51
|
Król T, Trybus W, Trybus E, Kopacz-Bednarska A, Kowalczyk M, Brytan M, Paluch M, Antkowiak B, Saracyn M, Król G, Ciechanowska M. Assessment of exogenous melatonin action on mouse liver cells after exposure to soman. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 64:147-154. [PMID: 30391876 DOI: 10.1016/j.etap.2018.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
Melatonin is a hormone with many different biological activities and therefore seems to be an important factor reducing the harmful effects caused by toxic organophosphorus compounds. In this study, we attempted to evaluate the protective effect of melatonin on liver cells of mice challenged with chemical warfare agent-soman. The study was conducted at the level of ultrastructural and biochemical changes (analysis of the activity of model lysosomal enzymes and assessment of the level of lipid peroxidation). Significant biochemical and ultrastructural changes were found in the studied mouse hepatocytes after administration of soman alone, and soman in combination with melatonin, and the scope of the disclosed changes was dependent on the time of action of the examined factors. Melatonin has shown protective action, shielding liver cells from toxic effects of soman, which may result from its antioxidant properties and stimulation of the lysosomal compartment, the system coordinating the isolation and removal of cell-threatening processes.
Collapse
Affiliation(s)
- Teodora Król
- Department of Cell Biology and Electron Microscopy, Institute of Biology, The Jan Kochanowski University, Kielce, Poland.
| | - Wojciech Trybus
- Department of Cell Biology and Electron Microscopy, Institute of Biology, The Jan Kochanowski University, Kielce, Poland
| | - Ewa Trybus
- Department of Cell Biology and Electron Microscopy, Institute of Biology, The Jan Kochanowski University, Kielce, Poland
| | - Anna Kopacz-Bednarska
- Department of Cell Biology and Electron Microscopy, Institute of Biology, The Jan Kochanowski University, Kielce, Poland
| | - Marek Kowalczyk
- Department of Pharmacology and Toxicology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland; Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Marek Brytan
- Department of Pharmacology and Toxicology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Małgorzata Paluch
- Department of Pharmacology and Toxicology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Bożena Antkowiak
- Department of Pharmacology and Toxicology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | | | - Grzegorz Król
- Faculty of Management, University of Warsaw, Szturmowa 1/3, 02-678, Warsaw, Poland
| | - Magdalena Ciechanowska
- Department of Pharmacology and Toxicology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| |
Collapse
|
52
|
Cipolla-Neto J, Amaral FGD. Melatonin as a Hormone: New Physiological and Clinical Insights. Endocr Rev 2018; 39:990-1028. [PMID: 30215696 DOI: 10.1210/er.2018-00084] [Citation(s) in RCA: 330] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
Melatonin is a ubiquitous molecule present in almost every live being from bacteria to humans. In vertebrates, besides being produced in peripheral tissues and acting as an autocrine and paracrine signal, melatonin is centrally synthetized by a neuroendocrine organ, the pineal gland. Independently of the considered species, pineal hormone melatonin is always produced during the night and its production and secretory episode duration are directly dependent on the length of the night. As its production is tightly linked to the light/dark cycle, melatonin main hormonal systemic integrative action is to coordinate behavioral and physiological adaptations to the environmental geophysical day and season. The circadian signal is dependent on its daily production regularity, on the contrast between day and night concentrations, and on specially developed ways of action. During its daily secretory episode, melatonin coordinates the night adaptive physiology through immediate effects and primes the day adaptive responses through prospective effects that will only appear at daytime, when melatonin is absent. Similarly, the annual history of the daily melatonin secretory episode duration primes the central nervous/endocrine system to the seasons to come. Remarkably, maternal melatonin programs the fetuses' behavior and physiology to cope with the environmental light/dark cycle and season after birth. These unique ways of action turn melatonin into a biological time-domain-acting molecule. The present review focuses on the above considerations, proposes a putative classification of clinical melatonin dysfunctions, and discusses general guidelines to the therapeutic use of melatonin.
Collapse
Affiliation(s)
- José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
53
|
Kuthati Y, Lin SH, Chen IJ, Wong CS. Melatonin and their analogs as a potential use in the management of Neuropathic pain. J Formos Med Assoc 2018; 118:1177-1186. [PMID: 30316678 DOI: 10.1016/j.jfma.2018.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/02/2018] [Accepted: 09/19/2018] [Indexed: 12/14/2022] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), secreted by the pineal gland is known to perform multiple functions including, antioxidant, anti-hypertensive, anti-cancerous, immunomodulatory, sedative and tranquilizing functions. Melatonin is also known to be involved in the regulation of body mass index, control the gastrointestinal system and play an important role in cardioprotection, thermoregulation, and reproduction. Recently, several studies have reported the efficacy of Melatonin in treating various pain syndromes. The current paper reviews the studies on Melatonin and its analogs, particularly in Neuropathic pain. Here, we first briefly summarized research in preclinical studies showing the possible mechanisms through which Melatonin and its analogs induce analgesia in Neuropathic pain. Second, we reviewed research indicating the role of Melatonin in attenuating analgesic tolerance. Finally, we discussed the recent studies that reported novel Melatonin agonists, which were proven to be effective in treating Neuropathic pain.
Collapse
Affiliation(s)
- Yaswanth Kuthati
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
| | - Sheng-Hsiung Lin
- Planning and Management Office, Tri-Service General Hospital, National Defense Medical Center, Taiwan
| | - Ing-Jung Chen
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
| | - Chih-Shung Wong
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan; Planning and Management Office, Tri-Service General Hospital, National Defense Medical Center, Taiwan; Institute of Medical Sciences, National Defense Medical Center, Taiwan; Department of Anesthesiology, Tri-Service General Hospital, Taiwan.
| |
Collapse
|
54
|
Forrestel AC, Miedlich SU, Yurcheshen M, Wittlin SD, Sellix MT. Correction to: Chronomedicine and type 2 diabetes: shining some light on melatonin. Diabetologia 2018; 61:1237. [PMID: 29470590 DOI: 10.1007/s00125-018-4577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The authors have been made aware that the following sentence is incorrect: 'Like IIK7, both ramelteon and tasimelteon have a greater affinity for the MT2 receptor [162].'
Collapse
Affiliation(s)
- Andrew C Forrestel
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 693, Rochester, NY, 14642, USA
| | - Susanne U Miedlich
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 693, Rochester, NY, 14642, USA
| | - Michael Yurcheshen
- UR Medicine Sleep Center, Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Steven D Wittlin
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 693, Rochester, NY, 14642, USA
| | - Michael T Sellix
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 693, Rochester, NY, 14642, USA.
| |
Collapse
|
55
|
Synthesis, Characterization, and Crystal Chemistry of Tasimelteon, a Melatonin Agonist, in Its Anhydrous and Hemihydrate Forms. J Pharm Sci 2018; 107:543-549. [DOI: 10.1016/j.xphs.2017.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/05/2017] [Accepted: 09/12/2017] [Indexed: 11/24/2022]
|
56
|
Carpentieri AR, Peralta Lopez ME, Aguilar J, Solá VM. Melatonin and periodontal tissues: Molecular and clinical perspectives. Pharmacol Res 2017; 125:224-231. [PMID: 28918172 DOI: 10.1016/j.phrs.2017.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/26/2017] [Accepted: 09/06/2017] [Indexed: 12/29/2022]
Abstract
Periodontal disease is a frequent chronic inflammatory pathology that implies the destruction of the tissues supporting the teeth, which represents a high sanitary cost. It usually appears associated with other systemic conditions such as diabetes, metabolic syndrome, depression and Alzheimer disease among others. The presence of melatonin and its receptors in the oral cavity supports the hypothesis that this hormone could play a role in homeostasis of periodontal tissues. In the present review we will discuss the potential role of melatonin, a circadian synchronizing hormone, with proved antiinflammatory and antioxidant profile, in the pathogenesis and treatment of periodontitis. Particular emphasis will be placed on the role of the indolamine in the treatment of periodontal disease when this oral condition is comorbid with other pathologies that would also benefit from the therapeutic potential of melatonin and its analogs through diverse mechanisms.
Collapse
Affiliation(s)
- Agata Rita Carpentieri
- Cátedra "B" de Química Biológica, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina; INICSA/UNC-CONICET, Enrique Barros esquina Enfermera Gordillo, Ciudad Universitaria, Córdoba, Argentina.
| | - María Elena Peralta Lopez
- Cátedra "B" de Química Biológica, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina; Cátedra de Clínica Médica II, Hospital San Roque, Facultad de Ciencias Médicas,UNC, Córdoba, Argentina
| | - Javier Aguilar
- Instituto Dr. José M. Vanella, Facultad de Ciencias Médicas, UNC, Córdoba, Argentina; Cátedra "B" de Introducción a la Física y Química Biológica, Facultad de Odontología, UNC, Córdoba, Argentina
| | - Verónica Mariana Solá
- Cátedra "B" de Química Biológica, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
57
|
Alzoubi KH, Mayyas FA, Mahafzah R, Khabour OF. Melatonin prevents memory impairment induced by high-fat diet: Role of oxidative stress. Behav Brain Res 2017; 336:93-98. [PMID: 28866128 DOI: 10.1016/j.bbr.2017.08.047] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/12/2017] [Accepted: 08/29/2017] [Indexed: 12/22/2022]
Abstract
Consumption of high-fat diet (HFD) induces oxidative stress in the hippocampus that leads to memory impairment. Melatonin has antioxidant and neuroprotective effects. In this study, we hypothesized that chronic administration of melatonin can prevent memory impairment induced by consumption of HFD. Melatonin was administered to rats via oral gavage (100mg/kg/day) for 4 weeks. HFD was also instituted for the same duration. Behavioral studies were conducted to test spatial memory using the radial arm water maze. Additionally, oxidative stress biomarkers were assessed in the hippocampus. Results showed that HFD impaired both short- and long- term memory (P<0.05), while melatonin treatment prevented such effects. Furthermore, melatonin prevented HFD-induced reduction in levels of GSH, and ratio of GSH/GSSG, and increase in GSSG in the hippocampus. Melatonin also prevented reduction in the catalase activity in hippocampus of animals on HFD. In conclusion, HFD induced memory impairment and melatonin prevented this impairment probably by preventing alteration of oxidative stress in the hippocampus.
Collapse
Affiliation(s)
- Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.
| | - Fadia A Mayyas
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Rania Mahafzah
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
58
|
Wang CY. Circadian Rhythm, Exercise, and Heart. ACTA CARDIOLOGICA SINICA 2017; 33:539-541. [PMID: 28959108 PMCID: PMC5611352 DOI: 10.6515/acs20170604a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Chao-Yung Wang
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
59
|
Pattyn N, Van Puyvelde M, Fernandez-Tellez H, Roelands B, Mairesse O. From the midnight sun to the longest night: Sleep in Antarctica. Sleep Med Rev 2017; 37:159-172. [PMID: 28460798 DOI: 10.1016/j.smrv.2017.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 12/29/2022]
Abstract
Sleep disturbances are the main health complaints from personnel deployed in Antarctica. The current paper presents a systematic review of research findings on sleep disturbances in Antarctica. The available sources were divided in three categories: results based on questionnaire surveys or sleep logs, studies using actigraphy, and data from polysomnography results. Other areas relevant to the issue were also examined. These included chronobiology, since the changes in photoperiod have been known to affect circadian rhythms, mood disturbances, exercise, sleep and hypoxia, countermeasure investigations in Antarctica, and other locations lacking a normal photoperiod. Based on the combination of our reviewed sources and data outside the field of sleep studies, or from other geographical locations, we defined hypotheses to be confirmed or infirmed, which allowed to summarize a research agenda. Despite the scarcity of sleep research on the Antarctic continent, the present review pinpointed some consistent changes in sleep during the Antarctic winter, the common denominators being a circadian phase delay, poor subjective sleep quality, an increased sleep fragmentation, as well as a decrease in slow wave sleep. Similar changes, albeit less pronounced, were observed during summer. Additional multidisciplinary research is needed to elucidate the mechanisms behind these changes in sleep architecture, and to investigate interventions to improve the sleep quality of the men and women deployed in the Antarctic.
Collapse
Affiliation(s)
- Nathalie Pattyn
- Vital Signs and Performance Research Unit, Royal Military Academy, Brussels, Belgium; Human Physiology Dept, School for Exercise Science, Vrije Universiteit Brussel, Belgium; Experimental and Applied Psychology, Vrije Universiteit Brussel, Belgium; British Antarctic Survey Medical Unit, Derriford Hospital, Plymouth, UK.
| | - Martine Van Puyvelde
- Vital Signs and Performance Research Unit, Royal Military Academy, Brussels, Belgium
| | - Helio Fernandez-Tellez
- Vital Signs and Performance Research Unit, Royal Military Academy, Brussels, Belgium; Human Physiology Dept, School for Exercise Science, Vrije Universiteit Brussel, Belgium
| | - Bart Roelands
- Human Physiology Dept, School for Exercise Science, Vrije Universiteit Brussel, Belgium
| | - Olivier Mairesse
- Vital Signs and Performance Research Unit, Royal Military Academy, Brussels, Belgium; Human Physiology Dept, School for Exercise Science, Vrije Universiteit Brussel, Belgium; Sleep Laboratory and Unit for Chronobiology, Brugmann University Hospital, Free University of Brussels, Belgium
| |
Collapse
|
60
|
Abstract
Reward-related learning, including that associated with drugs of abuse, is largely mediated by the dopaminergic mesolimbic pathway. Mesolimbic neurophysiology and motivated behavior, in turn, are modulated by the circadian timing system which generates ∼24-h rhythms in cellular activity. Both drug taking and seeking and mesolimbic dopaminergic neurotransmission can vary widely over the day. Moreover, circadian clock genes are expressed in ventral tegmental area dopaminergic cells and in mesolimbic target regions where they can directly modulate reward-related neurophysiology and behavior. There also exists a reciprocal influence between drug taking and circadian timing as the administration of drugs of abuse can alter behavioral rhythms and circadian clock gene expression in mesocorticolimbic structures. These interactions suggest that manipulations of the circadian timing system may have some utility in the treatment of substance abuse disorders. Here, the literature on bidirectional interactions between the circadian timing system and drug taking is briefly reviewed, and potential chronotherapeutic considerations for the treatment of addiction are discussed.
Collapse
|