51
|
Abstract
The outer surface of many archaea and bacteria is coated with a proteinaceous surface layer (known as an S-layer), which is formed by the self-assembly of monomeric proteins into a regularly spaced, two-dimensional array. Bacteria possess dedicated pathways for the secretion and anchoring of the S-layer to the cell wall, and some Gram-positive species have large S-layer-associated gene families. S-layers have important roles in growth and survival, and their many functions include the maintenance of cell integrity, enzyme display and, in pathogens and commensals, interaction with the host and its immune system. In this Review, we discuss our current knowledge of S-layer and related proteins, including their structures, mechanisms of secretion and anchoring and their diverse functions.
Collapse
|
52
|
Bragazzi NL, Pechkova E, Nicolini C. Proteomics and Proteogenomics Approaches for Oral Diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 95:125-62. [DOI: 10.1016/b978-0-12-800453-1.00004-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
53
|
Zhang T, Pabst B, Klapper I, Stewart PS. General theory for integrated analysis of growth, gene, and protein expression in biofilms. PLoS One 2013; 8:e83626. [PMID: 24376726 PMCID: PMC3871705 DOI: 10.1371/journal.pone.0083626] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/06/2013] [Indexed: 01/23/2023] Open
Abstract
A theory for analysis and prediction of spatial and temporal patterns of gene and protein expression within microbial biofilms is derived. The theory integrates phenomena of solute reaction and diffusion, microbial growth, mRNA or protein synthesis, biomass advection, and gene transcript or protein turnover. Case studies illustrate the capacity of the theory to simulate heterogeneous spatial patterns and predict microbial activities in biofilms that are qualitatively different from those of planktonic cells. Specific scenarios analyzed include an inducible GFP or fluorescent protein reporter, a denitrification gene repressed by oxygen, an acid stress response gene, and a quorum sensing circuit. It is shown that the patterns of activity revealed by inducible stable fluorescent proteins or reporter unstable proteins overestimate the region of activity. This is due to advective spreading and finite protein turnover rates. In the cases of a gene induced by either limitation for a metabolic substrate or accumulation of a metabolic product, maximal expression is predicted in an internal stratum of the biofilm. A quorum sensing system that includes an oxygen-responsive negative regulator exhibits behavior that is distinct from any stage of a batch planktonic culture. Though here the analyses have been limited to simultaneous interactions of up to two substrates and two genes, the framework applies to arbitrarily large networks of genes and metabolites. Extension of reaction-diffusion modeling in biofilms to the analysis of individual genes and gene networks is an important advance that dovetails with the growing toolkit of molecular and genetic experimental techniques.
Collapse
Affiliation(s)
- Tianyu Zhang
- Department of Mathematical Sciences, Montana State University, Bozeman, Montana, United States of America
| | - Breana Pabst
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, United States of America
| | - Isaac Klapper
- Department of Mathematics, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Philip S. Stewart
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
| |
Collapse
|
54
|
Rezende TMB, Lima SMF, Petriz BA, Silva ON, Freire MS, Franco OL. Dentistry proteomics: From laboratory development to clinical practice. J Cell Physiol 2013; 228:2271-84. [DOI: 10.1002/jcp.24410] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 05/21/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Taia M. B. Rezende
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
- Curso de Odontologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
| | - Stella M. F. Lima
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
- Curso de Odontologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
| | - Bernardo A. Petriz
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
| | - Osmar N. Silva
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
| | - Mirna S. Freire
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
| | - Octávio L. Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
| |
Collapse
|
55
|
Wright CJ, Burns LH, Jack AA, Back CR, Dutton LC, Nobbs AH, Lamont RJ, Jenkinson HF. Microbial interactions in building of communities. Mol Oral Microbiol 2013; 28:83-101. [PMID: 23253299 PMCID: PMC3600090 DOI: 10.1111/omi.12012] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2012] [Indexed: 12/31/2022]
Abstract
Establishment of a community is considered to be essential for microbial growth and survival in the human oral cavity. Biofilm communities have increased resilience to physical forces, antimicrobial agents and nutritional variations. Specific cell-to-cell adherence processes, mediated by adhesin-receptor pairings on respective microbial surfaces, are able to direct community development. These interactions co-localize species in mutually beneficial relationships, such as streptococci, veillonellae, Porphyromonas gingivalis and Candida albicans. In transition from the planktonic mode of growth to a biofilm community, microorganisms undergo major transcriptional and proteomic changes. These occur in response to sensing of diffusible signals, such as autoinducer molecules, and to contact with host tissues or other microbial cells. Underpinning many of these processes are intracellular phosphorylation events that regulate a large number of microbial interactions relevant to community formation and development.
Collapse
Affiliation(s)
- Christopher J. Wright
- Department of Oral Health and Systemic Disease, University of Louisville, 570 South Preston Street, Louisville, Kentucky, 40202, USA
| | - Logan H. Burns
- Department of Oral Health and Systemic Disease, University of Louisville, 570 South Preston Street, Louisville, Kentucky, 40202, USA
| | - Alison A. Jack
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Catherine R. Back
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Lindsay C. Dutton
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Angela H. Nobbs
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Richard J. Lamont
- Department of Oral Health and Systemic Disease, University of Louisville, 570 South Preston Street, Louisville, Kentucky, 40202, USA
| | - Howard F. Jenkinson
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| |
Collapse
|
56
|
Bertoldi C, Bellei E, Pellacani C, Ferrari D, Lucchi A, Cuoghi A, Bergamini S, Cortellini P, Tomasi A, Zaffe D, Monari E. Non-bacterial protein expression in periodontal pockets by proteome analysis. J Clin Periodontol 2013; 40:573-82. [PMID: 23509886 DOI: 10.1111/jcpe.12050] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 11/26/2012] [Accepted: 11/30/2012] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To compare the proteomic profile of inter-proximal pocket tissues with inter-proximal healthy tissues in the same subject to reveal proteins associated with periodontal disease in sites where periodontopathogenic bacteria were not detectable. METHODS Twenty-five healthy patients, with moderate-to-advanced chronic periodontitis and presenting with at least one intra-bony defect next to a healthy inter-proximal site were enrolled. The periodontal defects were treated with osseous resective surgery, and the flap design included both the periodontal pockets and the neighbouring inter-proximal healthy sites. Pocket-associated and healthy tissues were harvested for proteomic analyses. RESULTS Fifteen proteins were differently expressed between pathological and healthy tissues. In particular, annexin A2, actin cytoplasmic 1, carbonic anhydrase 1 & 2; Ig kappa chain C region (two spots) and flavinreductase were overexpressed, whereas 14-3-3 protein sigma and zeta/delta, heat-shock protein beta -1 (two spots), triosephosphateisomerase, peroxiredoxin-1, fatty acid-binding protein-epidermal, and galectin-7 were underexpressed in pathological tissue. CONCLUSIONS The unbalanced functional network of proteins involved could hinder adequate tissue response to pathogenic noxa. The study of periodontal pocket tissue proteomic profile would be crucial to better understand the pathogenesis of and the therapeutic strategies for periodontitis.
Collapse
Affiliation(s)
- Carlo Bertoldi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Fuszard MA, Ow SY, Gan CS, Noirel J, Ternan NG, McMullan G, Biggs CA, Reardon KF, Wright PC. The quantitative proteomic response of Synechocystis sp. PCC6803 to phosphate acclimation. AQUATIC BIOSYSTEMS 2013; 9:5. [PMID: 23442353 PMCID: PMC3600050 DOI: 10.1186/2046-9063-9-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 01/28/2013] [Indexed: 05/11/2023]
Abstract
BACKGROUND Inorganic phosphate (Pi) is a critical nutrient for all life and is periodically limiting in marine and freshwater provinces, yet little is understood how organisms acclimate to fluctuations in Pi within their environment. To investigate whole cell adaptation, we grew Synechocystis sp. PCC6803, a model freshwater cyanobacterium, in 3%, and 0.3% inorganic phosphate (Pi) media. The cells were allowed to acclimate over 60 days, and cells were harvested for quantitative high throughput mass spectrometry-based proteomics using the iTRAQ™ labelling technology. RESULTS In total, 120 proteins were identified, and 52 proteins were considered differentially abundant compared to the control. Alkaline phosphatase (APase) activities correlated significantly (p < 0.05) with observed relative PhoA abundances. PstS1 and PstS2 were both observed, yet PstS1 was not differentially more abundant than the control. Phycobilisome protein abundances appeared to be coordinated, and are significantly less abundant in 0.3% Pi than 3% Pi cultures. Also, the central metabolic cell function appears to have shifted towards the production of (NADPH) reducing energy and nucleotide sugars. CONCLUSIONS This acclimation response bears strong similarity to the previously reported response to nitrogen deprivation within Synechocystis sp. PCC 6803. However, it also demonstrates some characteristics of desiccation stress, such as the regulation of fatty acids and increased abundance of rehydrin in the 3% Pi culture.
Collapse
Affiliation(s)
- Matthew A Fuszard
- BSRC Mass Spectrometry and Proteomics Facility, Department of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Saw Yen Ow
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | | | - Josseilin Noirel
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Nigel G Ternan
- School of Biomedical Sciences, University of Ulster, Coleraine, County Londonderry, BT52 1SA, UK
| | - Geoff McMullan
- School of Biomedical Sciences, University of Ulster, Coleraine, County Londonderry, BT52 1SA, UK
| | - Catherine A Biggs
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Kenneth F Reardon
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, 80523-1370, USA
| | - Phillip C Wright
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| |
Collapse
|
58
|
Kuboniwa M, Tribble GD, Hendrickson EL, Amano A, Lamont RJ, Hackett M. Insights into the virulence of oral biofilms: discoveries from proteomics. Expert Rev Proteomics 2013; 9:311-23. [PMID: 22809209 DOI: 10.1586/epr.12.16] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review covers developments in the study of polymicrobial communities, biofilms and selected areas of host response relevant to dental plaque and related areas of oral biology. The emphasis is on recent studies in which proteomic methods, particularly those using mass spectrometry as a readout, have played a major role in the investigation. The last 5-10 years have seen a transition of such methods from the periphery of oral biology to the mainstream, as in other areas of biomedical science. For reasons of focus and space, the authors do not discuss biomarker studies relevant to improved diagnostics for oral health, as this literature is rather substantial in its own right and deserves a separate treatment. Here, global gene regulation studies of plaque-component organisms, biofilm formation, multispecies interactions and host-microbe interactions are discussed. Several aspects of proteomics methodology that are relevant to the studies of multispecies systems are commented upon.
Collapse
Affiliation(s)
- Masae Kuboniwa
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | |
Collapse
|
59
|
Pereira-Medrano AG, Knighton M, Fowler GJ, Ler ZY, Pham TK, Ow SY, Free A, Ward B, Wright PC. Quantitative proteomic analysis of the exoelectrogenic bacterium Arcobacter butzleri ED-1 reveals increased abundance of a flagellin protein under anaerobic growth on an insoluble electrode. J Proteomics 2013; 78:197-210. [DOI: 10.1016/j.jprot.2012.09.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/02/2012] [Accepted: 09/30/2012] [Indexed: 10/27/2022]
|
60
|
Woodruff LBA, Pandhal J, Ow SY, Karimpour-Fard A, Weiss SJ, Wright PC, Gill RT. Genome-scale identification and characterization of ethanol tolerance genes in Escherichia coli. Metab Eng 2012; 15:124-33. [PMID: 23164575 DOI: 10.1016/j.ymben.2012.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 09/17/2012] [Accepted: 10/03/2012] [Indexed: 11/30/2022]
Abstract
The identification of relevant gene targets for engineering a desired trait is a key step in combinatorial strain engineering. Here, we applied the multi-Scalar Analysis of Library Enrichments (SCALEs) approach to map ethanol tolerance onto 1,000,000 genomic-library clones in Escherichia coli. We assigned fitness scores to each of the ∼4,300 genes in E. coli, and through follow-up confirmatory studies identified 9 novel genetic targets (12 genes total) that increase E. coli ethanol tolerance (up to 6-fold improved growth). These genetic targets are involved in the processes related to cell membrane composition, translation, serine biosynthesis, and transcription regulation. Transcriptional profiling of the ethanol stress response in 5 of these ethanol-tolerant clones revealed a total of 700 genes with significantly altered expression (mapped to 615 significantly enriched gene ontology terms) across all five clones, with similar overall changes in global gene expression between two clone clusters. All ethanol-tolerant clones analyzed shared 6% of the overexpressed genes and showed enrichment for transcription regulation-related GO terms. iTRAQ-based proteomic analysis of ethanol-tolerant strains identified upregulation of proteins related to ROS mitigation, fatty acid biosynthesis, and vitamin biosynthesis as compared to the parent strain's ethanol response. The approach we outline here will be useful for engineering a variety of other traits and further improvements in alcohol tolerance.
Collapse
Affiliation(s)
- Lauren B A Woodruff
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Jennie Smoly Caruthers Biotechnology Building, UCB 596, Boulder, CO 80309, USA.
| | | | | | | | | | | | | |
Collapse
|
61
|
Posch G, Sekot G, Friedrich V, Megson ZA, Koerdt A, Messner P, Schäffer C. Glycobiology Aspects of the Periodontal Pathogen Tannerella forsythia. Biomolecules 2012; 2:467-82. [PMID: 24970146 PMCID: PMC4030854 DOI: 10.3390/biom2040467] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 09/27/2012] [Accepted: 09/29/2012] [Indexed: 12/22/2022] Open
Abstract
Glycobiology is important for the periodontal pathogen Tannerella forsythia, affecting the bacterium's cellular integrity, its life-style, and virulence potential. The bacterium possesses a unique Gram-negative cell envelope with a glycosylated surface (S-) layer as outermost decoration that is proposed to be anchored via a rough lipopolysaccharide. The S-layer glycan has the structure 4‑MeO-b-ManpNAcCONH2-(1→3)-[Pse5Am7Gc-(2→4)-]-b-ManpNAcA-(1→4)-[4-MeO-a-Galp-(1→2)-]-a-Fucp-(1→4)-[-a-Xylp-(1→3)-]-b-GlcpA-(1→3)-[-b-Digp-(1→2)-]-a-Galp and is linked to distinct serine and threonine residues within the D(S/T)(A/I/L/M/T/V) amino acid motif. Also several other Tannerella proteins are modified with the S‑layer oligosaccharide, indicating the presence of a general O‑glycosylation system. Protein O‑glycosylation impacts the life-style of T. forsythia since truncated S-layer glycans present in a defined mutant favor biofilm formation. While the S‑layer has also been shown to be a virulence factor and to delay the bacterium's recognition by the innate immune system of the host, the contribution of glycosylation to modulating host immunity is currently unraveling. Recently, it was shown that Tannerella surface glycosylation has a role in restraining the Th17-mediated neutrophil infiltration in the gingival tissues. Related to its asaccharolytic physiology, T. forsythia expresses a robust enzymatic repertoire, including several glycosidases, such as sialidases, which are linked to specific growth requirements and are involved in triggering host tissue destruction. This review compiles the current knowledge on the glycobiology of T. forsythia.
Collapse
Affiliation(s)
- Gerald Posch
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| | - Gerhard Sekot
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| | - Valentin Friedrich
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| | - Zoë A Megson
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| | - Andrea Koerdt
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| | - Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| |
Collapse
|
62
|
Zainal-Abidin Z, Veith PD, Dashper SG, Zhu Y, Catmull DV, Chen YY, Heryanto DC, Chen D, Pyke JS, Tan K, Mitchell HL, Reynolds EC. Differential proteomic analysis of a polymicrobial biofilm. J Proteome Res 2012; 11:4449-64. [PMID: 22808953 DOI: 10.1021/pr300201c] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia exist in a polymicrobial biofilm associated with chronic periodontitis. The aim of this study was to culture these three species as a polymicrobial biofilm and to determine proteins important for bacterial interactions. In a flow cell all three species attached and grew as a biofilm; however, after 90 h of culture P. gingivalis and T. denticola were closely associated and dominated the polymicrobial biofilm. For comparison, planktonic cultures of P. gingivalis and T. denticola were grown separately in continuous culture. Whole cell lysates were subjected to SDS-PAGE, followed by in-gel proteolytic H₂¹⁶O/H₂¹⁸O labeling. From two replicates, 135 and 174 P. gingivalis proteins and 134 and 194 T. denticola proteins were quantified by LC-MALDI TOF/TOF MS. The results suggest a change of strategy in iron acquisition by P. gingivalis due to large increases in the abundance of HusA and HusB in the polymicrobial biofilm while HmuY and other iron/haem transport systems decreased. Significant changes in the abundance of peptidases and enzymes involved in glutamate and glycine catabolism suggest syntrophy. These data indicate an intimate association between P. gingivalis and T. denticola in a biofilm that may play a role in disease pathogenesis.
Collapse
Affiliation(s)
- Zamirah Zainal-Abidin
- Oral Health CRC, Melbourne Dental School and the Bio21 Institute, The University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Bioinformatic study of the relationship between protein regulation and sequence properties. Genomics 2012; 100:240-4. [PMID: 22800766 DOI: 10.1016/j.ygeno.2012.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 05/21/2012] [Accepted: 07/03/2012] [Indexed: 11/21/2022]
Abstract
Although protein expression and regulation have been intensively studied, a complete picture of its mechanisms is still to be drawn. Analysis of high-throughput quantitative proteomics data provides a way to better understand protein regulation. Here, we introduce a bioinformatic analysis method to correlate protein regulation with individual amino acid patterns. We compare the amino acid composition between groups of regulated and unregulated proteins and investigate the correlation between codon usage patterns and protein regulation levels in two Sulfolobus species in "biofilm vs planktonic" experiments. The identified amino acids can then be associated with the regulation of specific gene functions. Strikingly, our analysis shows that functional categories of regulated proteins with similar composition and codon usage pattern of specific amino acids behave similarly. This finding can contribute to a better understanding of protein and gene expression regulation and could find applications in gene optimisation.
Collapse
|
64
|
Peter S, Evans C, Ow SY, Scutt AM, Wright PC, Biggs CA. Proteomic analysis of the impact of static culturing on the expansion of rat bone marrow mesenchymal stem cells. Biotechnol Lett 2012; 34:1589-96. [DOI: 10.1007/s10529-012-0935-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Accepted: 04/17/2012] [Indexed: 10/28/2022]
|
65
|
Evans C, Noirel J, Ow SY, Salim M, Pereira-Medrano AG, Couto N, Pandhal J, Smith D, Pham TK, Karunakaran E, Zou X, Biggs CA, Wright PC. An insight into iTRAQ: where do we stand now? Anal Bioanal Chem 2012; 404:1011-27. [PMID: 22451173 DOI: 10.1007/s00216-012-5918-6] [Citation(s) in RCA: 223] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 02/28/2012] [Accepted: 02/29/2012] [Indexed: 01/09/2023]
Abstract
The iTRAQ (isobaric tags for relative and absolute quantification) technique is widely employed in proteomic workflows requiring relative quantification. Here, we review the iTRAQ literature; in particular, we focus on iTRAQ usage in relation to other commonly used quantitative techniques e.g. stable isotope labelling in culture (SILAC), label-free methods and selected reaction monitoring (SRM). As a result, we identify several issues arising with respect to iTRAQ. Perhaps frustratingly, iTRAQ's attractiveness has been undermined by a number of technical and analytical limitations: it may not be truly quantitative, as the changes in abundance reported will generally be underestimated. We discuss weaknesses and strengths of iTRAQ as a methodology for relative quantification in the light of this and other technical issues. We focus on technical developments targeted at iTRAQ accuracy and precision, use of 4-plex over 8-plex reagents and application of iTRAQ to post-translational modification (PTM) workflows. We also discuss iTRAQ in relation to label-free approaches, to which iTRAQ is losing ground.
Collapse
Affiliation(s)
- Caroline Evans
- The ChELSI Institute, Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
iTRAQ identification of candidate serum biomarkers associated with metastatic progression of human prostate cancer. PLoS One 2012; 7:e30885. [PMID: 22355332 PMCID: PMC3280251 DOI: 10.1371/journal.pone.0030885] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 12/27/2011] [Indexed: 12/26/2022] Open
Abstract
A major challenge in the management of patients with prostate cancer is identifying those individuals at risk of developing metastatic disease, as in most cases the disease will remain indolent. We analyzed pooled serum samples from 4 groups of patients (n = 5 samples/group), collected prospectively and actively monitored for a minimum of 5 yrs. Patients groups were (i) histological diagnosis of benign prostatic hyperplasia with no evidence of cancer 'BPH', (ii) localised cancer with no evidence of progression, 'non-progressing' (iii) localised cancer with evidence of biochemical progression, 'progressing', and (iv) bone metastasis at presentation 'metastatic'. Pooled samples were immuno-depleted of the 14 most highly abundant proteins and analysed using a 4-plex iTRAQ approach. Overall 122 proteins were identified and relatively quantified. Comparisons of progressing versus non-progressing groups identified the significant differential expression of 25 proteins (p<0.001). Comparisons of metastatic versus progressing groups identified the significant differential expression of 23 proteins. Mapping the differentially expressed proteins onto the prostate cancer progression pathway revealed the dysregulated expression of individual proteins, pairs of proteins and 'panels' of proteins to be associated with particular stages of disease development and progression. The median immunostaining intensity of eukaryotic translation elongation factor 1 alpha 1 (eEF1A1), one of the candidates identified, was significantly higher in osteoblasts in close proximity to metastatic tumour cells compared with osteoblasts in control bone (p = 0.0353, Mann Whitney U). Our proteomic approach has identified leads for potentially useful serum biomarkers associated with the metastatic progression of prostate cancer. The panels identified, including eEF1A1 warrant further investigation and validation.
Collapse
|
67
|
Roy S, Phansopa C, Stafford P, Honma K, Douglas CWI, Sharma A, Stafford GP. Beta-hexosaminidase activity of the oral pathogen Tannerella forsythia influences biofilm formation on glycoprotein substrates. ACTA ACUST UNITED AC 2012; 65:116-20. [PMID: 22276920 DOI: 10.1111/j.1574-695x.2012.00933.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 01/19/2012] [Indexed: 12/27/2022]
Abstract
Tannerella forsythia is an important pathogen in periodontal disease. Previously, we showed that its sialidase activity is key to utilization of sialic acid from a range of human glycoproteins for biofilm growth and initial adhesion. Removal of terminal sialic acid residues often exposes β-linked glucosamine or galactosamine, which may also be important adhesive molecules. In turn, these residues are often removed by a group of enzymes known as β-hexosaminidases. We show here that T. forsythia has the ability to cleave glucosamine and galactosamine from model substrates and that this activity can be inhibited by the hexosaminidase inhibitor PugNAc (O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino N-phenyl carbamate). We now demonstrate for the first time that β-hexosaminidase activity plays a role in biofilm growth on glycoprotein-coated surfaces because biofilm growth and initial cell adhesion are inhibited by PugNAc. In contrast, adhesion to siallo-glycoprotein-coated surfaces is unaltered by PugNAc in the absence of sialidase activity (using a sialidase-deficient mutant) or surprisingly on the clinically relevant substrates saliva or serum. These data indicate that β-hexosaminidase activity has a significant role in biofilm formation in combination with sialidase activity in the biofilm lifestyle of T. forsythia.
Collapse
Affiliation(s)
- Sumita Roy
- Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | |
Collapse
|
68
|
Seneviratne CJ, Wang Y, Jin L, Wong SSW, Herath TDK, Samaranayake LP. Unraveling the resistance of microbial biofilms: Has proteomics been helpful? Proteomics 2012; 12:651-65. [DOI: 10.1002/pmic.201100356] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 10/07/2011] [Accepted: 10/11/2011] [Indexed: 01/03/2023]
|
69
|
Harden CJ, Perez-Carrion K, Babakordi Z, Plummer SF, Hepburn N, Barker ME, Wright PC, Evans CA, Corfe BM. Evaluation of the salivary proteome as a surrogate tissue for systems biology approaches to understanding appetite. J Proteomics 2011; 75:2916-23. [PMID: 22200674 DOI: 10.1016/j.jprot.2011.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/01/2011] [Accepted: 12/07/2011] [Indexed: 10/14/2022]
Abstract
Current measurement of appetite depends upon tools that are either subjective (visual analogue scales), or invasive (blood). Saliva is increasingly recognised as a valuable resource for biomarker analysis. Proteomics workflows may provide alternative means for the assessment of appetitive response. The study aimed to assess the potential value of the salivary proteome to detect novel biomarkers of appetite using an iTRAQ-based workflow. Diurnal variation of salivary protein concentrations was assessed. A randomised, controlled, crossover study examined the effects on the salivary proteome of isocaloric doses of various long chain fatty acid (LCFA) oil emulsions compared to no treatment (NT). Fasted males provided saliva samples before and following NT or dosing with LCFA emulsions. The oil component of the DHA emulsion contained predominantly docosahexaenoic acid and the oil component of OA contained predominantly oleic acid. Several proteins were present in significantly (p<0.05) different quantities in saliva samples taken following treatments compared to fasting samples. DHA caused alterations in thioredoxin and serpin B4 relative to OA and NT. A further study evaluated energy intake (EI) in response to LCFA in conjunction with subjective appetite scoring. DHA was associated with significantly lower EI relative to NT and OA (p=0.039). The collective data suggest investigation of salivary proteome may be of value in appetitive response. This article is part of a Special Issue entitled: Proteomics: The clinical link.
Collapse
Affiliation(s)
- Charlotte J Harden
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology, University of Sheffield, Sheffield, S10 2RX, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Pinto F, van Elburg KA, Pacheco CC, Lopo M, Noirel J, Montagud A, Urchueguía JF, Wright PC, Tamagnini P. Construction of a chassis for hydrogen production: physiological and molecular characterization of a Synechocystis sp. PCC 6803 mutant lacking a functional bidirectional hydrogenase. MICROBIOLOGY-SGM 2011; 158:448-464. [PMID: 22096147 DOI: 10.1099/mic.0.052282-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cyanobacteria are photosynthetic prokaryotes that are promising 'low-cost' microbial cell factories due to their simple nutritional requirements and metabolic plasticity, and the availability of tools for their genetic manipulation. The unicellular non-nitrogen-fixing Synechocystis sp. PCC 6803 is the best studied cyanobacterial strain and its genome was the first to be sequenced. The vast amount of physiological and molecular data available, together with a relatively small genome, makes Synechocystis suitable for computational metabolic modelling and to be used as a photoautotrophic chassis in synthetic biology applications. To prepare it for the introduction of a synthetic hydrogen producing device, a Synechocystis sp. PCC 6803 deletion mutant lacking an active bidirectional hydrogenase (ΔhoxYH) was produced and characterized at different levels: physiological, proteomic and transcriptional. The results showed that, under conditions favouring hydrogenase activity, 17 of the 210 identified proteins had significant differential fold changes in comparisons of the mutant with the wild-type. Most of these proteins are related to the redox and energy state of the cell. Transcriptional studies revealed that only six genes encoding those proteins exhibited significant differences in transcript levels. Moreover, the mutant exhibits similar growth behaviour compared with the wild-type, reflecting Synechocystis plasticity and metabolic adaptability. Overall, this study reveals that the Synechocystis ΔhoxYH mutant is robust and can be used as a photoautotrophic chassis for the integration of synthetic constructs, i.e. molecular constructs assembled from well characterized biological and/or synthetic parts (e.g. promoters, regulators, coding regions, terminators) designed for a specific purpose.
Collapse
Affiliation(s)
- Filipe Pinto
- Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Karin A van Elburg
- Biological and Environmental Systems Group, ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mapping Street, Sheffield S1 3JD, UK
| | - Catarina C Pacheco
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Miguel Lopo
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Josselin Noirel
- Biological and Environmental Systems Group, ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mapping Street, Sheffield S1 3JD, UK
| | - Arnau Montagud
- Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, Camí de Vera, E-46071 Valencia, Spain
| | - Javier F Urchueguía
- Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, Camí de Vera, E-46071 Valencia, Spain
| | - Phillip C Wright
- Biological and Environmental Systems Group, ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mapping Street, Sheffield S1 3JD, UK
| | - Paula Tamagnini
- Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| |
Collapse
|
71
|
Kilner J, Waby JS, Chowdry J, Khan AQ, Noirel J, Wright PC, Corfe BM, Evans CA. A proteomic analysis of differential cellular responses to the short-chain fatty acids butyrate, valerate and propionate in colon epithelial cancer cells. MOLECULAR BIOSYSTEMS 2011; 8:1146-56. [PMID: 22075547 DOI: 10.1039/c1mb05219e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The short chain fatty acids (SCFAs) are inhibitors of histone deacetylases (HDACi); they are produced naturally in the colon by fermentation. They affect cellular processes at a molecular and transcriptional level, the mechanisms of which may involve large numbers of proteins and integrated pathways. Butyrate is the most biologically potent of the SCFAs in colon epithelial cells, inhibiting human colon carcinoma cell proliferation and inducing apoptosis in vitro. In order to investigate the hypothesis that propionate and valerate possess unique and independent actions from butyrate, we combined proteomic and cellomic approaches for large-scale comparative analysis. Proteomic evaluation was undertaken using an iTRAQ tandem mass-spectrometry workflow and high-throughput High-content Analysis microscopy (HCA) was applied to generate cellomic information on the cell cycle and the cytoskeletal structure. Our results show that these SCFAs possess specific effects. Butyrate was shown to have more pronounced effects on the keratins and intermediate filaments (IFs); while valerate altered the β-tubulin isotypes' expression and the microtubules (MTs); propionate was involved in both mechanisms, displaying intermediate effects. These data suggest distinct physiological roles for SCFAs in colon epithelial function, offering new possibilities for cancer therapeutics.
Collapse
Affiliation(s)
- Josephine Kilner
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F. Resistance of bacterial biofilms to disinfectants: a review. BIOFOULING 2011; 27:1017-32. [PMID: 22011093 DOI: 10.1080/08927014.2011.626899] [Citation(s) in RCA: 537] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A biofilm can be defined as a community of microorganisms adhering to a surface and surrounded by a complex matrix of extrapolymeric substances. It is now generally accepted that the biofilm growth mode induces microbial resistance to disinfection that can lead to substantial economic and health concerns. Although the precise origin of such resistance remains unclear, different studies have shown that it is a multifactorial process involving the spatial organization of the biofilm. This review will discuss the mechanisms identified as playing a role in biofilm resistance to disinfectants, as well as novel anti-biofilm strategies that have recently been explored.
Collapse
Affiliation(s)
- A Bridier
- AgroParisTech, UMR MICALIS, F-91300 Massy, France
| | | | | | | |
Collapse
|
73
|
Posch G, Pabst M, Brecker L, Altmann F, Messner P, Schäffer C. Characterization and scope of S-layer protein O-glycosylation in Tannerella forsythia. J Biol Chem 2011; 286:38714-38724. [PMID: 21911490 DOI: 10.1074/jbc.m111.284893] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell surface glycosylation is an important element in defining the life of pathogenic bacteria. Tannerella forsythia is a Gram-negative, anaerobic periodontal pathogen inhabiting the subgingival plaque biofilms. It is completely covered by a two-dimensional crystalline surface layer (S-layer) composed of two glycoproteins. Although the S-layer has previously been shown to delay the bacterium's recognition by the innate immune system, we characterize here the S-layer protein O-glycosylation as a potential virulence factor. The T. forsythia S-layer glycan was elucidated by a combination of electrospray ionization-tandem mass spectrometry and nuclear magnetic resonance spectroscopy as an oligosaccharide with the structure 4-Me-β-ManpNAcCONH(2)-(1→3)-[Pse5Am7Gc-(2→4)-]-β-ManpNAcA-(1→4)-[4-Me-α-Galp-(1→2)-]-α-Fucp-(1→4)-[-α-Xylp-(1→3)-]-β-GlcpA-(1→3)-[-β-Digp-(1→2)-]-α-Galp, which is O-glycosidically linked to distinct serine and threonine residues within the three-amino acid motif (D)(S/T)(A/I/L/M/T/V) on either S-layer protein. This S-layer glycan obviously impacts the life style of T. forsythia because increased biofilm formation of an UDP-N-acetylmannosaminuronic acid dehydrogenase mutant can be correlated with the presence of truncated S-layer glycans. We found that several other proteins of T. forsythia are modified with that specific oligosaccharide. Proteomics identified two of them as being among previously classified antigenic outer membrane proteins that are up-regulated under biofilm conditions, in addition to two predicted antigenic lipoproteins. Theoretical analysis of the S-layer O-glycosylation of T. forsythia indicates the involvement of a 6.8-kb gene locus that is conserved among different bacteria from the Bacteroidetes phylum. Together, these findings reveal the presence of a protein O-glycosylation system in T. forsythia that is essential for creating a rich glycoproteome pinpointing a possible relevance for the virulence of this bacterium.
Collapse
Affiliation(s)
- Gerald Posch
- Department of NanoBiotechnology, NanoGlycobiology, Vienna Institute of BioTechnology, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria
| | - Martin Pabst
- Department of Chemistry, Vienna Institute of BioTechnology, Universität für Bodenkultur Wien, Muthgasse 18, A-1190 Vienna, Austria
| | - Lothar Brecker
- Institute for Organic Chemistry, Universität Wien, Währingerstrasse 38, A-1090 Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, Vienna Institute of BioTechnology, Universität für Bodenkultur Wien, Muthgasse 18, A-1190 Vienna, Austria
| | - Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology, Vienna Institute of BioTechnology, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology, Vienna Institute of BioTechnology, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| |
Collapse
|
74
|
Roy S, Honma K, Douglas CWI, Sharma A, Stafford GP. Role of sialidase in glycoprotein utilization by Tannerella forsythia. MICROBIOLOGY-SGM 2011; 157:3195-3202. [PMID: 21885482 PMCID: PMC3352272 DOI: 10.1099/mic.0.052498-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The major bacterial pathogens associated with periodontitis include Tannerella forsythia. We previously discovered that sialic acid stimulates biofilm growth of T. forsythia, and that sialidase activity is key to utilization of sialoconjugate sugars and is involved in host–pathogen interactions in vitro. The aim of this work was to assess the influence of the NanH sialidase on initial biofilm adhesion and growth in experiments where the only source of sialic acid was sialoglycoproteins or human oral secretions. After showing that T. forsythia can utilize sialoglycoproteins for biofilm growth, we showed that growth and initial adhesion with sialylated mucin and fetuin were inhibited two- to threefold by the sialidase inhibitor oseltamivir. A similar reduction (three- to fourfold) was observed with a nanH mutant compared with the wild-type. Importantly, these data were replicated using clinically relevant serum and saliva samples as substrates. In addition, the ability of the nanH mutant to form biofilms on glycoprotein-coated surfaces could be restored by the addition of purified NanH, which we show is able to cleave sialic acid from the model glycoprotein fetuin and, much less efficiently, 9-O-acetylated bovine submaxillary mucin. These data show for the first time that glycoprotein-associated sialic acid is likely to be a key in vivo nutrient source for T. forsythia when growing in a biofilm, and suggest that sialidase inhibitors might be useful adjuncts in periodontal therapy.
Collapse
Affiliation(s)
- Sumita Roy
- Oral and Maxillofacial Pathology, School of Clinical Dentistry, Claremont Crescent, University of Sheffield, Sheffield S10 2TA, UK
| | - Kiyonobu Honma
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - C W Ian Douglas
- Oral and Maxillofacial Pathology, School of Clinical Dentistry, Claremont Crescent, University of Sheffield, Sheffield S10 2TA, UK
| | - Ashu Sharma
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Graham P Stafford
- Oral and Maxillofacial Pathology, School of Clinical Dentistry, Claremont Crescent, University of Sheffield, Sheffield S10 2TA, UK
| |
Collapse
|
75
|
Jain S, Graham C, Graham RLJ, McMullan G, Ternan NG. Quantitative proteomic analysis of the heat stress response in Clostridium difficile strain 630. J Proteome Res 2011; 10:3880-90. [PMID: 21786815 DOI: 10.1021/pr200327t] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Clostridium difficile is a serious nosocomial pathogen whose prevalence worldwide is increasing. Postgenomic technologies can now be deployed to develop understanding of the evolution and diversity of this important human pathogen, yet little is known about the adaptive ability of C. difficile. We used iTRAQ labeling and 2D-LC-MS/MS driven proteomics to investigate the response of C. difficile 630 to a mild, but clinically relevant, heat stress. A statistically validated list of 447 proteins to which functional roles were assigned was generated, allowing reconstruction of central metabolic pathways including glycolysis, γ-aminobutyrate metabolism, and peptidoglycan biosynthesis. Some 49 proteins were significantly modulated under heat stress: classical heat shock proteins including GroEL, GroES, DnaK, Clp proteases, and HtpG were up-regulated in addition to several stress inducible rubrerythrins and proteins associated with protein modification, such as prolyl isomerases and proline racemase. The flagellar filament protein, FliC, was down-regulated, possibly as an energy conservation measure, as was the SecA1 preprotein translocase. The up-regulation of hydrogenases and various oxidoreductases suggests that electron flux across these pools of enzymes changes under heat stress. This work represents the first comparative proteomic analysis of the heat stress response in C. difficile strain 630, complementing the existing proteomics data sets and the single microarray comparative analysis of stress response. Thus we have a benchmark proteome for this pathogen, leading to a deeper understanding of its physiology and metabolism informed by the unique functional and adaptive processes used during a temperature upshift mimicking host pyrexia.
Collapse
Affiliation(s)
- Shailesh Jain
- School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, Co Londonderry, North Ireland, United Kingdom
| | | | | | | | | |
Collapse
|
76
|
Koerdt A, Orell A, Pham TK, Mukherjee J, Wlodkowski A, Karunakaran E, Biggs CA, Wright PC, Albers SV. Macromolecular fingerprinting of sulfolobus species in biofilm: a transcriptomic and proteomic approach combined with spectroscopic analysis. J Proteome Res 2011; 10:4105-19. [PMID: 21761944 PMCID: PMC3166137 DOI: 10.1021/pr2003006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Microorganisms in nature often live in surface-associated sessile communities, encased in a self-produced matrix, referred to as biofilms. Biofilms have been well studied in bacteria but in a limited way for archaea. We have recently characterized biofilm formation in three closely related hyperthermophilic crenarchaeotes: Sulfolobus acidocaldarius, S. solfataricus, and S. tokodaii. These strains form different communities ranging from simple carpet structures in S. solfataricus to high density tower-like structures in S. acidocaldarius under static condition. Here, we combine spectroscopic, proteomic, and transcriptomic analyses to describe physiological and regulatory features associated with biofilms. Spectroscopic analysis reveals that in comparison to planktonic life-style, biofilm life-style has distinctive influence on the physiology of each Sulfolobus spp. Proteomic and transcriptomic data show that biofilm-forming life-style is strain specific (eg ca. 15% of the S. acidocaldarius genes were differently expressed, S. solfataricus and S. tokodaii had ∼3.4 and ∼1%, respectively). The -omic data showed that regulated ORFs were widely distributed in basic cellular functions, including surface modifications. Several regulated genes are common to biofilm-forming cells in all three species. One of the most striking common response genes include putative Lrs14-like transcriptional regulators, indicating their possible roles as a key regulatory factor in biofilm development. S. acidocaldarius, S. solfataricus, and S. tokodaii strains were grown independently as biofilms. Comparison between planktonic and biofilm cell popupations of all three strains was performed by spectroscopic analysis (FTIR and XPS), iTRAQ proteomics, and RNA microarrays. To highlight common features in biofilm formation among the Sulfolobus strains, the data is presented as a comparative analysis. One of the most striking common response genes include putative Lrs14-like transcriptional regulators, suggesting their roles as key regulatory factor in biofilm development.
Collapse
Affiliation(s)
- Andrea Koerdt
- Molecular Biology of Archaea, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, 35043 Marburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Bewley MA, Pham TK, Marriott HM, Noirel J, Chu HP, Ow SY, Ryazanov AG, Read RC, Whyte MKB, Chain B, Wright PC, Dockrell DH. Proteomic evaluation and validation of cathepsin D regulated proteins in macrophages exposed to Streptococcus pneumoniae. Mol Cell Proteomics 2011; 10:M111.008193. [PMID: 21474794 PMCID: PMC3108842 DOI: 10.1074/mcp.m111.008193] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 04/01/2011] [Indexed: 11/23/2022] Open
Abstract
Macrophages are central effectors of innate immune responses to bacteria. We have investigated how activation of the abundant macrophage lysosomal protease, cathepsin D, regulates the macrophage proteome during killing of Streptococcus pneumoniae. Using the cathepsin D inhibitor pepstatin A, we demonstrate that cathepsin D differentially regulates multiple targets out of 679 proteins identified and quantified by eight-plex isobaric tag for relative and absolute quantitation. Our statistical analysis identified 18 differentially expressed proteins that passed all paired t-tests (α = 0.05). This dataset was enriched for proteins regulating the mitochondrial pathway of apoptosis or inhibiting competing death programs. Five proteins were selected for further analysis. Western blotting, followed by pharmacological inhibition or genetic manipulation of cathepsin D, verified cathepsin D-dependent regulation of these proteins, after exposure to S. pneumoniae. Superoxide dismutase-2 up-regulation was temporally related to increased reactive oxygen species generation. Gelsolin, a known regulator of mitochondrial outer membrane permeabilization, was down-regulated in association with cytochrome c release from mitochondria. Eukaryotic elongation factor (eEF2), a regulator of protein translation, was also down-regulated by cathepsin D. Using absence of the negative regulator of eEF2, eEF2 kinase, we confirm that eEF2 function is required to maintain expression of the anti-apoptotic protein Mcl-1, delaying macrophage apoptosis and confirm using a murine model that maintaining eEF2 function is associated with impaired macrophage apoptosis-associated killing of Streptococcus pneumoniae. These findings demonstrate that cathepsin D regulates multiple proteins controlling the mitochondrial pathway of macrophage apoptosis or competing death processes, facilitating intracellular bacterial killing.
Collapse
Affiliation(s)
| | - Trong K. Pham
- §ChELSI Institute, Department of Chemical and Processing Engineering, University of Sheffield, Sheffield, UK
| | | | - Josselin Noirel
- §ChELSI Institute, Department of Chemical and Processing Engineering, University of Sheffield, Sheffield, UK
| | - Hseuh-Ping Chu
- ‖Department of Pharmacology University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Jersey, USA
| | - Saw Y. Ow
- §ChELSI Institute, Department of Chemical and Processing Engineering, University of Sheffield, Sheffield, UK
| | - Alexey G. Ryazanov
- ‖Department of Pharmacology University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Jersey, USA
| | - Robert C. Read
- From the ‡Medical School
- ‡‡Sheffield Teaching Hospitals and
| | | | - Benny Chain
- ¶Division of Infection and Immunity, University College London, London, UK
| | - Phillip C. Wright
- §ChELSI Institute, Department of Chemical and Processing Engineering, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
78
|
Karunakaran E, Mukherjee J, Ramalingam B, Biggs CA. "Biofilmology": a multidisciplinary review of the study of microbial biofilms. Appl Microbiol Biotechnol 2011; 90:1869-81. [PMID: 21538113 DOI: 10.1007/s00253-011-3293-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 03/26/2011] [Accepted: 03/27/2011] [Indexed: 11/29/2022]
Abstract
The observation of biofilm formation is not a new phenomenon. The prevalence and significance of biofilm and aggregate formation in various processes have encouraged extensive research in this field for more than 40 years. In this review, we highlight techniques from different disciplines that have been used to successfully describe the extracellular, surface and intracellular elements that are predominant in understanding biofilm formation. To reduce the complexities involved in studying biofilms, researchers in the past have generally taken a parts-based, disciplinary specific approach to understand the different components of biofilms in isolation from one another. Recently, a few studies have looked into combining the different techniques to achieve a more holistic understanding of biofilms, yet this approach is still in its infancy. In order to attain a global understanding of the processes involved in the formation of biofilms and to formulate effective biofilm control strategies, researchers in the next decade should recognise that the study of biofilms, i.e. biofilmology, has evolved into a discipline in its own right and that mutual cooperation between the various disciplines towards a multidisciplinary research vision is vital in this field.
Collapse
Affiliation(s)
- Esther Karunakaran
- Department of Chemical and Biological Engineering, ChELSI Institute, The University of Sheffield, Sheffield, UK
| | | | | | | |
Collapse
|
79
|
Sialidase and sialoglycoproteases can modulate virulence in Porphyromonas gingivalis. Infect Immun 2011; 79:2779-91. [PMID: 21502589 DOI: 10.1128/iai.00106-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The Porphyromonas gingivalis recombinant VimA can interact with the gingipains and several other proteins, including a sialidase. Sialylation can be involved in protein maturation; however, its role in virulence regulation in P. gingivalis is unknown. The three sialidase-related proteins in P. gingivalis showed the characteristic sialidase Asp signature motif (SXDXGXTW) and other unique domains. To evaluate the roles of the associated genes, randomly chosen P. gingivalis isogenic mutants created by allelic exchange and designated FLL401 (PG0778::ermF), FLL402 (PG1724::ermF), and FLL403 (PG0352::ermF-ermAM) were characterized. Similar to the wild-type strain, FLL402 and FLL403 displayed a black-pigmented phenotype in contrast to FLL401, which was not black pigmented. Sialidase activity in P. gingivalis FLL401 was reduced by approximately 70% in comparison to those in FLL402 and FLL403, which were reduced by approximately 42% and 5%, respectively. Although there were no changes in the expression of the gingipain genes, their activities were reduced by 60 to 90% in all the isogenic mutants compared to that for the wild type. Immunoreactive bands representing the catalytic domains for RgpA, RgpB, and Kgp were present in FLL402 and FLL403 but were missing in FLL401. While adhesion was decreased, the capacity for invasion of epithelial cells by the isogenic mutants was increased by 11 to 16% over that of the wild-type strain. Isogenic mutants defective in PG0778 and PG0352 were more sensitive to hydrogen peroxide than the wild type. Taken together, these results suggest that the P. gingivalis sialidase activity may be involved in regulating gingipain activity and other virulence factors and may be important in the pathogenesis of this organism.
Collapse
|
80
|
Mukherjee J, Ow SY, Noirel J, Biggs CA. Quantitative protein expression and cell surface characteristics of Escherichia coli MG1655 biofilms. Proteomics 2011; 11:339-51. [PMID: 21268264 DOI: 10.1002/pmic.201000386] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 10/05/2010] [Accepted: 11/01/2010] [Indexed: 11/06/2022]
Abstract
Cell surface physicochemical characterization techniques were combined with quantitative changes in protein expression, to investigate the biological and biophysical changes of Escherichia coli MG1655 cells when grown as a biofilm (BIO). The overall surface charge of BIO cells was found to be less negative, highlighting the need for a lower electrophoretic mobility for attachment to occur. Comparison of the chemical functional groups on the cell surface showed similar profiles, with the absorbance intensity higher for proteins and carbohydrates in the BIO cells. Quantitative proteomic analysis demonstrated that 3 proteins were significantly increased, and 9 proteins significantly decreased in abundance, in cells grown as a BIO compared to their planktonic counterparts, with 7 of these total 12 proteins unique to this study. Proteins showing significant increased or decreased abundance include proteins involved in acid resistance, DNA protection and binding and ABC transporters. Further predictive analysis of the metabolic pathways showed an increased abundance of the amino acid metabolism and tricarboxylic acid (TCA) cycle, with a decrease in expression within the pentose phosphate and glycolysis pathways. It is therefore hypothesized that cells grown as a BIO are still energetically viable potentially using amino acids as an indirect carbon backbone source into the TCA cycle.
Collapse
Affiliation(s)
- Joy Mukherjee
- The ChELSI Institute, Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK
| | | | | | | |
Collapse
|