51
|
Analytical methods for tracing plant hormones. Anal Bioanal Chem 2012; 403:55-74. [PMID: 22215246 DOI: 10.1007/s00216-011-5623-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 11/27/2011] [Accepted: 11/28/2011] [Indexed: 12/22/2022]
Abstract
Plant hormones play important roles in regulating numerous aspects of plant growth, development, and response to stress. In the past decade, more analytical methods for the accurate identification and quantitative determination of trace plant hormones have been developed to better our understanding of the molecular mechanisms of plant hormones. As sample preparation is often the bottleneck in analysis of plant hormones in biological samples, this review firstly discusses sample preparation techniques after a brief introduction to the classes, roles, and methods used in the analysis of plant hormones. The analytical methods, especially chromatographic techniques and immuno-based methods, are reviewed in detail, and their corresponding advantages, limitations, applications, and prospects are also discussed. This review mainly covers reports published from 2000 to the present on methods for the analysis of plant hormones.
Collapse
|
52
|
Ding L, Xu H, Yi H, Yang L, Kong Z, Zhang L, Xue S, Jia H, Ma Z. Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways. PLoS One 2011; 6:e19008. [PMID: 21533105 PMCID: PMC3080397 DOI: 10.1371/journal.pone.0019008] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 03/16/2011] [Indexed: 01/08/2023] Open
Abstract
Fusarium species cause serious diseases in cereal staple food crops such as wheat and maize. Currently, the mechanisms underlying resistance to Fusarium-caused diseases are still largely unknown. In the present study, we employed a combined proteomic and transcriptomic approach to investigate wheat genes responding to F. graminearum infection that causes Fusarium head blight (FHB). We found a total of 163 genes and 37 proteins that were induced by infection. These genes and proteins were associated with signaling pathways mediated by salicylic acid (SA), jasmonic acid (JA), ethylene (ET), calcium ions, phosphatidic acid (PA), as well as with reactive oxygen species (ROS) production and scavenging, antimicrobial compound synthesis, detoxification, and cell wall fortification. We compared the time-course expression profiles between FHB-resistant Wangshuibai plants and susceptible Meh0106 mutant plants of a selected set of genes that are critical to the plants' resistance and defense reactions. A biphasic phenomenon was observed during the first 24 h after inoculation (hai) in the resistant plants. The SA and Ca(2+) signaling pathways were activated within 6 hai followed by the JA mediated defense signaling activated around 12 hai. ET signaling was activated between these two phases. Genes for PA and ROS synthesis were induced during the SA and JA phases, respectively. The delayed activation of the SA defense pathway in the mutant was associated with its susceptibility. After F. graminearum infection, the endogenous contents of SA and JA in Wangshuibai and the mutant changed in a manner similar to the investigated genes corresponding to the individual pathways. A few genes for resistance-related cell modification and phytoalexin production were also identified. This study provided important clues for designing strategies to curb diseases caused by Fusarium.
Collapse
Affiliation(s)
- Lina Ding
- The Applied Plant Genomics Lab, National Key Lab of Crop Genetics and Germplasm Enhancement and Crop Genomics and Bioinformatics Center, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Haibin Xu
- The Applied Plant Genomics Lab, National Key Lab of Crop Genetics and Germplasm Enhancement and Crop Genomics and Bioinformatics Center, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Hongying Yi
- The Applied Plant Genomics Lab, National Key Lab of Crop Genetics and Germplasm Enhancement and Crop Genomics and Bioinformatics Center, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Liming Yang
- The Applied Plant Genomics Lab, National Key Lab of Crop Genetics and Germplasm Enhancement and Crop Genomics and Bioinformatics Center, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhongxin Kong
- The Applied Plant Genomics Lab, National Key Lab of Crop Genetics and Germplasm Enhancement and Crop Genomics and Bioinformatics Center, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lixia Zhang
- The Applied Plant Genomics Lab, National Key Lab of Crop Genetics and Germplasm Enhancement and Crop Genomics and Bioinformatics Center, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shulin Xue
- The Applied Plant Genomics Lab, National Key Lab of Crop Genetics and Germplasm Enhancement and Crop Genomics and Bioinformatics Center, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Haiyan Jia
- The Applied Plant Genomics Lab, National Key Lab of Crop Genetics and Germplasm Enhancement and Crop Genomics and Bioinformatics Center, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhengqiang Ma
- The Applied Plant Genomics Lab, National Key Lab of Crop Genetics and Germplasm Enhancement and Crop Genomics and Bioinformatics Center, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|