51
|
Yu M, Qi H, Gao X. Daidzein promotes milk synthesis and proliferation of mammary epithelial cells via the estrogen receptor α-dependent NFκB1 activation. Anim Biotechnol 2020; 33:43-52. [PMID: 32401613 DOI: 10.1080/10495398.2020.1763376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Isoflavones possess a wide range of physiological effects. However, it is still unclear whether isoflavones can promote milk synthesis in mammary gland. This study aimed to determine the effects of a main soy isoflavone, daidzein, on milk synthesis and proliferation of mammary epithelial cells (MECs) and reveal the underlying molecular mechanism. Primary bovine MECs were treated with different concentrations of daidzein (0, 5, 10, 20, 40, and 80 μM). Daidzein dose-dependently promoted α- and β-casein and lipid synthesis, cell cycle transition, and cell amount, with the best stimulatory effect at 20 μM. Daidzein also stimulated mTOR activation and Cyclin D1 and SREBP-1c expression. Daidzein induced the expression and nuclear localization of estrogen receptor α (ERα), and ERα knockdown blocked the stimulation of daidzein on these above signaling pathways. ERα knockdown also abolished the stimulation of daidzein on NFκB1 expression and phosphorylation, and NFκB1 was required for daidzein to enhance the mTOR, Cyclin D1 and SREBP-1c signaling pathways. In summary, our findings reveal that daidzein stimulates milk synthesis and proliferation of MECs via the ERα-dependent NFκB1 activation.
Collapse
Affiliation(s)
- Mengmeng Yu
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| | - Hao Qi
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| | - Xuejun Gao
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
52
|
Chen SI, Tseng HT, Hsieh CC. Evaluating the impact of soy compounds on breast cancer using the data mining approach. Food Funct 2020; 11:4561-4570. [PMID: 32400770 DOI: 10.1039/c9fo00976k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Accumulating evidence has shown that soy intake is associated with the promotion of health and prevention of cancers. However, the relationship between the intake of soy compounds and the risk of breast cancer is still debatable. In this study, we use mathematical models for assessing the impact of soy phytoestrogens and protein/peptide intervention on breast cancer development using the datasets acquired from a large number of published studies. We used data mining models, including the decision tree classification and association rule methods, to analyze 478 data collected from 201 research papers. The results indicated that the intervention of soy proteins and peptides, especially lunasin (LUN) and bowman-birk protease inhibitor (BBI), has a positive impact on different types of breast cancer, while the effects of soy phytoestrogens are inconsistent in breast cancer development. Among soy phytoestrogens, daidzein (DAI) exhibited the highest negative impact on breast cancer, followed by coumestrol (COU), soysapogenol (SAP), genistein (GEN), and equol (EQ). With regard to the type of cancer, phytoestrogens should be carefully considered in estrogen receptor (ER)+ or progesterone receptor (PR)+ breast cancer. In the case of ER-, PR- or triple negative type, both soy categories can be used as auxiliary interventions. In summary, this is the first study to use data mining to explore the relationship between the intake of soy phytoestrogens or proteins/peptides and breast cancer development. Our findings indicate that soy intervention might reduce breast cancer development. However, the specific soy compound and cancer type should be considered before allocating a precise nutrient intervention.
Collapse
Affiliation(s)
- Sheng-I Chen
- Department of Industrial Engineering and Management, National Chiao Tung University, Hsinchu 30010, Taiwan
| | | | | |
Collapse
|
53
|
Seeley AD, Jacobs KA, Signorile JF. Acute Soy Supplementation Improves 20-km Time Trial Performance, Power, and Speed. Med Sci Sports Exerc 2020; 52:170-177. [PMID: 31343517 DOI: 10.1249/mss.0000000000002102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Isoflavones, a chemical class of phytoestrogens found in soybeans and soy products, may have biological functions similar to estradiol. After binding with ERβ or perhaps independently of estrogen receptors, isoflavones may augment vascular endothelial relaxation, contributing to improved limb blood flow. PURPOSE To determine if acute fermented soy extract supplementation influences 20-km time trial cycling performance and cardiac hemodynamics compared with a placebo. METHODS Subjects included 25 cyclists and triathletes (31 ± 8 yr, V˙O2peak: 55.1 ± 8.4 mL·kg·min). Each subject completed a V˙O2peak assessment, familiarization, and two 20-km time trials in randomized order after ingestion of a fermented soy extract supplement or placebo. The fermented soy extract consisted of 30 g powdered supplement in 16 fl. ounces of water. The placebo contained the same quantities of organic cocoa powder and water. Each trial consisted of 60 min of rest, 30 min at 55% Wpeak, and a self-paced 20-km time trial. RESULTS Soy supplementation elicited a faster time to 20-km completion (-0.22 ± 0.51 min; -13 s), lower average HR (-5 ± 7 bpm), and significantly greater power (7 ± 3 W) and speed (0.42 ± 0.16 km·h) during the last 5 km of the time trial compared with placebo. Analysis of the results by relative fitness level (<57 vs ≥ 57 mL⋅kg⋅min) indicated that those with a higher level of fitness reaped the largest performance improvement alongside a reduced HR (-5 ± 7 bpm). CONCLUSIONS Ingestion of a fermented soy extract supplement improved sprint-distance performance through improvements in both power and speed. For those with great aerobic fitness, soy supplementation may help to decrease cardiac demand alongside performance improvement.
Collapse
Affiliation(s)
- Afton D Seeley
- Laboratory of Clinical and Applied Physiology, University of Miami, Coral Gables, FL
| | - Kevin A Jacobs
- Laboratory of Clinical and Applied Physiology, University of Miami, Coral Gables, FL
| | - Joseph F Signorile
- Laboratory of Neuromuscular Research and Active Aging, University of Miami, Coral Gables, FL
| |
Collapse
|
54
|
Bao T, Yang K, Long Z, Zeng L, Li Y. Systematic Pharmacological Methodology to Explore the Pharmacological Mechanism of Siwu Decoction for Osteoporosis. Med Sci Monit 2019; 25:8152-8171. [PMID: 31666500 PMCID: PMC6844540 DOI: 10.12659/msm.917393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/08/2019] [Indexed: 02/05/2023] Open
Abstract
Osteoporosis is an important health problem worldwide. Siwu decoction (SWD) and its modification have a good clinical effect on osteoporosis. However, the molecular mechanism of SWD on osteoporosis has not been thoroughly explained. A systematic pharmacological methodology was utilized to predict the active compounds and potential targets of SWD, collect the genes of osteoporosis and the known targets of SWD, and analyze the osteoporosis and SWD's network. Five networks were constructed and analyzed: (1) Osteoporosis genes' protein-protein interaction (PPI) network; (2) Compound-compound target network of SWD; (3) SWD-osteoporosis PPI network; (4) Compound-known target network of SWD; and (5) SWD known target- osteoporosis PPI network. Several osteoporosis and treatment-related targets (eg.,. HSP90AB1, FGFR1, HRAS, GRB2, and PGF), clusters, biological processes, and signaling pathways (e.g., PI3K-Akt signaling pathway, insulin signaling pathway, MAPK signaling pathway and FoxO signaling pathway) were found. The therapeutic effect of SWD on osteoporosis may be achieved by interfering with the biological processes and signaling pathways related to the development of osteoporosis.
Collapse
Affiliation(s)
- Tingting Bao
- Beijing University of Chinese Medicine, Beijing, P.R. China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P.R. China
| | - Kailin Yang
- Capital Medical University, Beijing, P.R. China
- Beijing Anzhen Hospital, Capital Medical University, Beijing, P.R. China
| | - Zhiyong Long
- Shantou University Medical College, Shantou, Guangdong, P.R. China
- Department of Rehabilitation Medicine, Guangdong Geriatric Institute, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, P.R. China
| | - Liuting Zeng
- Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China
| | - Yuehua Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P.R. China
| |
Collapse
|
55
|
Melo PF, Kalschne DL, Silva‐Buzanello RA, Amaral JS, Torquato AS, Corso MP, Falcão HG, Colla E, Ida EI, Canan C. Cereal bars functionalised with tempeh: nutritional composition, isoflavone content and consumer acceptance. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Priscila F. Melo
- Departamento de Alimentos Universidade Tecnológica Federal do Paraná Avenida Brasil, 4232, Parque Independência Medianeira 85884000 Brazil
| | - Daneysa L. Kalschne
- Departamento de Alimentos Universidade Tecnológica Federal do Paraná Avenida Brasil, 4232, Parque Independência Medianeira 85884000 Brazil
| | - Rosana A. Silva‐Buzanello
- Departamento de Alimentos Universidade Tecnológica Federal do Paraná Avenida Brasil, 4232, Parque Independência Medianeira 85884000 Brazil
| | - Joana S. Amaral
- Centro de Investigação de Montanha Instituto Politécnico de Bragança Campus de Santa Apolónia Bragança Portugal
| | - Alex S. Torquato
- Departamento de Química Universidade Tecnológica Federal do Paraná Avenida Brasil, 4232, Parque Independência Medianeira 85884000 Brazil
| | - Marinês P. Corso
- Departamento de Alimentos Universidade Tecnológica Federal do Paraná Avenida Brasil, 4232, Parque Independência Medianeira 85884000 Brazil
| | - Heloisa G. Falcão
- Departamento de Ciência e Tecnologia de Alimentos Centro de Ciências Agrárias Universidade Estadual de Londrina Rodovia Celso Garcia Cid Londrina 86057-970 Brazil
| | - Eliane Colla
- Departamento de Alimentos Universidade Tecnológica Federal do Paraná Avenida Brasil, 4232, Parque Independência Medianeira 85884000 Brazil
| | - Elza I. Ida
- Departamento de Ciência e Tecnologia de Alimentos Centro de Ciências Agrárias Universidade Estadual de Londrina Rodovia Celso Garcia Cid Londrina 86057-970 Brazil
| | - Cristiane Canan
- Departamento de Alimentos Universidade Tecnológica Federal do Paraná Avenida Brasil, 4232, Parque Independência Medianeira 85884000 Brazil
| |
Collapse
|
56
|
Šošić-Jurjević B, Ajdžanović V, Filipović B, Severs W, Milošević V. Thyroid Mediation of the Isoflavone Effects on Osteoporotic Bone: The Endocrine Interference With a Beneficial Outcome. Front Endocrinol (Lausanne) 2019; 10:688. [PMID: 31681166 PMCID: PMC6798150 DOI: 10.3389/fendo.2019.00688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/23/2019] [Indexed: 01/11/2023] Open
Affiliation(s)
- Branka Šošić-Jurjević
- Department of Cytology, Institute for Biological Research “Siniša Stanković”, University of Belgrade, Belgrade, Serbia
| | - Vladimir Ajdžanović
- Department of Cytology, Institute for Biological Research “Siniša Stanković”, University of Belgrade, Belgrade, Serbia
| | - Branko Filipović
- Department of Cytology, Institute for Biological Research “Siniša Stanković”, University of Belgrade, Belgrade, Serbia
| | - Walter Severs
- College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Verica Milošević
- Department of Cytology, Institute for Biological Research “Siniša Stanković”, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
57
|
Xiao YQ, Shao D, Sheng ZW, Wang Q, Shi SR. A mixture of daidzein and Chinese herbs increases egg production and eggshell strength as well as blood plasma Ca, P, antioxidative enzymes, and luteinizing hormone levels in post-peak, brown laying hens. Poult Sci 2019; 98:3298-3303. [PMID: 30993323 DOI: 10.3382/ps/pez178] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/15/2019] [Indexed: 11/20/2022] Open
Abstract
Dietary supplementation with the isoflavone, daidzein, has been shown to improve egg production in poultry. Additionally, providing Chinese herbs (CH) in the broiler diet has led to increased antioxidative enzyme activity. However, the combined effect of these dietary supplements on hen performance has not been examined. Therefore, the objective of this study was to determine if dietary supplementation with a mixture of daidzein and CH would alter laying performance, egg quality, and blood plasma constituents of post-peak laying hens. At 59 wk of age, Hyline brown hens (240) were randomly allocated to 2 dietary groups and fed for 16 wk. The control group received the basal diet, and a treatment group was fed the basal diet that contained 0.02% of a mixture of daidzein and CH. Egg production and weight were recorded daily and egg quality data were collected at 75 wk of age. Blood plasma antioxidant activity, hormone levels, mineral (Ca and P) content, and osteocalcin content were determined at the end of the study. The results showed that laying rate, egg mass, and shell strength were greater in the daidzein-CH mixture group than the controls (P < 0.05). The plasma glutathione peroxidase, superoxide dismutase, and luteinizing hormone levels were also greater in the daidzein-CH mixture group compared with the control group (P < 0.05). The results of this study reveal that supplementing diets with a daidzein-CH mixture can improve laying performance perhaps by increasing plasma antioxidant activity, luteinizing hormone levels, and mineral content.
Collapse
Affiliation(s)
- Y Q Xiao
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu, 225125, China.,Institute of Effective Evaluation of Feed and Feed Additive (Poultry institute), Ministry of Agriculture, Yangzhou, Jiangsu, 225125, China
| | - D Shao
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu, 225125, China.,Institute of Effective Evaluation of Feed and Feed Additive (Poultry institute), Ministry of Agriculture, Yangzhou, Jiangsu, 225125, China
| | - Z W Sheng
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu, 225125, China.,Institute of Effective Evaluation of Feed and Feed Additive (Poultry institute), Ministry of Agriculture, Yangzhou, Jiangsu, 225125, China
| | - Q Wang
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu, 225125, China.,Institute of Effective Evaluation of Feed and Feed Additive (Poultry institute), Ministry of Agriculture, Yangzhou, Jiangsu, 225125, China
| | - S R Shi
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu, 225125, China.,Institute of Effective Evaluation of Feed and Feed Additive (Poultry institute), Ministry of Agriculture, Yangzhou, Jiangsu, 225125, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225125, China
| |
Collapse
|
58
|
Pagano E, Izzo AA. Potential of phytochemicals in breast cancer prevention and therapy. Phytother Res 2019; 33:2795-2797. [DOI: 10.1002/ptr.6480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Ester Pagano
- Department of PharmacyUniversity of Naples Federico II Naples Italy
| | - Angelo A. Izzo
- Department of PharmacyUniversity of Naples Federico II Naples Italy
| |
Collapse
|
59
|
Durazzo A, Lucarini M, Souto EB, Cicala C, Caiazzo E, Izzo AA, Novellino E, Santini A. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother Res 2019; 33:2221-2243. [DOI: 10.1002/ptr.6419] [Citation(s) in RCA: 313] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Eliana B. Souto
- Faculty of Pharmacy of University of Coimbra Azinhaga de Santa Comba Coimbra Portugal
- CEB‐Centre of Biological EngineeringUniversity of Minho Braga Portugal
| | - Carla Cicala
- Department of PharmacyUniversity of Napoli Federico II Napoli Italy
| | | | - Angelo A. Izzo
- Department of PharmacyUniversity of Napoli Federico II Napoli Italy
| | - Ettore Novellino
- Department of PharmacyUniversity of Napoli Federico II Napoli Italy
| | | |
Collapse
|
60
|
Menghini L, Recinella L, Leone S, Chiavaroli A, Cicala C, Brunetti L, Vladimir-Knežević S, Orlando G, Ferrante C. Devil's claw (Harpagophytum procumbens) and chronic inflammatory diseases: A concise overview on preclinical and clinical data. Phytother Res 2019; 33:2152-2162. [PMID: 31273865 DOI: 10.1002/ptr.6395] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/10/2019] [Accepted: 04/13/2019] [Indexed: 12/21/2022]
Abstract
Devil's Claw is a traditional medicine that has been long used a wide range of health conditions, including indigestion, fever, allergic reactions, and rheumatism. The main compounds are iridoid glycosides, including harpagoside, harpagide, and procumbide. However, harpagoside is the most responsible for therapeutic activity, and its content is used as reference standard. Here, we analyzed and summarized preclinical and clinical studies focusing on therapeutic efficacy of devil's claw preparations in pathological conditions in which inflammation plays a key causative role.
Collapse
Affiliation(s)
- Luigi Menghini
- Department of Pharmacy, G. D'Annunzio University, Chieti, Italy
| | - Lucia Recinella
- Department of Pharmacy, G. D'Annunzio University, Chieti, Italy
| | - Sheila Leone
- Department of Pharmacy, G. D'Annunzio University, Chieti, Italy
| | | | - Carla Cicala
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Luigi Brunetti
- Department of Pharmacy, G. D'Annunzio University, Chieti, Italy
| | - Sanda Vladimir-Knežević
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | | | |
Collapse
|
61
|
Carbonel AAF, Vieira MC, Simões RS, Lima PDA, Fuchs LFP, Girão ERC, Cicivizzo GP, Sasso GRS, de Moraes LOC, Soares Junior JM, Baracat EC, Simões MJ, Girão MJBC. Isoflavones improve collagen I and glycosaminoglycans and prevent bone loss in type 1 diabetic rats. Climacteric 2019; 23:75-83. [DOI: 10.1080/13697137.2019.1627314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- A. A. F. Carbonel
- Department of Morphology and Genetics, Paulista School of Medicine/Federal University of São Paulo – EPM/UNIFESP, São Paulo, Brazil
| | - M. C. Vieira
- Department of Gynecology, Paulista School of Medicine/Federal University of São Paulo – EPM/UNIFESP, São Paulo, Brazil
| | - R. S. Simões
- Department of Obstetrics and Gynecology, Medicine Faculty of University of São Paulo – FMUSP, São Paulo, Brazil
| | - P. D. A. Lima
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - L. F. P. Fuchs
- Department of Gynecology, Paulista School of Medicine/Federal University of São Paulo – EPM/UNIFESP, São Paulo, Brazil
| | - E. R. C. Girão
- Department of Gynecology, Paulista School of Medicine/Federal University of São Paulo – EPM/UNIFESP, São Paulo, Brazil
| | - G. P. Cicivizzo
- Department of Morphology and Genetics, Paulista School of Medicine/Federal University of São Paulo – EPM/UNIFESP, São Paulo, Brazil
| | - G. R. S. Sasso
- Department of Gynecology, Paulista School of Medicine/Federal University of São Paulo – EPM/UNIFESP, São Paulo, Brazil
| | - L. O. Carvalho de Moraes
- Department of Morphology and Genetics, Paulista School of Medicine/Federal University of São Paulo – EPM/UNIFESP, São Paulo, Brazil
| | - J. M. Soares Junior
- Department of Obstetrics and Gynecology, Medicine Faculty of University of São Paulo – FMUSP, São Paulo, Brazil
| | - E. C. Baracat
- Department of Obstetrics and Gynecology, Medicine Faculty of University of São Paulo – FMUSP, São Paulo, Brazil
| | - M. J. Simões
- Department of Morphology and Genetics, Paulista School of Medicine/Federal University of São Paulo – EPM/UNIFESP, São Paulo, Brazil
| | - M. J. B. C. Girão
- Department of Gynecology, Paulista School of Medicine/Federal University of São Paulo – EPM/UNIFESP, São Paulo, Brazil
| |
Collapse
|
62
|
Teixeira CP, Florencio-Silva R, Sasso GRS, Carbonel AAF, Simões RS, Simões MJ. Soy isoflavones protect against oxidative stress and diminish apoptosis in ovary of middle-aged female rats. Gynecol Endocrinol 2019; 35:586-590. [PMID: 30784335 DOI: 10.1080/09513590.2018.1559287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ovarian aging is characterized by declines in follicular reserve and oocyte quality due, in part, to increased oxidative stress and apoptosis. Soy isoflavones (ISOs) have been shown to improve ovarian lifespan by acting as antioxidant and antiapoptotic agents. We aimed at evaluating whether ISOs could modulate oxidative stress and reduce apoptosis and improve ovarian follicle survival in middle-aged female rats. Twelve ovary-intact female Wistar rats (12-month-old) were divided into groups: control (CTRL) and ISO, daily treated by gavage with vehicle or soy-ISO extract (150 mg/kg b.w), respectively. After 8 weeks, rats were euthanized and their ovaries removed for histomorphometric (% follicles) and apoptosis (cleaved-caspase-3/BCL2 immunostaining) evaluations, or subjected to biochemical assays to survey reactive oxygen species (ROS) and lipid peroxidation levels and total antioxidant capacity (TAC). The frequency of atretic follicles and number of cleaved-caspase-3-positive cells, as well as the ROS and lipid peroxidation levels, were significantly lower in ISO group compared to CTRL. A significantly higher number of BCL2-positive cells and TAC levels were also observed in ISO group. In conclusion, soy ISOs could decrease follicular atresia, apoptosis and oxidative stress, as well as increase the TAC in ovaries of female rats.
Collapse
Affiliation(s)
- C P Teixeira
- a Department of Morphology and Genetics , Federal University of São Paulo , São Paulo , Brazil
| | - R Florencio-Silva
- a Department of Morphology and Genetics , Federal University of São Paulo , São Paulo , Brazil
| | - G R S Sasso
- b Department of Gynecology , Federal University of São Paulo , São Paulo , Brazil
| | - A A F Carbonel
- a Department of Morphology and Genetics , Federal University of São Paulo , São Paulo , Brazil
| | - R S Simões
- c Department of Obstetrics and Gynecology , University of São Paulo , São Paulo , Brazil
| | - M J Simões
- a Department of Morphology and Genetics , Federal University of São Paulo , São Paulo , Brazil
| |
Collapse
|
63
|
Durazzo A, Lucarini M, Novellino E, Daliu P, Santini A. Fruit-based juices: Focus on antioxidant properties-Study approach and update. Phytother Res 2019; 33:1754-1769. [PMID: 31155809 DOI: 10.1002/ptr.6380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 12/30/2022]
Abstract
This paper proposes a perspective literature review of the antioxidant properties in fruit-based juices. The total antioxidant properties due to compounds such as carotenoids, polyphenolic compounds, flavonoids, and tannins as well as the assessment of interactions between natural active compounds and other food matrix components can be seen as the first step in the study of potential health benefits of fruit-based juices. A brief summary is given on the significance of antioxidant properties of fruit juices, the conventional methods for antioxidant activity evaluation, and on the newly emerged sample analysis and data interpretation strategies, that is, chemometric analysis based on spectroscopic data. The effect of fruit processing techniques and the addition of ingredients on the antioxidant properties of fruit-based juices are also discussed.
Collapse
Affiliation(s)
| | | | - Ettore Novellino
- Department of Pharmacy, University of Napoli Federico II, Naples, Italy
| | - Patricia Daliu
- Department of Pharmacy, University of Napoli Federico II, Naples, Italy
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Naples, Italy
| |
Collapse
|
64
|
Šošić-Jurjević B, Lütjohann D, Renko K, Filipović B, Radulović N, Ajdžanović V, Trifunović S, Nestorović N, Živanović J, Manojlović Stojanoski M, Kӧhrle J, Milošević V. The isoflavones genistein and daidzein increase hepatic concentration of thyroid hormones and affect cholesterol metabolism in middle-aged male rats. J Steroid Biochem Mol Biol 2019; 190:1-10. [PMID: 30885834 DOI: 10.1016/j.jsbmb.2019.03.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/06/2019] [Accepted: 03/13/2019] [Indexed: 01/05/2023]
Abstract
We examined whether isoflavones interfere with thyroid homeostasis, increase hepatic thyroid hormone concentrations and affect cholesterol metabolism in middle-aged (MA) male rats. Thirteen-month-old Wistar rats were injected subcutaneously with 35 mg/kg b.w./day of genistein, daidzein or vehicle (controls) for four weeks. Hepatic Dio1 gene expression was up-regulated by 70% (p < 0.001 for both) and Dio1 enzyme activity increased by 64% after genistein (p < 0.001) and 73% after daidzein treatment (p < 0.0001). Hepatic T3 was 75% higher (p < 0.05 for both), while T4 increased only after genistein treatment. Serum T4 concentrations were 31% lower in genistein- and 49% lower in dadzein-treated rats (p < 0.001 for both) compared with controls. Hepatic Cyp7a1 gene expression was up-regulated by 40% after genistein and 32% after daidzein treatment (p < 0.05 for both), in agreement with a 7α-hydroxycholesterol increase of 50% (p < 0.01) and 88% (p < 0.001), respectively. Serum 24- and 27-hydroxycholesterol were 30% lower (p < 0.05 for both), while only 24-hydroxycholesterol was decreased in the liver by 45% after genistein (p < 0.05) and 39% (p < 0.01) after dadzein treatment. Serum concentration of the cholesterol precursor desmosterol was 32% (p < 0.05) lower only after dadzein treatment alone, while both isoflavones elevated this parameter in the liver by 45% (p < 0.01). In conclusion, isoflavones increased T3 availability in the liver of MA males, despite decreasing serum T4. Hepatic increase of T3 possibly contributes to activation of the neutral pathway of cholesterol degradation into bile acids in the liver. While isoflavones obviously have the potential to trigger multiple mechanisms involved in cholesterol metabolism and oxysterol production, they failed to induce any hypocholesterolemic effect.
Collapse
Affiliation(s)
- B Šošić-Jurjević
- Institute for Biological Research, "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia.
| | - D Lütjohann
- Institut für Klinische Chemie und Klinische Pharmakologie, Universitätsklinikum Bonn, Sigmund-Freud-Str. 25, D-53127 Bonn, Germany
| | - K Renko
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - B Filipović
- Institute for Biological Research, "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - N Radulović
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - V Ajdžanović
- Institute for Biological Research, "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - S Trifunović
- Institut für Klinische Chemie und Klinische Pharmakologie, Universitätsklinikum Bonn, Sigmund-Freud-Str. 25, D-53127 Bonn, Germany
| | - N Nestorović
- Institute for Biological Research, "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - J Živanović
- Institute for Biological Research, "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - M Manojlović Stojanoski
- Institute for Biological Research, "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - J Kӧhrle
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - V Milošević
- Institute for Biological Research, "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| |
Collapse
|
65
|
Xiao YQ, Shao D, Tong HB, Shi SR. Genistein increases progesterone secretion by elevating related enzymes in chicken granulosa cells. Poult Sci 2019; 98:1911-1917. [PMID: 30239854 DOI: 10.3382/ps/pey411] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/08/2018] [Indexed: 12/24/2022] Open
Abstract
Genistein, a biologically active isoflavone, exists in many soy products. It is well known that genistein binds to both oestrogen receptor alpha (ERα) and oestrogen receptor beta (ERβ), but it has a higher affinity to ERβ. Genistein can also bind to the G protein-coupled receptor 30 (GPR30, also known as G protein-coupled oestrogen receptor 1 or GPER). Furthermore, weak oestrogenic activity has been found in genistein, but the mechanism of action remains unknown. The aim of this study was to investigate the in vitro effects of genistein on the secretion of progesterone (P4) and oestradiol (E2) in chicken granulosa cells harvested from follicles, as well as the mRNA expression of ERs in these cells. In addition, we examined the expression of key enzymes including steroidogenic acute regulatory protein (StAR), cytochrome P450 side-chain cleavage (P450scc), and 3β-hydroxysteroid dehydrogenase (3β-HSD) in the process of P4 synthesis. The results showed that genistein did not affect the viability of granulosa cells, nor was the proliferating cell nuclear antigen (PCNA) protein changed. Among the 1-, 10-, 100-, and 1,000-nM concentrations tested, treatment with 1 nM genistein for 48 h significantly increased P4 but did not affect E2 secretion. Real-time PCR results showed that the ERβ gene expression in granulosa cells was markedly upregulated by 1 nM genistein treatment for 48 h, but there was no significant difference in ERα and GPR30 expression. Genistein also increased the gene expression of StAR, P450scc and 3β-HSD in the cultured granulosa cells. These results indicate that genistein acts directly on chicken granulosa cells to increase P4 production by upregulating the gene expression of key enzymes through binding in ERβ. It may exert positive effects on the reproduction of late-laying hens and act as an effective and safe feed additive for animals.
Collapse
Affiliation(s)
- Y Q Xiao
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu 225125, China.,Institute of Effective Evaluation of Feed and Feed Additive (Poultry Institute), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - D Shao
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu 225125, China.,Institute of Effective Evaluation of Feed and Feed Additive (Poultry Institute), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - H B Tong
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu 225125, China.,Institute of Effective Evaluation of Feed and Feed Additive (Poultry Institute), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - S R Shi
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu 225125, China.,Institute of Effective Evaluation of Feed and Feed Additive (Poultry Institute), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225000, China
| |
Collapse
|
66
|
Cao ZH, Green-Johnson JM, Buckley ND, Lin QY. Bioactivity of soy-based fermented foods: A review. Biotechnol Adv 2019; 37:223-238. [PMID: 30521852 DOI: 10.1016/j.biotechadv.2018.12.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 09/29/2018] [Accepted: 12/02/2018] [Indexed: 12/13/2022]
Abstract
For centuries, fermented soy foods have been dietary staples in Asia and, now, in response to consumer demand, they are available throughout the world. Fermentation bestows unique flavors, boosts nutritional values and increases or adds new functional properties. In this review, we describe the functional properties and underlying action mechanisms of soy-based fermented foods such as Natto, fermented soy milk, Tempeh and soy sauce. When possible, the contribution of specific bioactive components is highlighted. While numerous studies with in vitro and animal models have hinted at the functionality of fermented soy foods, ascribing health benefits requires well-designed, often complex human studies with analysis of diet, lifestyle, family and medical history combined with long-term follow-ups for each subject. In addition, the contribution of the microbiome to the bioactivities of fermented soy foods, possibly mediated through direct action or bioactive metabolites, needs to be studied. Potential synergy or other interactions among the microorganisms carrying out the fermentation and the host's microbial community may also contribute to food functionality, but the details still require elucidation. Finally, safety evaluation of fermented soy foods has been limited, but is essential in order to provide guidelines for consumption and confirm lack of toxicity.
Collapse
Affiliation(s)
- Zhen-Hui Cao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Julia M Green-Johnson
- Faculty of Science, University of Ontario Institute of Technology (UOIT), Oshawa L1H 7K4, Canada
| | | | - Qiu-Ye Lin
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
67
|
Chen S, Hsieh C. Chemoprevention by means of soy proteins and peptides – current status and future approaches: a review. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sheng‐I Chen
- Department of Industrial Engineering and Management National Chiao Tung University Hsinchu 30080 Taiwan
| | - Chia‐Chien Hsieh
- School of Life Science Programs of Nutrition Science National Taiwan Normal University Taipei 10610 Taiwan
| |
Collapse
|
68
|
Lambert MNT, Jeppesen PB. Isoflavones and bone health in perimenopausal and postmenopausal women. Curr Opin Clin Nutr Metab Care 2018; 21:475-480. [PMID: 30239339 DOI: 10.1097/mco.0000000000000513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Isoflavones exert estrogenic activity distinct from estrogen, they have the potential to treat diseases and symptoms related to estrogen deficiency with minimal side effects and risks. Isoflavone supplementation, in general, is shown to exert beneficial effects against estrogen-deficient bone loss in women, however, some clinical trials still produce conflicting findings. The purpose of this review is to highlight and summarize the most recent and up-to-date research in the field and to bring attention to factors that play a major role in the outcomes of clinical trials that investigate phytoestrogens. Here, we also discuss the latest and most relevant data regarding the clinical safety of these substances. RECENT FINDINGS Isoflavones are naturally occurring secondary metabolites found in the Fabacaea plant family. Clinical data from isoflavone interventions support that aglycones (abundant in fermented products) exert enhanced beneficial effects against estrogen-deficient bone loss in women compared with isoflavone glycosides. Studies that employ methods to determine isoflavone content and form of treatments are more likely detect beneficial effects on bone. EFSA have confirmed the safety of isoflavones for women in the most comprehensive report to date. SUMMARY Isoflavone aglycones exert greater effects against bone loss than glycosides. Isoflavones show promise as a first-line prophylactic/treatment for bone loss in women.
Collapse
|
69
|
Sarasquete C, Úbeda-Manzanaro M, Ortiz-Delgado JB. Toxicity and non-harmful effects of the soya isoflavones, genistein and daidzein, in embryos of the zebrafish, Danio rerio. Comp Biochem Physiol C Toxicol Pharmacol 2018; 211:57-67. [PMID: 29870789 DOI: 10.1016/j.cbpc.2018.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 02/05/2023]
Abstract
Based on the assumed oestrogenic and apoptotic properties of soya isoflavones (genistein, daidzein), and following the current OECD test-guidelines and principle of 3Rs, we have studied the potential toxicity of phytochemicals on the zebrafish embryos test (ZFET). For this purpose, zebrafish embryos at 2-3 h post-fertilisation (hpf) were exposed to both soya isoflavones (from 1.25 mg/L to 20 mg/L) and assayed until 96 hpf. Lethal and sub-lethal endpoints (mortality, hatching rates and malformations) were estimated in the ZFET, which was expanded to potential gene expression markers, determining the lowest observed effect (and transcriptional) concentrations (LOEC, LOTEC), and the no-observable effect (and transcriptional) concentrations (NOEC, NOTEC). The results revealed that genistein is more toxic (LC50-96 hpf: 4.41 mg/L) than daidzein (over 65.15 mg/L). Both isoflavones up-regulated the oestrogen (esrrb) and death receptors (fas) and cyp1a transcript levels. Most thyroid transcript signals were up-regulated by genistein (except for thyroid peroxidase/tpo), and the hatching enzyme (he1a1) was exclusively up-regulated by daidzein (from 1.25 mg/L onwards). The ZFET proved suitable for assessing toxicant effects of both isoflavones and potential disruptions (i.e. oestrogenic, apoptotic, thyroid, enzymatic) during the embryogenesis and the endotrophic larval period.
Collapse
Affiliation(s)
- Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía-ICMAN-CSIC, Spain; Campus Universitario Rio San Pedro, Apdo oficial, 11510, Puerto Real, Cádiz, Spain.
| | - María Úbeda-Manzanaro
- Instituto de Ciencias Marinas de Andalucía-ICMAN-CSIC, Spain; Campus Universitario Rio San Pedro, Apdo oficial, 11510, Puerto Real, Cádiz, Spain
| | - Juan B Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía-ICMAN-CSIC, Spain; Campus Universitario Rio San Pedro, Apdo oficial, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
70
|
Li H, Mao S, Chen H, Zhu L, Liu W, Wang X, Yin Y. To Construct an Engineered ( S)-Equol Resistant E. coli for in Vitro ( S)-Equol Production. Front Microbiol 2018; 9:1182. [PMID: 29915570 PMCID: PMC5994542 DOI: 10.3389/fmicb.2018.01182] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/15/2018] [Indexed: 11/23/2022] Open
Abstract
(S)-equol is one of the major metabolites of daidzein that is produced by human and animal gut bacteria. Most of the physiological functions of soybean isoflavones, such as anti-oxidative activity, anti-cancer activity, and cardiovascular protection have been ascribed to (S)-equol. However, only 30–50% people contain this kind of equol-producing bacteria, and therefore are able to convert daidzein to (S)-equol. Administration of (S)-equol may be more beneficial than soybean isoflavones. The aim of this study was to construct an engineered (S)-equol resistant Escherichia coli to enhance (S)-equol production in vitro. First, transposon mutagenesis libraries were constructed and screened to isolate the (S)-equol resistant mutant E. coli strain BL21 (ydiS) in order to overcome the inhibitory effects of (S)-equol on bacterial growth. Bacterial full genome scan sequencing and in vitro overexpression results revealed that the ydiS gene was responsible for this resistance. Second, the (S)-equol-producing genes L-dznr, L-ddrc, L-dhdr, and L-thdr of Lactococcus strain 20–92 were synthesized and cloned into compatible vectors, pETDuet-1 and pCDFDuet-1. These plasmids were subsequently transformed into BL21 (DE3) and its mutant BL21 (ydiS). Both engineered BL21 (DE3) and BL21 (ydiS) could use daidzein as substrate to produce (S)-equol under both anaerobic and aerobic conditions. As expected, engineered BL21 (ydiS) had faster growth rates than BL21 (DE3) when supplemented with high concentrations of (S)-equol. The yield and the daidzein utilization ratio were higher for engineered BL21 (ydiS). Interestingly, engineered BL21 (ydiS) was able to convert daidzein to (S)-equol efficiently under aerobic conditions, providing a convenient method for (S)-equol production in vitro. In addition, a two-step method was developed to produce (S)-equol using daidzin as substrate.
Collapse
Affiliation(s)
- Hailiang Li
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China.,State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.,Hunan Provincial Key Laboratory for Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| | - Shaoming Mao
- Hunan Provincial Key Laboratory for Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| | - Huahai Chen
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China.,State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Liying Zhu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wei Liu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xin Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yeshi Yin
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China.,State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|