51
|
Zhang T, Huang T, Su Y, Gao J. Mesenchymal Stem Cells‐Based Targeting Delivery System: Therapeutic Promises and Immunomodulation against Tumor. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tianyuan Zhang
- Zhejiang Province Key Laboratory of Anti‐Cancer Drug Research College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| | - Ting Huang
- Zhejiang Province Key Laboratory of Anti‐Cancer Drug Research College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| | - Yuanqin Su
- Zhejiang Province Key Laboratory of Anti‐Cancer Drug Research College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| | - Jianqing Gao
- Zhejiang Province Key Laboratory of Anti‐Cancer Drug Research College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
- Cancer Center of Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| |
Collapse
|
52
|
Shackleton EG, Ali HY, Khan M, Pockley GA, McArdle SE. Novel Combinatorial Approaches to Tackle the Immunosuppressive Microenvironment of Prostate Cancer. Cancers (Basel) 2021; 13:1145. [PMID: 33800156 PMCID: PMC7962457 DOI: 10.3390/cancers13051145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa) is the second-most common cancer in men worldwide and treatment options for patients with advanced or aggressive prostate cancer or recurrent disease continue to be of limited success and are rarely curative. Despite immune checkpoint blockade (ICB) efficacy in some melanoma, lung, kidney and breast cancers, immunotherapy efforts have been remarkably unsuccessful in PCa. One hypothesis behind this lack of efficacy is the generation of a distinctly immunosuppressive prostate tumor microenvironment (TME) by regulatory T cells, MDSCs, and type 2 macrophages which have been implicated in a variety of pathological conditions including solid cancers. In PCa, Tregs and MDSCs are attracted to TME by low-grade chronic inflammatory signals, while tissue-resident type 2 macrophages are induced by cytokines such as IL4, IL10, IL13, transforming growth factor beta (TGFβ) or prostaglandin E2 (PGE2) produced by Th2 cells. These then drive tumor progression, therapy resistance and the generation of castration resistance, ultimately conferring a poor prognosis. The biology of MDSC and Treg is highly complex and the development, proliferation, maturation or function can each be pharmacologically mediated to counteract the immunosuppressive effects of these cells. Herein, we present a critical review of Treg, MDSC and M2 involvement in PCa progression but also investigate a newly recognized type of immune suppression induced by the chronic stimulation of the sympathetic adrenergic signaling pathway and propose targeted strategies to be used in a combinatorial modality with immunotherapy interventions such as ICB, Sipuleucel-T or antitumor vaccines for an enhanced anti-PCa tumor immune response. We conclude that a strategic sequence of therapeutic interventions in combination with additional holistic measures will be necessary to achieve maximum benefit for PCa patients.
Collapse
Affiliation(s)
- Erin G. Shackleton
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (E.G.S.); (H.Y.A.); (G.A.P.)
| | - Haleema Yoosuf Ali
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (E.G.S.); (H.Y.A.); (G.A.P.)
| | - Masood Khan
- Department of Urology, University Hospitals of Leicester NHS Trust, Leicester LE1 5WW, UK;
| | - Graham A. Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (E.G.S.); (H.Y.A.); (G.A.P.)
- Centre for Health, Ageing and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Stephanie E. McArdle
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (E.G.S.); (H.Y.A.); (G.A.P.)
- Centre for Health, Ageing and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| |
Collapse
|
53
|
Tumor-resident adenosine-producing mesenchymal stem cells as a potential target for cancer treatment. Clin Exp Med 2021; 21:205-213. [PMID: 33484380 DOI: 10.1007/s10238-020-00674-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023]
Abstract
The development of new therapies based on tumor biology is one of the main topics in cancer treatment. In this regard, investigating the microenvironment and cellular composition of the tumor is of particular interest. Mesenchymal stem cells (MSCs) are a major group of cells in the tumor tissue and play a critical role in tumor growth and development. Investigating the mechanisms by which MSCs influence tumor growth and progression is very useful in establishing new therapeutic approaches. MSCs have some immunological capacities, including anti-inflammatory, immune-regulatory, and immune-suppressive abilities, which help the tumor growth in the inflammatory condition. They can suppress the proliferation and activation of CD4 + T cells and direct them toward the regulatory phenotype through the release of some factors such as indoleamine 2,3-dioxygenase, prostaglandin E2, and HO-1, PD-1 ligands (PD-L1 and PD-L2) and promote tolerance and apoptosis. Besides, these cells are able to produce adenosine. Adenosine has a key role in controlling the immune system by signaling through receptors located on the surface of immune cells. It plays a very essential role in tumor growth and progression. In the present review, we investigate and introduce adenosine-producing mesenchymal stem cells as a potential target for cancer treatment.
Collapse
|
54
|
Nwabo Kamdje AH, Seke Etet PF, Simo Tagne R, Vecchio L, Lukong KE, Krampera M. Tumor Microenvironment Uses a Reversible Reprogramming of Mesenchymal Stromal Cells to Mediate Pro-tumorigenic Effects. Front Cell Dev Biol 2020; 8:545126. [PMID: 33330442 PMCID: PMC7710932 DOI: 10.3389/fcell.2020.545126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022] Open
Abstract
The role of mesenchymal stromal cells (MSCs) in the tumor microenvironment is well described. Available data support that MSCs display anticancer activities, and that their reprogramming by cancer cells in the tumor microenvironment induces their switch toward pro-tumorigenic activities. Here we discuss the recent evidence of pro-tumorigenic effects of stromal cells, in particular (i) MSC support to cancer cells through the metabolic reprogramming necessary to maintain their malignant behavior and stemness, and (ii) MSC role in cancer cell immunosenescence and in the establishment and maintenance of immunosuppression in the tumor microenvironment. We also discuss the mechanisms of tumor microenvironment mediated reprogramming of MSCs, including the effects of hypoxia, tumor stiffness, cancer-promoting cells, and tumor extracellular matrix. Finally, we summarize the emerging strategies for reprogramming tumor MSCs to reactivate anticancer functions of these stromal cells.
Collapse
Affiliation(s)
- Armel H. Nwabo Kamdje
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences (FMBS), University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Paul F. Seke Etet
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences (FMBS), University of Ngaoundéré, Ngaoundéré, Cameroon
- Center for Sustainable Health and Development, Garoua, Cameroon
| | - Richard Simo Tagne
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences (FMBS), University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Lorella Vecchio
- Center for Sustainable Health and Development, Garoua, Cameroon
| | - Kiven Erique Lukong
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mauro Krampera
- Section of Hematology, Stem Cell Research Laboratory, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
55
|
Nwabo Kamdje AH, Seke Etet PF, Simo RT, Vecchio L, Lukong KE, Krampera M. Emerging data supporting stromal cell therapeutic potential in cancer: reprogramming stromal cells of the tumor microenvironment for anti-cancer effects. Cancer Biol Med 2020; 17:828-841. [PMID: 33299638 PMCID: PMC7721102 DOI: 10.20892/j.issn.2095-3941.2020.0133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/20/2020] [Indexed: 02/03/2023] Open
Abstract
After more than a decade of controversy on the role of stromal cells in the tumor microenvironment, the emerging data shed light on pro-tumorigenic and potential anti-cancer factors, as well as on the roots of the discrepancies. We discuss the pro-tumorigenic effects of stromal cells, considering the effects of tumor drivers like hypoxia and tumor stiffness on these cells, as well as stromal cell-mediated adiposity and immunosuppression in the tumor microenvironment, and cancer initiating cells' cellular senescence and adaptive metabolism. We summarize the emerging data supporting stromal cell therapeutic potential in cancer, discuss the possibility to reprogram stromal cells of the tumor microenvironment for anti-cancer effects, and explore some causes of discrepancies on the roles of stromal cells in cancer in the available literature.
Collapse
Affiliation(s)
- Armel Hervé Nwabo Kamdje
- Department of Biomedical Sciences, University of Ngaoundere, Faculty of Science, Ngaoundere 454, Cameroon,Correspondence to: Armel Hervé Nwabo Kamdje, E-mail:
| | - Paul Faustin Seke Etet
- Department of Physiological Sciences and Biochemistry, University of Ngaoundéré, Garoua 454, Cameroon,Center for Sustainable Health and Development, Garoua 454, Cameroon
| | - Richard Tagne Simo
- Department of Biomedical Sciences, University of Ngaoundere, Faculty of Science, Ngaoundere 454, Cameroon
| | - Lorella Vecchio
- Center for Sustainable Health and Development, Garoua 454, Cameroon
| | - Kiven Erique Lukong
- Department of Biochemistry, Microbiology & Immunology, University of Saskatchewan, College of Medicine, Saskatoon SK S7N 5E5, Canada
| | - Mauro Krampera
- Department of Medicine, University of Verona, Section of Hematology, Stem Cell Research Laboratory, Verona 37134, Italy
| |
Collapse
|
56
|
Brennen WN, J Thorek DL, Jiang W, Krueger TE, Antony L, Denmeade SR, Isaacs JT. Overcoming stromal barriers to immuno-oncological responses via fibroblast activation protein-targeted therapy. Immunotherapy 2020; 13:155-175. [PMID: 33148078 DOI: 10.2217/imt-2020-0066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The tumor microenvironment contributes to disease progression through multiple mechanisms, including immune suppression mediated in part by fibroblast activation protein (FAP)-expressing cells. Herein, a review of FAP biology is presented, supplemented with primary data. This includes FAP expression in prostate cancer and activation of latent reservoirs of TGF-β and VEGF to produce a positive feedback loop. This collectively suggests a normal wound repair process subverted during cancer pathophysiology. There has been immense interest in targeting FAP for diagnostic, monitoring and therapeutic purposes. Until recently, this development has outpaced an understanding of the biology; impeding optimal translation into the clinic. A summary of these applications is provided with an emphasis on eliminating tumor-infiltrating FAP-positive cells to overcome stromal barriers to immuno-oncological responses.
Collapse
Affiliation(s)
- W Nathaniel Brennen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, MD 21287, USA
| | - Daniel L J Thorek
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63310, USA.,Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO 63310, USA
| | - Wen Jiang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Timothy E Krueger
- Department of Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lizamma Antony
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, MD 21287, USA
| | - Samuel R Denmeade
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, MD 21287, USA
| | - John T Isaacs
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
57
|
Aboulkheyr Es H, Bigdeli B, Zhand S, Aref AR, Thiery JP, Warkiani ME. Mesenchymal stem cells induce PD-L1 expression through the secretion of CCL5 in breast cancer cells. J Cell Physiol 2020; 236:3918-3928. [PMID: 33145762 DOI: 10.1002/jcp.30135] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022]
Abstract
Various factors in the tumor microenvironment (TME) regulate the expression of PD-L1 in cancer cells. In TME, mesenchymal stem cells (MSCs) play a crucial role in tumor progression, metastasis, and drug resistance. Emerging evidence suggests that MSCs can modulate the immune-suppression capacity of TME through the stimulation of PD-L1 expression in various cancers; nonetheless, their role in the induction of PD-L1 in breast cancer remained elusive. Here, we assessed the potential of MSCs in the stimulation of PD-L1 expression in a low PD-L1 breast cancer cell line and explored its associated cytokine. We assessed the expression of MSCs-related genes and their correlation with PD-L1 across 1826 breast cancer patients from the METABRIC cohort. After culturing an ER+/differentiated/low PD-L1 breast cancer cells with MSCs conditioned-medium (MSC-CM) in a microfluidic device, a variety of in-vitro assays was carried out to determine the role of MSC-CM in breast cancer cells' phenotype plasticity, invasion, and its effects on induction of PD-L1 expression. In-silico analysis showed a positive association between MSCs-related genes and PD-L1 expression in various types of breast cancer. Through functional assays, we revealed that MSC-CM not only prompts a phenotype switch but also stimulates PD-L1 expression at the protein level through secretion of various cytokines, especially CCL5. Treatment of MSCs with cytokine inhibitor pirfenidone showed a significant reduction in the secretion of CCL5 and consequently, expression of PD-L1 in breast cancer cells. We concluded that MSCs-derived CCL5 may act as a PD-L1 stimulator in breast cancer.
Collapse
Affiliation(s)
- Hamidreza Aboulkheyr Es
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Bahareh Bigdeli
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Sareh Zhand
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Amir R Aref
- Department of Medical Oncology, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Jean P Thiery
- Inserm Unit 1186, Comprehensive Cancer Center, Institute Gustave Roussy, Villejuif, France.,Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Guangzhou, China
| | - Majid E Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia.,Institute of Molecular Medicine, Sechenov University, Moscow, Russia
| |
Collapse
|
58
|
Zheng P, Li W. Crosstalk Between Mesenchymal Stromal Cells and Tumor-Associated Macrophages in Gastric Cancer. Front Oncol 2020; 10:571516. [PMID: 33163402 PMCID: PMC7581781 DOI: 10.3389/fonc.2020.571516] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor microenvironment (TME) consisting of distinct cell types including stromal cells and immune cells has recently emerged as a pivotal player in tumor development and progression. Mesenchymal stromal cells (MSCs) and tumor-associated macrophages (TAMs) are two representative cells in the TME with plastic properties. This review will focus on the evolution of phenotypes and functions of either MSCs or TAMs, which is “educated” by the TME, as well as interactions between MSCs and TAMs contributing to the distinct stages of tumor biology in gastric cancer. MSCs exert immunoregulatory effects on macrophages and polarize them toward M2-like TAMs, via cell–cell contact and paracrine or extracellular vesicle (EV) transfer mechanism. In turn, M2-TAMs modulate the transition of “naive” MSCs into tumor-derived MSCs, which possess a more potent pro-tumor role than the parent. Moreover, the cross talk between MSCs and TAMs could contribute to cancer biology by inducing the EMT process, metastasis, immune invasion, and immunotherapy resistance in cancer cells. However, molecular mechanisms underlying interactions between MSCs and TAMs in gastric cancer progression need to be thoroughly elucidated, which may provide attractive targets for making promising novel strategies for gastric cancer therapy.
Collapse
Affiliation(s)
- Ping Zheng
- Department of Laboratory Medicine, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Wei Li
- Center of Research Laboratory, The First People's Hospital of Lianyungang, Lianyungang, China
| |
Collapse
|
59
|
Rühle A, Thomsen A, Saffrich R, Voglstätter M, Bieber B, Sprave T, Wuchter P, Vaupel P, Huber PE, Grosu AL, Nicolay NH. Multipotent mesenchymal stromal cells are sensitive to thermic stress – potential implications for therapeutic hyperthermia. Int J Hyperthermia 2020; 37:430-441. [DOI: 10.1080/02656736.2020.1758350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Alexander Rühle
- Department of Radiation Oncology, Freiburg University Medical Center, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Thomsen
- Department of Radiation Oncology, Freiburg University Medical Center, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rainer Saffrich
- Institute of Transfusion Medicine and Immunology, German Red Cross Blood Service Baden-Württemberg-Hessen, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Maren Voglstätter
- Department of Radiation Oncology, Freiburg University Medical Center, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Birgit Bieber
- Department of Radiation Oncology, Freiburg University Medical Center, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tanja Sprave
- Department of Radiation Oncology, Freiburg University Medical Center, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick Wuchter
- Institute of Transfusion Medicine and Immunology, German Red Cross Blood Service Baden-Württemberg-Hessen, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Peter Vaupel
- Department of Radiation Oncology, Freiburg University Medical Center, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter E. Huber
- Department of Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, Freiburg University Medical Center, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nils H. Nicolay
- Department of Radiation Oncology, Freiburg University Medical Center, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
60
|
Roscigno G, Cirella A, Affinito A, Quintavalle C, Scognamiglio I, Palma F, Ingenito F, Nuzzo S, De Micco F, Cuccuru A, Thomas R, Condorelli G. miR-216a Acts as a Negative Regulator of Breast Cancer by Modulating Stemness Properties and Tumor Microenvironment. Int J Mol Sci 2020; 21:ijms21072313. [PMID: 32230799 PMCID: PMC7178064 DOI: 10.3390/ijms21072313] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/18/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most frequent malignancy in females in terms of both incidence and mortality. Underlying the high mortality rate is the presence of cancer stem cells, which divide indefinitely and are resistant to conventional chemotherapies, so causing tumor relapse. In the present study, we identify miR-216a-5p as a downregulated microRNA in breast cancer stem cells vs. the differentiated counterpart. We demonstrate that overexpression of miR-216a-5p impairs stemness markers, mammosphere formation, ALDH activity, and the level of Toll-like receptor 4 (TLR4), which plays a significant role in breast cancer progression and metastasis by leading to the release of pro-inflammatory molecules, such as interleukin 6 (IL-6). Indeed, miR-216a regulates the crosstalk between cancer cells and the cells of the microenvironment, in particular cancer-associated fibroblasts (CAFs), through regulation of the TLR4/IL6 pathway. Thus, miR-216a has an important role in the regulation of stem phenotype, decreasing stem-like properties and affecting the cross-talk between cancer cells and the tumor microenvironment.
Collapse
Affiliation(s)
- Giuseppina Roscigno
- Department of Molecular Medicine and Medical Biotechnology, “Federico II” University of Naples, 80131 Naples, Italy; (G.R.); (A.C.); (I.S.)
| | - Assunta Cirella
- Department of Molecular Medicine and Medical Biotechnology, “Federico II” University of Naples, 80131 Naples, Italy; (G.R.); (A.C.); (I.S.)
| | - Alessandra Affinito
- Percuros BV, 2333 CL Leiden, The Netherlands; (A.A.); (C.Q.); (F.P.); (F.I.)
| | - Cristina Quintavalle
- Percuros BV, 2333 CL Leiden, The Netherlands; (A.A.); (C.Q.); (F.P.); (F.I.)
- IEOS (Istituto per l’Endocrinologia e l’Oncologia Sperimentale “G. Salvatore”), CNR (Consiglio Nazionale delle Ricerche), 80131 Naples, Italy
| | - Iolanda Scognamiglio
- Department of Molecular Medicine and Medical Biotechnology, “Federico II” University of Naples, 80131 Naples, Italy; (G.R.); (A.C.); (I.S.)
| | - Francesco Palma
- Percuros BV, 2333 CL Leiden, The Netherlands; (A.A.); (C.Q.); (F.P.); (F.I.)
| | - Francesco Ingenito
- Percuros BV, 2333 CL Leiden, The Netherlands; (A.A.); (C.Q.); (F.P.); (F.I.)
| | - Silvia Nuzzo
- IRCCS SDN (Istituto di Ricovero e Cura a Carattere Scientifico, SYNLAB istituto di Diagnostica Nucleare), 80143 Naples, Italy;
| | - Francesca De Micco
- Mediterranea Cardiocentro, 80122 Naples, Italy; (F.D.M.); (A.C.); (R.T.)
| | - Antonio Cuccuru
- Mediterranea Cardiocentro, 80122 Naples, Italy; (F.D.M.); (A.C.); (R.T.)
| | - Renato Thomas
- Mediterranea Cardiocentro, 80122 Naples, Italy; (F.D.M.); (A.C.); (R.T.)
| | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, “Federico II” University of Naples, 80131 Naples, Italy; (G.R.); (A.C.); (I.S.)
- IEOS (Istituto per l’Endocrinologia e l’Oncologia Sperimentale “G. Salvatore”), CNR (Consiglio Nazionale delle Ricerche), 80131 Naples, Italy
- Correspondence: ; Tel.: +39-0815452821; Fax: +39-0817-704-795
| |
Collapse
|
61
|
Sai B, Dai Y, Fan S, Wang F, Wang L, Li Z, Tang J, Wang L, Zhang X, Zheng L, Chen F, Li G, Xiang J. Cancer-educated mesenchymal stem cells promote the survival of cancer cells at primary and distant metastatic sites via the expansion of bone marrow-derived-PMN-MDSCs. Cell Death Dis 2019; 10:941. [PMID: 31819035 PMCID: PMC6901580 DOI: 10.1038/s41419-019-2149-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are multipotent stromal cells that can differentiate into a variety of cell types. BMSCs are chemotactically guided towards the cancer cells and contribute to the formation of a cancer microenvironment. The homing of BMSCs was affected by various factors. Disseminated tumour cells (DTCs) in distant organs, especially in the bone marrow, are the source of cancer metastasis and cancer relapse. DTC survival is also determined by the microenvironment. Here we aim to elucidate how cancer-educated BMSCs promote the survival of cancer cells at primary tumour sites and distant sites. We highlight the dynamic change by identifying different gene expression signatures in intratumoral BMSCs and in BMSCs that move back in the bone marrow. Intratumoral BMSCs acquire high mobility and displayed immunosuppressive effects. Intratumoral BMSCs that ultimately home to the bone marrow exhibit a strong immunosuppressive function. Cancer-educated BMSCs promote the survival of lung cancer cells via expansion of MDSCs in bone marrow, primary tumour sites and metastatic sites. These Ly6G+ MDSCs suppress proliferation of T cells. CXCL5, nitric oxide and GM-CSF produced by cancer-educated BMSCs contribute to the formation of malignant microenvironments. Treatment with CXCL5 antibody, the iNOS inhibitor 1400w and GM-CSF antibody reduced MDSC expansion in the bone marrow, primary tumour sites and metastatic sites, and promoted the efficiency of PD-L1 antibody. Our study reveals that cancer-educated BMSCs are the component of the niche for primary lung cancer cells and DTCs, and that they can be the target for immunotherapy.
Collapse
Affiliation(s)
- Buqing Sai
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Yafei Dai
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Fan Wang
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Lujuan Wang
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Zheng Li
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jingqun Tang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Li Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Xina Zhang
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Leliang Zheng
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Fei Chen
- Department of Spinal Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Juanjuan Xiang
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China.
| |
Collapse
|
62
|
Javan MR, Khosrojerdi A, Moazzeni SM. New Insights Into Implementation of Mesenchymal Stem Cells in Cancer Therapy: Prospects for Anti-angiogenesis Treatment. Front Oncol 2019; 9:840. [PMID: 31555593 PMCID: PMC6722482 DOI: 10.3389/fonc.2019.00840] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022] Open
Abstract
Tumor microenvironment interacts with tumor cells, establishing an atmosphere to contribute or suppress the tumor development. Among the cells which play a role in the tumor microenvironment, mesenchymal stem cells (MSCs) have been demonstrated to possess the ability to orchestrate the fate of tumor cells, drawing the attention to the field. MSCs have been considered as cells with double-bladed effects, implicating either tumorigenic or anti-tumor activity. On the other side, the promising potential of MSCs in treating human cancer cells has been observed from the clinical studies. Among the beneficial characteristics of MSCs is the natural tumor-trophic migration ability, providing facility for drug delivery and, therefore, targeted treatment to detach tumor and metastatic cells. Moreover, these cells have been the target of engineering approaches, due to their easily implemented traits, in order to obtain the desired expression of anti-angiogenic, anti-proliferative, and pro-apoptotic properties, according to the tumor type. Tumor angiogenesis is the key characteristic of tumor progression and metastasis. Manipulation of angiogenesis has become an attractive approach for cancer therapy since the introduction of the first angiogenesis inhibitor, namely bevacizumab, for metastatic colorectal cancer therapy. This review tries to conclude the approaches, with focus on anti-angiogenesis approach, in implementing the MSCs to combat against tumor cell progression.
Collapse
Affiliation(s)
- Mohammad Reza Javan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Arezou Khosrojerdi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mohammad Moazzeni
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
63
|
Zhu Y, Liu J, Park J, Rai P, Zhai RG. Subcellular compartmentalization of NAD + and its role in cancer: A sereNADe of metabolic melodies. Pharmacol Ther 2019; 200:27-41. [PMID: 30974124 PMCID: PMC7010080 DOI: 10.1016/j.pharmthera.2019.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential biomolecule involved in many critical processes. Its role as both a driver of energy production and a signaling molecule underscores its importance in health and disease. NAD+ signaling impacts multiple processes that are dysregulated in cancer, including DNA repair, cell proliferation, differentiation, redox regulation, and oxidative stress. Distribution of NAD+ is highly compartmentalized, with each subcellular NAD+ pool differentially regulated and preferentially involved in distinct NAD+-dependent signaling or metabolic events. Emerging evidence suggests that targeting NAD+ metabolism is likely to repress many specific mechanisms underlying tumor development and progression, including proliferation, survival, metabolic adaptations, invasive capabilities, heterotypic interactions with the tumor microenvironment, and stress response including notably DNA maintenance and repair. Here we provide a comprehensive overview of how compartmentalized NAD+ metabolism in mitochondria, nucleus, cytosol, and extracellular space impacts cancer formation and progression, along with a discussion of the therapeutic potential of NAD+-targeting drugs in cancer.
Collapse
Affiliation(s)
- Yi Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, China; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jiaqi Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, China
| | - Joun Park
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Priyamvada Rai
- Department of Medicine/Medical Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rong G Zhai
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, China.
| |
Collapse
|
64
|
Kwon S, Yoo KH, Sym SJ, Khang D. Mesenchymal stem cell therapy assisted by nanotechnology: a possible combinational treatment for brain tumor and central nerve regeneration. Int J Nanomedicine 2019; 14:5925-5942. [PMID: 31534331 PMCID: PMC6681156 DOI: 10.2147/ijn.s217923] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) intrinsically possess unique features that not only help in their migration towards the tumor-rich environment but they also secrete versatile types of secretomes to induce nerve regeneration and analgesic effects at inflammatory sites. As a matter of course, engineering MSCs to enhance their intrinsic abilities is growing in interest in the oncology and regenerative field. However, the concern of possible tumorigenesis of genetically modified MSCs prompted the development of non-viral transfected MSCs armed with nanotechnology for more effective cancer and regenerative treatment. Despite the fact that a large number of successful studies have expanded our current knowledge in tumor-specific targeting, targeting damaged brain site remains enigmatic due to the presence of a blood–brain barrier (BBB). A BBB is a barrier that separates blood from brain, but MSCs with intrinsic features of transmigration across the BBB can efficiently deliver desired drugs to target sites. Importantly, MSCs, when mediated by nanoparticles, can further enhance tumor tropism and can regenerate the damaged neurons in the central nervous system through the promotion of axon growth. This review highlights the homing and nerve regenerative abilities of MSCs in order to provide a better understanding of potential cell therapeutic applications of non-genetically engineered MSCs with the aid of nanotechnology.
Collapse
Affiliation(s)
- Song Kwon
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea
| | - Kwai Han Yoo
- Department of Internal Medicine, Division of Hematology, School of Medicine, Gachon University Gil Medical Center, Incheon, 21565, South Korea
| | - Sun Jin Sym
- Department of Internal Medicine, Division of Hematology, School of Medicine, Gachon University Gil Medical Center, Incheon, 21565, South Korea
| | - Dongwoo Khang
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea.,Department of Gachon Advanced Institute for Health Science & Technology (Gaihst), Gachon University, Incheon 21999, South Korea.,Department of Physiology, School of Medicine, Gachon University, Incheon 21999, South Korea
| |
Collapse
|
65
|
Nakamura Y, Miyata Y, Matsuo T, Shida Y, Hakariya T, Ohba K, Taima T, Ito A, Suda T, Hakomori SI, Saito S, Sakai H. Stage-specific embryonic antigen-4 is a histological marker reflecting the malignant behavior of prostate cancer. Glycoconj J 2019; 36:409-418. [PMID: 31243630 PMCID: PMC6744380 DOI: 10.1007/s10719-019-09882-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/15/2019] [Accepted: 06/20/2019] [Indexed: 12/20/2022]
Abstract
Stage-specific embryonic antigen-4 (SSEA-4), a specific marker for pluripotent stem cells, plays an important role in the malignant behavior of several cancers. Here, SSEA-4 expression was evaluated by immunohistochemistry using monoclonal antibody RM1 specific to SSEA-4 in 181 and 117 prostate cancer (PC) specimens obtained by biopsy and radical prostatectomy (RP), respectively. The relationships between SSEA-4 expression in cancer cells or the presence of SSEA-4-positive tumor-infiltrating immune cells (TICs) and clinicopathological parameters were analyzed. SSEA-4 expression in cancer cells was significantly associated with Gleason score, local progression, and lymph node and distant metastasis. In RP specimens, high SSEA-4 expression in cancer cells and the presence of SSEA-4-positive TICs were significant predictors of pT3, i.e., invasion and worse biochemical recurrence (BCR) after RP, respectively, in univariate analysis. In contrast, combination of high SSEA-4 expression in cancer cells and the presence of SSEA-4-positive TICs was an independent predictor for pT3 and BCR in multivariate analysis. Biologically this combination was also independently associated with suppression of apoptosis. Thus, the co-expression of SSEA-4 in cancer cells and TICs may have crucial roles in the malignant aggressiveness and prognosis of PC. Invasive potential and suppression of apoptosis may be linked to SSEA-4 expression.
Collapse
Affiliation(s)
- Yuichiro Nakamura
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Yasuyoshi Miyata
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Tomohiro Matsuo
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Yohei Shida
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Tomoaki Hakariya
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Kojiro Ohba
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Takenobu Taima
- Department of Urology, Tohoku University Graduate School of Medicine, Miyagi, 980-8574, Japan
| | - Akihiro Ito
- Department of Urology, Tohoku University Graduate School of Medicine, Miyagi, 980-8574, Japan
| | - Tetsuji Suda
- Department of Urology, University of the Ryukyus, Okinawa, 903-0215, Japan
| | - Sen-Itiroh Hakomori
- Departments of Pathobiology and Global Health, University of Washington, Seattle, WA, 98112, USA
| | - Seiichi Saito
- Department of Urology, University of the Ryukyus, Okinawa, 903-0215, Japan
| | - Hideki Sakai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
66
|
Chen J, Ji T, Wu D, Jiang S, Zhao J, Lin H, Cai X. Human mesenchymal stem cells promote tumor growth via MAPK pathway and metastasis by epithelial mesenchymal transition and integrin α5 in hepatocellular carcinoma. Cell Death Dis 2019; 10:425. [PMID: 31142737 PMCID: PMC6541606 DOI: 10.1038/s41419-019-1622-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/14/2019] [Accepted: 04/29/2019] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) appear to be a potential vehicle for anticancer drugs due to their excellent tumor tropism ability. However, the interactions between MSCs and hepatocellular carcinoma (HCC) are quite controversial and the underlying mechanisms are ambiguous. In this study, an investigation was conducted into the effect of human MSCs (hMSCs) on tumor proliferation and metastasis both in xenograft and orthotopic models. It was discovered that hMSCs could promote tumor growth though activating mitogen-activated protein kinase (MAPK) signaling pathway and promote metastasis by epithelial mesenchymal transition (EMT) in vivo. To test whether hMSCs could induce immunosuppressive effects, the expression of the Natural killer (NK) cell marker CD56 was measured by immunohistochemical staining and the expression of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were measured by qRT-PCR. It was found out that CD56 expression significantly decreased, while TNF-α and IL-6 expression increased in the hMSCs-treated tissues. Mechanistically, RNA sequencing was performed, which led to a discovery that integrin α5 (ITGA5) was over-expressed in hMSCs-treated HCC. ITGA5 siRNAs blocked the hMSCs-induced migration and invasion of HCC, while over-expression of ITGA5 promoted the migration and invasion ability in HCC-hMSCs, indicating that the expression of ITGA5 is associated with hMSCs-induced tumor metastasis. These findings suggest that hMSCs may play a vital role in HCC proliferation and metastasis and could be identified as a putative therapeutic target in HCC.
Collapse
Affiliation(s)
- Jiang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, Zhejiang, China
| | - Tong Ji
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, Zhejiang, China
| | - Di Wu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, Zhejiang, China
| | - Shi Jiang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, Zhejiang, China
| | - Jie Zhao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, Zhejiang, China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, Zhejiang, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, Zhejiang, China.
| |
Collapse
|
67
|
Brennen WN, Schweizer MT, Wang H, Bivalacqua TJ, Partin AW, Lim SJ, Chapman C, Abdallah R, Levy O, Bhowmick NA, Karp JM, De Marzo A, Isaacs JT, Denmeade SR. In Reply. Stem Cells Transl Med 2019; 8:739-740. [PMID: 30925030 PMCID: PMC6591553 DOI: 10.1002/sctm.19-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 11/25/2022] Open
Affiliation(s)
- W Nathaniel Brennen
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael T Schweizer
- Department of Medicine, University of Washington, Seattle, Washington, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Hao Wang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Trinity J Bivalacqua
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alan W Partin
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Su Jin Lim
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Carolyn Chapman
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rehab Abdallah
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Oren Levy
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Division of Health Sciences and Technology, Harvard-MIT, Cambridge, Massachusetts, USA
| | - Neil A Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jeffrey M Karp
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Division of Health Sciences and Technology, Harvard-MIT, Cambridge, Massachusetts, USA
| | - Angelo De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John T Isaacs
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Samuel R Denmeade
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
68
|
Schweizer MT, Wang H, Bivalacqua TJ, Partin AW, Lim SJ, Chapman C, Abdallah R, Levy O, Bhowmick NA, Karp JM, De Marzo A, Isaacs JT, Brennen WN, Denmeade SR. A Phase I Study to Assess the Safety and Cancer-Homing Ability of Allogeneic Bone Marrow-Derived Mesenchymal Stem Cells in Men with Localized Prostate Cancer. Stem Cells Transl Med 2019; 8:441-449. [PMID: 30735000 PMCID: PMC6477003 DOI: 10.1002/sctm.18-0230] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022] Open
Abstract
Animal models show that systemically administered bone marrow‐derived mesenchymal stem cells (MSCs) home to sites of primary and metastatic prostate cancer (PC)—making them candidates to selectively deliver cytotoxic agents. To further assess this potential as a cell‐based therapeutic vehicle, a phase I study testing homing of systemically infused allogeneic MSCs preprostatectomy was conducted. The primary objective was to assess safety and feasibility and to determine if MSCs accumulate within primary PC tissue. MSCs were quantified using beads, emulsion, amplification, magnetics digital polymerase chain reaction (limit of detection: ≥0.01% MSCs) to measure allogeneic MSC DNA relative to recipient DNA. MSCs were harvested from healthy donors and expanded ex vivo using standard protocols by the Johns Hopkins Cell Therapy Laboratory. PC patients planning to undergo prostatectomy were eligible for MSC infusion. Enrolled subjects received a single intravenous infusion 4–6 days prior to prostatectomy. The first three subjects received 1 x 106 cells per kilogram (maximum 1 x 108 cells), and subsequent four patients received 2 x 106 cells per kilogram (maximum 2 x 108 cells). No dose‐limiting toxicities were observed and all patients underwent prostatectomy without delay. Pathologic assessment of prostate cores revealed ≥70% tumor involvement in cores from four subjects, with benign tissue in the others. MSCs were undetectable in all subjects, and the study was stopped early for futility. MSC infusions appear safe in PC patients. Although intended for eventual use in metastatic PC patients, in this study, MSCs did not home primary tumors in sufficient levels to warrant further development as a cell‐based therapeutic delivery strategy using standard ex vivo expansion protocols. stem cells translational medicine2019;8:441–449
Collapse
Affiliation(s)
- Michael T Schweizer
- Department of Medicine, University of Washington, Seattle, Washington, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Hao Wang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Trinity J Bivalacqua
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alan W Partin
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Su Jin Lim
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Carolyn Chapman
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rehab Abdallah
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Oren Levy
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Neil A Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jeffrey M Karp
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Angelo De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John T Isaacs
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - W Nathaniel Brennen
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Samuel R Denmeade
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|