -1.69 [P = .01]). Relatively smaller median decreases in weekly attack and severity-weighted attack rates occurred from weeks 9 to 61 among patients receiving DCP continuously (n = 26; -0.14 [P = .1] and -0.24 [P = .09]) than among those switching from placebo to DCP after 9 weeks (n = 16; -1.04 [P = .049] and -2.72 [P = .08]). Common adverse events (AEs) were paresthesia and cognition-related events, which typically first occurred within 1 month of blinded treatment initiation and in rare cases led to treatment discontinuation. Dose reductions were frequently associated with common AE resolution. DISCUSSION One-year open-label DCP treatment after a 9-week randomized, controlled study confirmed long-term DCP remains safe and effective for chronic use. Tolerability issues (paresthesia, cognition-related AEs) were manageable in most patients.
Collapse
Affiliation(s)
- Valeria A Sansone
- Neuromuscular Omnicentre, Neurorehabilitation Unit, University of Milan, Niguarda Hospital, Milan, Italy
| | - Nicholas E Johnson
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Michael G Hanna
- MRC Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Institute of Neurology, London, UK
| | - Emma Ciafaloni
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| | - Jeffrey M Statland
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Perry B Shieh
- Department of Neurology, Ronald Reagan UCLA Medical Center, Los Angeles, California, USA
| | | | - Robert C Griggs
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
80
|
Maggi L, Bonanno S, Altamura C, Desaphy JF. Ion Channel Gene Mutations Causing Skeletal Muscle Disorders: Pathomechanisms and Opportunities for Therapy. Cells 2021; 10:cells10061521. [PMID: 34208776 PMCID: PMC8234207 DOI: 10.3390/cells10061521] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/03/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle ion channelopathies (SMICs) are a large heterogeneous group of rare genetic disorders caused by mutations in genes encoding ion channel subunits in the skeletal muscle mainly characterized by myotonia or periodic paralysis, potentially resulting in long-term disabilities. However, with the development of new molecular technologies, new genes and new phenotypes, including progressive myopathies, have been recently discovered, markedly increasing the complexity in the field. In this regard, new advances in SMICs show a less conventional role of ion channels in muscle cell division, proliferation, differentiation, and survival. Hence, SMICs represent an expanding and exciting field. Here, we review current knowledge of SMICs, with a description of their clinical phenotypes, cellular and molecular pathomechanisms, and available treatments.
Collapse
Affiliation(s)
- Lorenzo Maggi
- Neuroimmunology and Neuromuscular Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
- Correspondence:
| | - Silvia Bonanno
- Neuroimmunology and Neuromuscular Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (C.A.); (J.-F.D.)
| | - Jean-François Desaphy
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (C.A.); (J.-F.D.)
| |
Collapse
|
81
|
Basse AL, Agerholm M, Farup J, Dalbram E, Nielsen J, Ørtenblad N, Altıntaş A, Ehrlich AM, Krag T, Bruzzone S, Dall M, de Guia RM, Jensen JB, Møller AB, Karlsen A, Kjær M, Barrès R, Vissing J, Larsen S, Jessen N, Treebak JT. Nampt controls skeletal muscle development by maintaining Ca 2+ homeostasis and mitochondrial integrity. Mol Metab 2021; 53:101271. [PMID: 34119711 PMCID: PMC8259345 DOI: 10.1016/j.molmet.2021.101271] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Objective NAD+ is a co-factor and substrate for enzymes maintaining energy homeostasis. Nicotinamide phosphoribosyltransferase (NAMPT) controls NAD+ synthesis, and in skeletal muscle, NAD+ is essential for muscle integrity. However, the underlying molecular mechanisms by which NAD+ synthesis affects muscle health remain poorly understood. Thus, the objective of the current study was to delineate the role of NAMPT-mediated NAD+ biosynthesis in skeletal muscle development and function. Methods To determine the role of Nampt in muscle development and function, we generated skeletal muscle-specific Nampt KO (SMNKO) mice. We performed a comprehensive phenotypic characterization of the SMNKO mice, including metabolic measurements, histological examinations, and RNA sequencing analyses of skeletal muscle from SMNKO mice and WT littermates. Results SMNKO mice were smaller, with phenotypic changes in skeletal muscle, including reduced fiber area and increased number of centralized nuclei. The majority of SMNKO mice died prematurely. Transcriptomic analysis identified that the gene encoding the mitochondrial permeability transition pore (mPTP) regulator Cyclophilin D (Ppif) was upregulated in skeletal muscle of SMNKO mice from 2 weeks of age, with associated increased sensitivity of mitochondria to the Ca2+-stimulated mPTP opening. Treatment of SMNKO mice with the Cyclophilin D inhibitor, Cyclosporine A, increased membrane integrity, decreased the number of centralized nuclei, and increased survival. Conclusions Our study demonstrates that NAMPT is crucial for maintaining cellular Ca2+ homeostasis and skeletal muscle development, which is vital for juvenile survival. NAD+ salvage capacity is important for skeletal muscle development and survival. Skeletal muscle-specific Nampt knockout mice exhibit a dystrophy-like phenotype. Nampt deletion alters Ca2+ homeostasis and impairs mitochondrial function. Low NAD+ levels signals mitochondrial permeability transition pore opening. Cyclosporin A treatment improves sarcolemma integrity and increases survival rate.
Collapse
Affiliation(s)
- Astrid L Basse
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marianne Agerholm
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jean Farup
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Ali Altıntaş
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amy M Ehrlich
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Krag
- Copenhagen Neuromuscular Center, Rigshospitalet, Copenhagen, Denmark
| | - Santina Bruzzone
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Morten Dall
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Roldan M de Guia
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas B Jensen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Andreas B Møller
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Anders Karlsen
- Institute of Sports Medicine, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kjær
- Institute of Sports Medicine, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - John Vissing
- Copenhagen Neuromuscular Center, Rigshospitalet, Copenhagen, Denmark
| | - Steen Larsen
- Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
82
|
Marked reduction in paralytic attacks in a patient with Andersen-Tawil syndrome switched from acetazolamide to dichlorphenamide. Neuromuscul Disord 2021; 31:656-659. [PMID: 34078557 DOI: 10.1016/j.nmd.2021.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/19/2021] [Accepted: 04/11/2021] [Indexed: 11/20/2022]
Abstract
Andersen-Tawil syndrome is a rare, autosomal dominant, multisystem disorder for which the majority of cases are caused by pathogenic variants in the KCNJ2 gene. The syndrome is characterized by the clinical triad of episodic paralysis, cardiac conduction abnormalities, and dysmorphic facial and skeletal features. Treatment of Andersen-Tawil syndrome is primarily focused on management of cardiac arrhythmias and preventive management of paralytic attacks. Dichlorphenamide is approved by the US Food and Drug Administration for use in primary periodic paralysis based on several randomized, controlled trials but has not been studied in patients with Andersen-Tawil syndrome. Here, we report a case of the syndrome caused by a de novo pathogenic variant in the KCNJ2 gene (c.95_98del). The paralytic attack rate for this patient was better controlled with dichlorphenamide compared with acetazolamide, further supporting the use of dichlorphenamide in patients with Andersen-Tawil syndrome.
Collapse
|
83
|
Qian K, Cao S, Liu X. Appeared inexplicable disorders of consciousness after general anesthesia tracheal tube drawing in endoscopic tympanoplasty. IBRAIN 2021; 7:113-118. [PMID: 37786906 PMCID: PMC10528784 DOI: 10.1002/j.2769-2795.2021.tb00073.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 10/04/2023]
Abstract
Background Disorders of consciousness (DOC) are neurocognitive disorders related to sharp fluctuations of attention and consciousness, while DOC is characterized by significant interindividual differences, rapid development, and a higher lethal rate. Case information A 53-year-old female patient underwent general anesthesia with tracheal intubation in otoendoscopic tympanoplasty. The patient suddenly appeared moderate DOC after tracheal tube removal with K+ 3.6 (3.5-5.3 mmol/L). Based on the ancillary testing and routine laboratory workup, the possible causes of DOC, such as general anesthesia drugs and cardio cerebral events, were temporarily excluded. DOC was reversed by intravenous administration of KCl 1 g, with K+ 3.78 mmol/L. On one day after surgery, the patient occurred suddenly DOC again after intravenous guttae of 5% glucose 1000 ml, K+ 3.87 mmol/L, possibly because of her recurrent hypokalemic paralysis (HP) of past medical history. The patient's consciousness gradually improved after effective KCl supplementation therapy. Conclusion DOC caused by periodic paralysis (PP) has not been reported, we speculate that hypoactive DOC is closely correlated with normokalemic periodic paralysis (NormoPP) in this case.
Collapse
Affiliation(s)
- Kun Qian
- Department of AnesthesiologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Song Cao
- Department of PainThe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Xing‐Kui Liu
- College of Anesthesiology, Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
84
|
Matthews E, Holmes S, Fialho D. Skeletal muscle channelopathies: a guide to diagnosis and management. Pract Neurol 2021; 21:196-204. [PMID: 33563766 DOI: 10.1136/practneurol-2020-002576] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2020] [Indexed: 12/17/2022]
Abstract
Skeletal muscle channelopathies are a group of rare episodic genetic disorders comprising the periodic paralyses and the non-dystrophic myotonias. They may cause significant morbidity, limit vocational opportunities, be socially embarrassing, and sometimes are associated with sudden cardiac death. The diagnosis is often hampered by symptoms that patients may find difficult to describe, a normal examination in the absence of symptoms, and the need to interpret numerous tests that may be normal or abnormal. However, the symptoms respond very well to holistic management and pharmacological treatment, with great benefit to quality of life. Here, we review when to suspect a muscle channelopathy, how to investigate a possible case and the options for therapy once a diagnosis is made.
Collapse
Affiliation(s)
- Emma Matthews
- Atkinson-Morley Neuromuscular Centre, St George's University Hospitals NHS Foundation Trust, London, UK
- Department of Neuromuscular Diseases, UCL, Institute of Neurology, London, UK
| | - Sarah Holmes
- Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, UK
| | - Doreen Fialho
- Department of Neuromuscular Diseases, UCL, Institute of Neurology, London, UK
- Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Clinical Neurophysiology, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
85
|
Danti FR, Invernizzi F, Moroni I, Garavaglia B, Nardocci N, Zorzi G. Pediatric Paroxysmal Exercise-Induced Neurological Symptoms: Clinical Spectrum and Diagnostic Algorithm. Front Neurol 2021; 12:658178. [PMID: 34140924 PMCID: PMC8203909 DOI: 10.3389/fneur.2021.658178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
Paroxysmal exercise-induced neurological symptoms (PENS) encompass a wide spectrum of clinical phenomena commonly presenting during childhood and characteristically elicited by physical exercise. Interestingly, few shared pathogenetic mechanisms have been identified beyond the well-known entity of paroxysmal exercise-induced dyskinesia, PENS could be part of more complex phenotypes including neuromuscular, neurodegenerative, and neurometabolic disease, epilepsies, and psychogenetic disorders. The wide and partially overlapping phenotypes and the genetic heterogeneity make the differential diagnosis frequently difficult and delayed; however, since some of these disorders may be treatable, a prompt diagnosis is mandatory. Therefore, an accurate characterization of these symptoms is pivotal for orienting more targeted biochemical, radiological, neurophysiological, and genetic investigations and finally treatment. In this article, we review the clinical, genetic, pathophysiologic, and therapeutic landscape of paroxysmal exercise induced neurological symptoms, focusing on phenomenology and differential diagnosis.
Collapse
Affiliation(s)
- Federica Rachele Danti
- Unit of Child Neurology, Department of Pediatric Neuroscience, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Federica Invernizzi
- Unit of Medical Genetics and Neurogenetics, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico C. Besta, Milan, Italy
| | - Isabella Moroni
- Unit of Child Neurology, Department of Pediatric Neuroscience, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Barbara Garavaglia
- Unit of Medical Genetics and Neurogenetics, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico C. Besta, Milan, Italy
| | - Nardo Nardocci
- Unit of Child Neurology, Department of Pediatric Neuroscience, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giovanna Zorzi
- Unit of Child Neurology, Department of Pediatric Neuroscience, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
86
|
Abdelmasih R, Abdelmaseih R, Hasan M, Nasser H. A Case of Hypokalemic Periodic Paralysis in a Young Athlete. Cureus 2021; 13:e15236. [PMID: 34188982 PMCID: PMC8232928 DOI: 10.7759/cureus.15236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hypokalemic periodic paralysis (HPP) is one of the group muscle disorders that can cause sudden onset paresis or paralysis. It is a quite rare, yet, potentially life-threatening condition that, if appropriately and promptly diagnosed and treated, can be completely reversed. Other forms of periodic paralysis include thyrotoxic periodic paralysis, hyperkalemic periodic paralysis, and Anderson syndrome. We are presenting a case of a young male who presented to the emergency department (ED) with sudden paralysis to shed light on such a diagnosis and on other differential diagnoses.
Collapse
Affiliation(s)
- Randa Abdelmasih
- Internal Medicine, University of Central Florida College of Medicine, Orlando, USA
| | - Ramy Abdelmaseih
- Internal Medicine, University of Central Florida College of Medicine, Orlando, USA
| | - Mustajab Hasan
- Internal Medicine, University of Central Florida College of Medicine, Orlando, USA
| | - Hesham Nasser
- Internal Medicine, University of Central Florida College of Medicine, Orlando, USA
| |
Collapse
|
87
|
Altamura C, Fonzino A, Tarantino N, Conte E, Liantonio A, Imbrici P, Carratù MR, Pierno S, Desaphy JF. Increased sarcolemma chloride conductance as one of the mechanisms of action of carbonic anhydrase inhibitors in muscle excitability disorders. Exp Neurol 2021; 342:113758. [PMID: 33991525 DOI: 10.1016/j.expneurol.2021.113758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/22/2021] [Accepted: 05/10/2021] [Indexed: 01/19/2023]
Abstract
To get insight into the mechanism of action of carbonic anhydrase inhibitors (CAI) in neuromuscular disorders, we investigated effects of dichlorphenamide (DCP) and acetazolamide (ACTZ) on ClC-1 chloride channels and skeletal muscle excitability. We performed patch-clamp experiments to test drugs on chloride currents in HEK293T cells transfected with hClC-1. Using the two-intracellular microelectrode technique in current-clamp mode, we measured the effects of drugs on the resting chloride conductance and action potential properties of sarcolemma in rat and mouse skeletal muscle fibers. Using BCECF dye fluorometry, we measured the effects of ACTZ on intracellular pH in single rat muscle fibers. Similarly to ACTZ, DCP (100 μM) increased hClC-1 chloride currents in HEK cells, because of the negative shift of the open probability voltage dependence and the slowing of deactivation kinetics. Bendroflumethiazide (BFT, 100 μM), structurally related to DCP but lacking activity on carbonic anhydrase, had little effects on chloride currents. In isolated rat muscle fibers, 50-100 μM of ACTZ or DCP, but not BFT, induced a ~ 20% increase of the resting chloride conductance. ACTZ reduced action potential firing in mouse muscle fibers. ACTZ (100 μM) reduced intracellular pH to 6.8 in rat muscle fibers. These results suggest that carbonic anhydrase inhibitors can reduce muscle excitability by increasing ClC-1 channel activity, probably through intracellular acidification. Such a mechanism may contribute in part to the clinical effects of these drugs in myotonia and other muscle excitability disorders.
Collapse
Affiliation(s)
- Concetta Altamura
- Section of Pharmacology, Dept. of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Adriano Fonzino
- Section of Pharmacology, Dept. of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Nancy Tarantino
- Section of Pharmacology, Dept. of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Elena Conte
- Section of Pharmacology, Dept. of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Antonella Liantonio
- Section of Pharmacology, Dept. of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Paola Imbrici
- Section of Pharmacology, Dept. of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Maria Rosaria Carratù
- Section of Pharmacology, Dept. of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Sabata Pierno
- Section of Pharmacology, Dept. of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Jean-François Desaphy
- Section of Pharmacology, Dept. of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
88
|
Myers JH, Denman K, DuPont C, Hawash AA, Novak KR, Koesters A, Grabner M, Dayal A, Voss AA, Rich MM. The mechanism underlying transient weakness in myotonia congenita. eLife 2021; 10:e65691. [PMID: 33904400 PMCID: PMC8079152 DOI: 10.7554/elife.65691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/24/2021] [Indexed: 12/23/2022] Open
Abstract
In addition to the hallmark muscle stiffness, patients with recessive myotonia congenita (Becker disease) experience debilitating bouts of transient weakness that remain poorly understood despite years of study. We performed intracellular recordings from muscle of both genetic and pharmacologic mouse models of Becker disease to identify the mechanism underlying transient weakness. Our recordings reveal transient depolarizations (plateau potentials) of the membrane potential to -25 to -35 mV in the genetic and pharmacologic models of Becker disease. Both Na+ and Ca2+ currents contribute to plateau potentials. Na+ persistent inward current (NaPIC) through NaV1.4 channels is the key trigger of plateau potentials and current through CaV1.1 Ca2+ channels contributes to the duration of the plateau. Inhibiting NaPIC with ranolazine prevents the development of plateau potentials and eliminates transient weakness in vivo. These data suggest that targeting NaPIC may be an effective treatment to prevent transient weakness in myotonia congenita.
Collapse
Affiliation(s)
- Jessica H Myers
- Department of Neuroscience, Cell Biology and Physiology, Wright State UniversityDaytonUnited States
| | - Kirsten Denman
- Department of Neuroscience, Cell Biology and Physiology, Wright State UniversityDaytonUnited States
| | - Chris DuPont
- Department of Neuroscience, Cell Biology and Physiology, Wright State UniversityDaytonUnited States
| | - Ahmed A Hawash
- Department of Dermatology & Cutaneous Surgery, University of MiamiMiamiUnited States
| | | | - Andrew Koesters
- Naval Medical Research Unit, Wright Patterson Air Force BaseDaytonUnited States
| | - Manfred Grabner
- Department of Pharmacology, Medical University of InnsbruckInnsbruckAustria
| | - Anamika Dayal
- Department of Pharmacology, Medical University of InnsbruckInnsbruckAustria
| | - Andrew A Voss
- Department of Biology, Wright State UniversityDaytonUnited States
| | - Mark M Rich
- Department of Neuroscience, Cell Biology and Physiology, Wright State UniversityDaytonUnited States
| |
Collapse
|
89
|
Sun J, Luo S, Suetterlin KJ, Song J, Huang J, Zhu W, Xi J, Zhou L, Lu J, Lu J, Zhao C, Hanna MG, Männikkö R, Matthews E, Qiao K. Clinical and genetic spectrum of a Chinese cohort with SCN4A gene mutations. Neuromuscul Disord 2021; 31:829-838. [PMID: 33965302 DOI: 10.1016/j.nmd.2021.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/02/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
Skeletal muscle sodium channelopathies due to SCN4A gene mutations have a broad clinical spectrum. However, each phenotype has been reported in few cases of Chinese origin. We present detailed phenotype and genotype data from a cohort of 40 cases with SCN4A gene mutations seen in neuromuscular diagnostic service in Huashan hospital, Fudan University. Cases were referred from 6 independent provinces from 2010 to 2018. A questionnaire covering demographics, precipitating factors, episodes of paralysis and myotonia was designed to collect the clinical information. Electrodiagnostic studies and muscle MRI were retrospectively analyzed. The clinical spectrum of patients included: 6 Hyperkalemic periodic paralysis (15%), 18 Hypokalemic periodic paralysis (45%), 7 sodium channel myotonia (17.5%), 4 paramyotonia congenita (10%) and 5 heterozygous asymptomatic mutation carriers (12.5%). Review of clinical information highlights a significant delay to diagnosis (median 15 years), reports of pain and myalgia in the majority of patients, male predominance, circadian rhythm and common precipitating factors. Electrodiagnostic studies revealed subclinical myotonic discharges and a positive long exercise test in asymptomatic carriers. Muscle MRI identified edema and fatty infiltration in gastrocnemius and soleus. A total of 13 reported and 2 novel SCN4A mutations were identified with most variants distributed in the transmembrane helix S4 to S6, with a hotspot mutation p.Arg675Gln accounting for 32.5% (13/40) of the cohort. Our study revealed a higher proportion of periodic paralysis in SCN4A-mutated patients compared with cohorts from England and the Netherlands. It also highlights the importance of electrodiagnostic studies in diagnosis and segregation studies.
Collapse
Affiliation(s)
- J Sun
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - S Luo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China; Department of Neurology, North Huashan Hospital, Fudan University, Shanghai, 200003, China
| | - K J Suetterlin
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, UCL, London, WC1N 3BG, United Kingdom
| | - J Song
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - J Huang
- Department of Clinical Electrophysiology, Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - W Zhu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - J Xi
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - L Zhou
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - J Lu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - J Lu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - C Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - M G Hanna
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, UCL, London, WC1N 3BG, United Kingdom
| | - R Männikkö
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, UCL, London, WC1N 3BG, United Kingdom
| | - E Matthews
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, UCL, London, WC1N 3BG, United Kingdom; Atkinson Morley Neuromuscular Centre, Regional Neurosciences Centre, Department of Neurology, St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - K Qiao
- Department of Clinical Electrophysiology, Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
90
|
Henshaw DS, Harstroem C, Forest D. Hypokalemic Periodic Paralysis Masquerading as a Compressive Neuraxial Lesion Following Lumbar Epidural Placement in a Parturient: A Case Report. A A Pract 2021; 15:e01431. [PMID: 33783398 DOI: 10.1213/xaa.0000000000001431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We report the management of a parturient with undiagnosed hypokalemic periodic paralysis (HOKPP) who underwent epidural analgesia for labor, complicated by an unintentional dural puncture, and the eventual use of epidural anesthesia for cesarean delivery. Following discharge, she represented with lower extremity paresis. After being evaluated for a compressive neuraxial lesion, she made a full recovery following potassium repletion. The obstetric anesthetic implications for patients with HOKPP and how this disorder impacts the evaluation of acute motor weakness in the immediate postpartum period in a patient who recently received a neuraxial procedure are discussed.
Collapse
Affiliation(s)
- Daryl S Henshaw
- From the Department of Anesthesiology, Wake Forest University School of Medicine, Winston Salem, North Carolina
| | - Caroline Harstroem
- From the Department of Anesthesiology, Wake Forest University School of Medicine, Winston Salem, North Carolina
| | - Daniel Forest
- Novant Health Forsyth Medical Center, Winston Salem, North Carolina
| |
Collapse
|
91
|
Inherited Neuromuscular Disorders: Which Role for Serum Biomarkers? Brain Sci 2021; 11:brainsci11030398. [PMID: 33801069 PMCID: PMC8004068 DOI: 10.3390/brainsci11030398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited neuromuscular disorders (INMD) are a heterogeneous group of rare diseases that involve muscles, motor neurons, peripheral nerves or the neuromuscular junction. Several different lab abnormalities have been linked to INMD: sometimes they are typical of the disorder, but they usually appear to be less specific. Sometimes serum biomarkers can point out abnormalities in presymtomatic or otherwise asymptomatic patients (e.g., carriers). More often a biomarker of INMD is evaluated by multiple clinicians other than expert in NMD before the diagnosis, because of the multisystemic involvement in INMD. The authors performed a literature search on biomarkers in inherited neuromuscular disorders to provide a practical approach to the diagnosis and the correct management of INMD. A considerable number of biomarkers have been reported that support the diagnosis of INMD, but the role of an expert clinician is crucial. Hence, the complete knowledge of such abnormalities can accelerate the diagnostic workup supporting the referral to specialists in neuromuscular disorders.
Collapse
|
92
|
Oliveira R, Ramalho Rocha F, Teodoro T, Oliveira Santos M. Acute non-traumatic tetraparesis - Differential diagnosis. J Clin Neurosci 2021; 87:116-124. [PMID: 33863518 DOI: 10.1016/j.jocn.2021.02.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Potentially life-threatening disorders may present in the emergency department with acute tetraparesis, and their recognition is crucial for an appropriate management and timely treatment. Our review aims to systematize the differential diagnosis of acute non-traumatic tetraparesis. RESULTS Causes of tetraparesis can be classified based on the site of defect: upper motor neuron (UMN), peripheral nerve, neuromuscular junction or muscle. History of present illness should include the distribution of weakness (symmetric/asymmetric or distal/proximal/diffuse) and associated clinical features (pain, sensory findings, dysautonomia, and cranial nerve abnormalities such as diplopia and dysphagia). Neurological examination, particularly tendon reflexes, helps further in the localization of nerve lesions and distinction between UMN and lower motor neuron. Ancillary studies include blood and cerebral spinal fluid analysis, neuroaxis imaging, electromyography, muscle magnetic resonance and muscle biopsy. CONCLUSIONS Acute tetraparesis is still a debilitating and potentially serious neurological condition. Despite all the supplementary ancillary tests, the neurological examination is the key to achieve a correct diagnosis. The identification of life-threatening neurologic disorders is pivotal, since failing to identify patients at risk of complications, such as acute respiratory failure, may have catastrophic results.
Collapse
Affiliation(s)
- Renato Oliveira
- Department of Neurology, Hospital da Luz Lisboa, Lisbon, Portugal; Department of Neurology, Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal; CHRC Comprehensive Health Research Centre, Universidade Nova de Lisboa, Lisbon, Portugal.
| | | | - Tomás Teodoro
- CHRC Comprehensive Health Research Centre, Universidade Nova de Lisboa, Lisbon, Portugal; Department of Psychiatry, Centro Hospitalar Psiquiátrico de Lisboa, Lisbon, Portugal
| | - Miguel Oliveira Santos
- Department of Neurology, Hospital da Luz Lisboa, Lisbon, Portugal; Department of Neurology, Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal; Institute of Physiology, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
93
|
Naseer M, Dafaalla M, Ahmed A, Mills MT. Paroxysmal narrow complex tachycardia secondary to hypokalaemic periodic paralysis. Br J Hosp Med (Lond) 2021; 82:1-3. [PMID: 33792378 DOI: 10.12968/hmed.2020.0464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Muhammad Naseer
- Department of Diabetes and Endocrinology, Bassetlaw Hospital, Doncaster and Bassetlaw, Teaching Hospitals NHS Foundation Trust, Worksop, UK
| | - Mohamed Dafaalla
- Department of Diabetes and Endocrinology, Bassetlaw Hospital, Doncaster and Bassetlaw, Teaching Hospitals NHS Foundation Trust, Worksop, UK
| | - Ali Ahmed
- Department of Diabetes and Endocrinology, Bassetlaw Hospital, Doncaster and Bassetlaw, Teaching Hospitals NHS Foundation Trust, Worksop, UK
| | - Mark T Mills
- Department of Diabetes and Endocrinology, Bassetlaw Hospital, Doncaster and Bassetlaw, Teaching Hospitals NHS Foundation Trust, Worksop, UK.,Department of Cardiology, The Northern General Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
94
|
Siow WS, Chiew WLA. Anaesthesia challenges of a parturient with paramyotonia congenita and terminal filum lipoma presenting for labour and caesarean section under epidural anaesthesia - a case report. BMC Anesthesiol 2021; 21:57. [PMID: 33602114 PMCID: PMC7890603 DOI: 10.1186/s12871-021-01262-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 02/01/2021] [Indexed: 11/22/2022] Open
Abstract
Background Paramyotonia congenita is a rare autosomal dominant myopathy which presents with periodic weakness due to cold and exercise. It is caused by mutations of the SCN4 gene which encodes the sodium channel in skeletal muscles. Case presentation We report a full term obstetric patient with both paramyotonia congenita and terminal filum lipoma who presents for induction of labour followed by an emergency caesarean section performed under epidural anesthesia. Her recovery is subsequently complicated by a 3-day history of postpartum paraparesis attributed to hypokalemic periodic paralysis. Conclusion We describe the perioperative anesthesia considerations and challenges in this case with a review of the current literature. This case report highlights the importance of early proactive and collaborative multidisciplinary approach, maintaining normal temperature and electrolytes with a heightened vigilance for muscle-related perioperative complications.
Collapse
Affiliation(s)
- Wei Shyan Siow
- Changi General Hospital, Singhealth. 2 Simei Street 3, 529889, Singapore, Singapore.
| | - Wan-Ling Alyssa Chiew
- National Healthcare Group (NHG) Anaesthesiology Residency, 11 Jalan Tan Tock Seng, 308433, Singapore, Singapore
| |
Collapse
|
95
|
Fonseca AC, Almeida AG, Santos MO, Ferro JM. Neurological complications of cardiomyopathies. HANDBOOK OF CLINICAL NEUROLOGY 2021; 177:91-109. [PMID: 33632460 DOI: 10.1016/b978-0-12-819814-8.00001-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
There is a multifaceted relationship between the cardiomyopathies and a wide spectrum of neurological disorders. Severe acute neurological events, such as a status epilepticus and aneurysmal subarachnoid hemorrhage, may result in an acute cardiomyopathy the likes of Takotsubo cardiomyopathy. Conversely, the cardiomyopathies may result in a wide array of neurological disorders. Diagnosis of a cardiomyopathy may have already been established at the time of the index neurological event, or the neurological event may have prompted subsequent cardiac investigations, which ultimately lead to the diagnosis of a cardiomyopathy. The cardiomyopathies belong to one of the many phenotypes of complex genetic diseases or syndromes, which may also involve the central or peripheral nervous systems. A number of exogenous agents or risk factors such as diphtheria, alcohol, and several viruses may result in secondary cardiomyopathies accompanied by several neurological manifestations. A variety of neuromuscular disorders, such as myotonic dystrophy or amyloidosis, may demonstrate cardiac involvement during their clinical course. Furthermore, a number of genetic cardiomyopathies phenotypically incorporate during their clinical evolution, a gamut of neurological manifestations, usually neuromuscular in nature. Likewise, neurological complications may be the result of diagnostic procedures or medications for the cardiomyopathies and vice versa. Neurological manifestations of the cardiomyopathies are broad and include, among others, transient ischemic attacks, ischemic strokes, intracranial hemorrhages, syncope, muscle weakness and atrophy, myotonia, cramps, ataxia, seizures, intellectual developmental disorder, cognitive impairment, dementia, oculomotor palsies, deafness, retinal involvement, and headaches.
Collapse
Affiliation(s)
- Ana Catarina Fonseca
- Neurology Service, Hospital Santa Maria, Centro Hospitalar Lisboa Norte and Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Ana G Almeida
- Cardiology Service, Hospital Santa Maria, Centro Hospitalar Lisboa Norte and Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Miguel Oliveira Santos
- Neurology Service, Hospital Santa Maria, Centro Hospitalar Lisboa Norte and Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - José M Ferro
- Neurology Service, Hospital Santa Maria, Centro Hospitalar Lisboa Norte and Faculty of Medicine, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
96
|
Desaphy JF, Altamura C, Vicart S, Fontaine B. Targeted Therapies for Skeletal Muscle Ion Channelopathies: Systematic Review and Steps Towards Precision Medicine. J Neuromuscul Dis 2021; 8:357-381. [PMID: 33325393 PMCID: PMC8203248 DOI: 10.3233/jnd-200582] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Skeletal muscle ion channelopathies include non-dystrophic myotonias (NDM), periodic paralyses (PP), congenital myasthenic syndrome, and recently identified congenital myopathies. The treatment of these diseases is mainly symptomatic, aimed at reducing muscle excitability in NDM or modifying triggers of attacks in PP. OBJECTIVE This systematic review collected the evidences regarding effects of pharmacological treatment on muscle ion channelopathies, focusing on the possible link between treatments and genetic background. METHODS We searched databases for randomized clinical trials (RCT) and other human studies reporting pharmacological treatments. Preclinical studies were considered to gain further information regarding mutation-dependent drug effects. All steps were performed by two independent investigators, while two others critically reviewed the entire process. RESULTS For NMD, RCT showed therapeutic benefits of mexiletine and lamotrigine, while other human studies suggest some efficacy of various sodium channel blockers and of the carbonic anhydrase inhibitor (CAI) acetazolamide. Preclinical studies suggest that mutations may alter sensitivity of the channel to sodium channel blockers in vitro, which has been translated to humans in some cases. For hyperkalemic and hypokalemic PP, RCT showed efficacy of the CAI dichlorphenamide in preventing paralysis. However, hypokalemic PP patients carrying sodium channel mutations may have fewer benefits from CAI compared to those carrying calcium channel mutations. Few data are available for treatment of congenital myopathies. CONCLUSIONS These studies provided limited information about the response to treatments of individual mutations or groups of mutations. A major effort is needed to perform human studies for designing a mutation-driven precision medicine in muscle ion channelopathies.
Collapse
Affiliation(s)
- Jean-François Desaphy
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Savine Vicart
- Sorbonne Université, INSERM, Assistance Publique Hôpitaux de Paris, Centre de Recherche en Myologie-UMR 974, Reference center in neuro-muscular channelopathies, Institute of Myology, Hôpital Universitaire Pitié-Salpêtrière, Paris, France
| | - Bertrand Fontaine
- Sorbonne Université, INSERM, Assistance Publique Hôpitaux de Paris, Centre de Recherche en Myologie-UMR 974, Reference center in neuro-muscular channelopathies, Institute of Myology, Hôpital Universitaire Pitié-Salpêtrière, Paris, France
| |
Collapse
|
97
|
Senel G, Karadeniz D. Coexistence of hypokalemic periodic paralysis with central hypersomnolence: An attack of paralysis in polysomnographic recording. NEUROL SCI NEUROPHYS 2021. [DOI: 10.4103/nsn.nsn_145_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
98
|
Yim J, Kim KB, Kim M, Lee GD, Kim M. Andersen-Tawil Syndrome With Novel Mutation in KCNJ2: Case Report. Front Pediatr 2021; 9:790075. [PMID: 35174115 PMCID: PMC8842678 DOI: 10.3389/fped.2021.790075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Andersen-Tawil syndrome (ATS) is a rare autosomal dominant disorder characterized by a classic symptom triad: periodic paralysis, ventricular arrhythmias associated with prolonged QT interval, and dysmorphic skeletal and facial features. Pathogenic variants of the inwardly rectifying potassium channel subfamily J member 2 (KCNJ2) gene have been linked to the ATS. Herein, we report a novel KCNJ2 causative variant in a proband and her father showing different ATS-associated symptoms. A 15-year-old girl was referred because of episodic weakness and periodic paralysis in both legs for 2-3 months. The symptoms occurred either when she was tired or after strenuous exercise. These attacks made walking or climbing stairs difficult and lasted from one to several days. She had a short stature (142 cm, <3rd percentile) and weighed 40 kg. The proband also showed orbital hypertelorism, dental crowding, mandibular hypoplasia, fifth-digit clinodactyly, and small hands. Scoliosis in the thoracolumbar region was detected by chest X-ray. Since she was 7 years old, she had been treated for arrhythmia-associated long QT interval and underwent periodic echocardiography. Brain MRI revealed cerebrovascular abnormalities indicating absence or hypoplasia of bilateral internal carotid arteries, and compensation of other collateral vessels was observed. There were no specific findings related to intellectual development. The proband's father also had a history of periodic paralysis similar to the proband. He did not show any cardiac symptoms. Interestingly, he was diagnosed with hyperthyroidism during an evaluation for paralytic symptoms. Clinical exome sequencing revealed a novel heterozygous missense variant: Chr17(GRCh37):g.68171593A>T, NM_000891.2:c.413A>T, p.(Glu138Val) in KCNJ2 in the proband and the proband's father.
Collapse
Affiliation(s)
- Jisook Yim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Kyoung Bo Kim
- Department of Laboratory Medicine, Keimyung University School of Medicine, Daegu, South Korea
| | - Minsun Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Gun Dong Lee
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
99
|
Dolci C, Sansone VA, Gibelli D, Cappella A, Sforza C. Distinctive facial features in Andersen-Tawil syndrome: A three-dimensional stereophotogrammetric analysis. Am J Med Genet A 2020; 185:781-789. [PMID: 33369085 DOI: 10.1002/ajmg.a.62040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/19/2020] [Accepted: 12/14/2020] [Indexed: 01/28/2023]
Abstract
Andersen-Tawil syndrome (ATS) is a rare potassium channelopathy causing periodic paralysis, cardiac arrhythmias, and dysmorphic features. A detailed analysis of the face could facilitate diagnosis of ATS, as approximately 30% of patients do not show variants in KCNJ2 gene, and diagnosis is established by clinical findings. We aimed to characterize the face in ATS through a quantitative approach, as facial anomalies may be unnoticed on visual inspection. Facial images of 12 subjects with genetically confirmed ATS (six males, six females, age 5-67 years) were acquired through stereophotogrammetry. Using 38 soft-tissue landmarks, linear distances, angles, and ratios were calculated and expressed as z-score values, with reference to 477 healthy subjects matched for sex and age. All patients showed decreased lower facial height with shortening of philtrum (mean z-score ± SD: -1.5 ± 0.9), smaller mid and lower facial depths (-1.9 ± 0.7; -2.3 ± 0.9), short palpebral fissures (right -1.2 ± 0.4; left -1.6 ± 0.6), smaller mandibular ramus length (-2.1 ± 0.4), and increased nasal width/length ratio (1.4 ± 0.5) with smaller nostril axis length (right -1.8 ± 0.8, left -1.6 ± 0.7). Hypertelorism and low-set ears were detected in two-thirds of patients. The study quantified facial dysmorphysm in ATS, extending information about known features, and detecting unrecorded philtrum and nostril characteristics, which may be distinctive traits of the disorder.
Collapse
Affiliation(s)
- Claudia Dolci
- Functional Anatomy Research Center (FARC), Laboratorio di Anatomia Funzionale dell'Apparato Stomatognatico (LAFAS), Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Valeria A Sansone
- NEuroMuscularOmnicenter, NEMO Clinical Center, Neurorehabilitation Unit, Università degli Studi di Milano, Milan, Italy
| | - Daniele Gibelli
- Functional Anatomy Research Center (FARC), Laboratorio di Anatomia Funzionale dell'Apparato Stomatognatico (LAFAS), Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Annalisa Cappella
- Functional Anatomy Research Center (FARC), Laboratorio di Anatomia Funzionale dell'Apparato Stomatognatico (LAFAS), Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Chiarella Sforza
- Functional Anatomy Research Center (FARC), Laboratorio di Anatomia Funzionale dell'Apparato Stomatognatico (LAFAS), Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
100
|
Brugnoni R, Maggi L, Canioni E, Verde F, Gallone A, Ariatti A, Filosto M, Petrelli C, Logullo FO, Esposito M, Ruggiero L, Tonin P, Riguzzi P, Pegoraro E, Torri F, Ricci G, Siciliano G, Silani V, Merlini L, De Pasqua S, Liguori R, Pini A, Mariotti C, Moroni I, Imbrici P, Desaphy JF, Mantegazza R, Bernasconi P. Next-generation sequencing application to investigate skeletal muscle channelopathies in a large cohort of Italian patients. Neuromuscul Disord 2020; 31:336-347. [PMID: 33573884 DOI: 10.1016/j.nmd.2020.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 01/09/2023]
Abstract
Non-dystrophic myotonias and periodic paralyses are a heterogeneous group of disabling diseases classified as skeletal muscle channelopathies. Their genetic characterization is essential for prognostic and therapeutic purposes; however, several genes are involved. Sanger-based sequencing of a single gene is time-consuming, often expensive; thus, we designed a next-generation sequencing panel of 56 putative candidate genes for skeletal muscle channelopathies, codifying for proteins involved in excitability, excitation-contraction coupling, and metabolism of muscle fibres. We analyzed a large cohort of 109 Italian patients with a suspect of NDM or PP by next-generation sequencing. We identified 24 patients mutated in CLCN1 gene, 15 in SCN4A, 3 in both CLCN1 and SCN4A, 1 in ATP2A1, 1 in KCNA1 and 1 in CASQ1. Eight were novel mutations: p.G395Cfs*32, p.L843P, p.V829M, p.E258E and c.1471+4delTCAAGAC in CLCN1, p.K1302R in SCN4A, p.L208P in ATP2A1 and c.280-1G>C in CASQ1 genes. This study demonstrated the utility of targeted next generation sequencing approach in molecular diagnosis of skeletal muscle channelopathies and the importance of the collaboration between clinicians and molecular geneticists and additional methods for unclear variants to make a conclusive diagnosis.
Collapse
Affiliation(s)
- Raffaella Brugnoni
- Neurology IV Unit, Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Lorenzo Maggi
- Neurology IV Unit, Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Eleonora Canioni
- Neurology IV Unit, Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Federico Verde
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy
| | - Annamaria Gallone
- Neurology IV Unit, Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandra Ariatti
- Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, Ospedale Civile di Baggiovara, Modena, Italy
| | - Massimiliano Filosto
- Center for Neuromuscular Diseases, Unit of Neurology, ASST Spedali Civili and University of Brescia, Brescia, Italy
| | | | | | - Marcello Esposito
- Department of Neurosciences, Reproductive, and Odontostomatological Sciences, University Federico II, Naples, Italy
| | - Lucia Ruggiero
- Department of Neurosciences, Reproductive, and Odontostomatological Sciences, University Federico II, Naples, Italy
| | - Paola Tonin
- Neurological Clinic, University of Verona, Verona, Italy
| | - Pietro Riguzzi
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Elena Pegoraro
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Francesca Torri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Vincenzo Silani
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy
| | - Luciano Merlini
- DIBINEM-Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Silvia De Pasqua
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Rocco Liguori
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Antonella Pini
- Neuromuscular Pediatric Unit, IRRCS Istituto delle Scienze Neurologiche di Bologna
| | - Caterina Mariotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Isabella Moroni
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Jean-Francois Desaphy
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Renato Mantegazza
- Neurology IV Unit, Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Pia Bernasconi
- Neurology IV Unit, Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|