51
|
Virus ED, Sobolevsky TG, Rodchenkov GM. 'Wrong-way-round ionization' and screening for doping substances in human urine by high-performance liquid chromatography/orbitrap mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:381-391. [PMID: 22431466 DOI: 10.1002/jms.2055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
To free analytical resources for new classes of doping substances, such as banned proteins, maximization of the number of compounds that can be determined with high sensitivity in a single run is highly urgent. This study demonstrates an application of 'wrong-way-round ionization' for the simultaneous detection of multiple classes of doping substances without the need to switch the polarity. A screening method for the detection of 137 compounds from various classes of prohibited substances (stimulants, diuretics, β(2)-agonists, β-blockers, antiestrogens, glucocorticosteroids and anabolic agents) has been developed. The method involves an enzymatic hydrolysis, liquid-liquid extraction and detection by liquid chromatography/orbitrap mass spectrometry with wrong-way-round ionization. Up to 64% of compounds had a 10-fold lower limit of detection (LOD) than the minimum required performance limit. To compare the efficiency of conventional ionization relative to wrong-way-round ionization of doping substances in + ESI, a fortified blank urine sample at the minimum required performance limit was analyzed using two ESI approaches. All compounds were detected with markedly better S/N in a high-pH mobile phase, with the exception of acetazolamide (minimal change in S/N, < 20%).The method was validated by spiking 10 different blank urine samples at five different concentrations. Validation parameters included the LOD, selectivity, ion suppression, extraction recovery and repeatability.
Collapse
Affiliation(s)
- E D Virus
- Moscow Antidoping Center, 105005, Moscow, Elizavetynsky10.
| | | | | |
Collapse
|
52
|
Current use of high-resolution mass spectrometry in drug screening relevant to clinical and forensic toxicology and doping control. Anal Bioanal Chem 2012; 403:1203-20. [DOI: 10.1007/s00216-012-5726-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/06/2012] [Accepted: 01/09/2012] [Indexed: 10/14/2022]
|
53
|
Marquet P. LC-MS vs. GC-MS, online extraction systems, advantages of technology for drug screening assays. Methods Mol Biol 2012; 902:15-27. [PMID: 22767104 DOI: 10.1007/978-1-61779-934-1_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This chapter reviews recent applications of mass spectrometry to systematic toxicological analysis (STA), where extended lists of compounds of toxicological interest are screened, as well as to the general unknown screening (GUS), where all exogenous compounds present in a sample are tentatively detected and identified, without any preselection. Many recent improvements in sample preparation, chromatographic separation, gas chromatography-mass spectrometry, and above all liquid chromatography-mass spectrometry techniques are described, which are applicable or have been applied to STA and/or GUS, generally with promising results. These improvements come from miniaturization and automation of solid-phase extraction, turbulent-flow or ultrahigh-pressure liquid chromatography, linear ion traps, accurate (e.g., time of flight or orbital trap) mass spectrometry, as well as software refinements to alternate between different ionization modes or automatically interpret the results. It also shows that robust LC-MS/MS techniques already exist for STA or GUS, which are at least as efficient as the traditional techniques used in most toxicology laboratories, such as GC-MS or high-performance liquid chromatography with diode-array detection, as shown by three comparative studies. However, the major drawback of LC-MS/MS in the full-scan mode for STA or GUS is that it still lacks universal reference libraries due to insufficient reproducibility of LC-MS(/MS) mass spectra obtained with different instrument types.
Collapse
Affiliation(s)
- Pierre Marquet
- Department of Pharmacology-Toxicology-Pharmacovigilance, Centre Hospitalier Universitaire (CHU) de Limoges, Limoges, France.
| |
Collapse
|
54
|
Recent developments in MS for small molecules: application to human doping control analysis. Bioanalysis 2012; 4:197-212. [DOI: 10.4155/bio.11.305] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Recent developments in MS for the detection of small molecules in the context of doping control analysis are reviewed. Doping control analysis is evolving together with MS, which is the technique of choice in order to accomplish the analytical requirements in this field. Since these analytical requirements for the detection of a doping agent depend on the substance, in the first section we review the different scenarios. The commonly established approaches, together with their achievements and drawbacks are described. New developments in hyphenated MS techniques (both GC–MS/MS and LC–MS/MS) concerning interfaces and analyzers are mentioned. The use (or potential use) of these developments in order to minimize the limitations of the commonly established approaches in the doping control field is discussed. Finally, a brief discussion about trends and remaining limitations is presented.
Collapse
|
55
|
Eichhorn P, Pérez S, Barceló D. Time-of-Flight Mass Spectrometry Versus Orbitrap-Based Mass Spectrometry for the Screening and Identification of Drugs and Metabolites. TOF-MS WITHIN FOOD AND ENVIRONMENTAL ANALYSIS - COMPREHENSIVE ANALYTICAL CHEMISTRY 2012. [DOI: 10.1016/b978-0-444-53810-9.00009-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
56
|
Two-step derivatization procedures for the ionization enhancement of anabolic steroids in LC–ESI-MS for doping control analysis. Bioanalysis 2012; 4:167-75. [DOI: 10.4155/bio.11.308] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Two-step derivatization procedures were developed for the enhancement of the positive ESI in LC–MS detection of anabolic androgenic steroids, a class of prohibited substances with limited ionization efficiency in atmospheric pressure interfaces. The developed procedures are based on the esterification of hydroxyl groups of anabolic steroids with picolinic acid, followed by conversion of carbonyl groups to Schiff bases by either Girard’s reagent T or 2-hydrazino pyridin. Results: Ionization efficiency for the model derivatized compounds 19-norandrosterone (nandrolone main metabolite) and methasterone was higher by almost two orders of magnitude compared with the respective efficiency of the underivatized compounds. Conclusion: The obtained derivatives provided a significant improvement in the ESI sensitivity, compared with those of underivatized molecules in positive LC–ESI-ion trap-MS full-scan mode.
Collapse
|
57
|
Guddat S, Solymos E, Orlovius A, Thomas A, Sigmund G, Geyer H, Thevis M, Schänzer W. High-throughput screening for various classes of doping agents using a new ‘dilute-and-shoot’ liquid chromatography-tandem mass spectrometry multi-target approach. Drug Test Anal 2011; 3:836-50. [DOI: 10.1002/dta.372] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/31/2011] [Accepted: 09/12/2011] [Indexed: 11/11/2022]
Affiliation(s)
- S. Guddat
- Institute of Biochemistry and Center for Preventive Doping Research; German Sport University Cologne
| | - E. Solymos
- Eötvös Loránd University; Joint Research and Training Laboratory on Separation Techniques; Budapest; Hungary
| | | | - A. Thomas
- Institute of Biochemistry and Center for Preventive Doping Research; German Sport University Cologne
| | - G. Sigmund
- Institute of Biochemistry and Center for Preventive Doping Research; German Sport University Cologne
| | - H. Geyer
- Institute of Biochemistry and Center for Preventive Doping Research; German Sport University Cologne
| | - M. Thevis
- Institute of Biochemistry and Center for Preventive Doping Research; German Sport University Cologne
| | - W. Schänzer
- Institute of Biochemistry and Center for Preventive Doping Research; German Sport University Cologne
| |
Collapse
|
58
|
Lootens L, Meuleman P, Leroux-Roels G, Van Eenoo P. Metabolic studies with promagnon, methylclostebol and methasterone in the uPA+/+-SCID chimeric mice. J Steroid Biochem Mol Biol 2011; 127:374-81. [PMID: 21762781 DOI: 10.1016/j.jsbmb.2011.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 06/06/2011] [Accepted: 06/25/2011] [Indexed: 11/26/2022]
Abstract
The chimeric uPA(+/+)-SCID mouse model, transplanted with human hepatocytes, was previously validated as an alternative tool to study in vivo the human steroid metabolism. This humanized mouse model was now applied, in the framework of anti-doping research, to test different nutritional supplements containing steroids. These steroids, intentionally or accidentally added to a nutritional supplement, usually are derivatives of testosterone. Information about the metabolism of these derivatives, which is important to assure their detection, is quite limited. However, due to ethical constraints, human volunteers cannot be used to perform experimental excretion studies. Therefore the chimeric mice were selected to perform three separated excretion studies with superdrol (methasterone), promagnon and also methylclostebol. The urine of the humanized mice was collected 24h after a single dose administration and analyzed by gas chromatography-mass spectrometry (GC-MS). The results indicated the presence of several metabolites including a 3-keto reduced metabolite and numerous hydroxylated metabolites. Also phase 2 metabolism was investigated to update the complete picture of their metabolism.
Collapse
Affiliation(s)
- L Lootens
- Doping Control Laboratory, Department of Clinical Biology, Ghent University, Technologiepark 30, 9052 Zwijnaarde, Belgium.
| | | | | | | |
Collapse
|
59
|
Screening and confirmation analysis of stimulants, narcotics and beta-adrenergic agents in human urine by hydrophilic interaction liquid chromatography coupled to mass spectrometry. J Chromatogr A 2011; 1218:8156-67. [DOI: 10.1016/j.chroma.2011.09.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 09/02/2011] [Accepted: 09/08/2011] [Indexed: 11/21/2022]
|
60
|
Wang J, Banerji S, Menegazzo N, Peng W, Zou Q, Booksh KS. Glucose detection with surface plasmon resonance spectroscopy and molecularly imprinted hydrogel coatings. Talanta 2011; 86:133-41. [DOI: 10.1016/j.talanta.2011.08.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 08/22/2011] [Accepted: 08/23/2011] [Indexed: 10/17/2022]
|
61
|
Badoud F, Guillarme D, Boccard J, Grata E, Saugy M, Rudaz S, Veuthey JL. Analytical aspects in doping control: challenges and perspectives. Forensic Sci Int 2011; 213:49-61. [PMID: 21824736 DOI: 10.1016/j.forsciint.2011.07.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/07/2011] [Accepted: 07/12/2011] [Indexed: 01/10/2023]
Abstract
Since the first anti-doping tests in the 1960s, the analytical aspects of the testing remain challenging. The evolution of the analytical process in doping control is discussed in this paper with a particular emphasis on separation techniques, such as gas chromatography and liquid chromatography. These approaches are improving in parallel with the requirements of increasing sensitivity and selectivity for detecting prohibited substances in biological samples from athletes. Moreover, fast analyses are mandatory to deal with the growing number of doping control samples and the short response time required during particular sport events. Recent developments in mass spectrometry and the expansion of accurate mass determination has improved anti-doping strategies with the possibility of using elemental composition and isotope patterns for structural identification. These techniques must be able to distinguish equivocally between negative and suspicious samples with no false-negative or false-positive results. Therefore, high degree of reliability must be reached for the identification of major metabolites corresponding to suspected analytes. Along with current trends in pharmaceutical industry the analysis of proteins and peptides remains an important issue in doping control. Sophisticated analytical tools are still mandatory to improve their distinction from endogenous analogs. Finally, indirect approaches will be discussed in the context of anti-doping, in which recent advances are aimed to examine the biological response of a doping agent in a holistic way.
Collapse
Affiliation(s)
- Flavia Badoud
- School of Pharmaceutical Sciences, University of Geneva and Lausanne, 20 Bd d'Yvoy, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
62
|
Moulard Y, Bailly-Chouriberry L, Boyer S, Garcia P, Popot MA, Bonnaire Y. Use of benchtop exactive high resolution and high mass accuracy orbitrap mass spectrometer for screening in horse doping control. Anal Chim Acta 2011; 700:126-36. [DOI: 10.1016/j.aca.2011.01.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/01/2010] [Accepted: 01/02/2011] [Indexed: 11/24/2022]
|
63
|
Schubert B, Oberacher H. Impact of solvent conditions on separation and detection of basic drugs by micro liquid chromatography–mass spectrometry under overloading conditions. J Chromatogr A 2011; 1218:3413-22. [DOI: 10.1016/j.chroma.2011.03.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 03/11/2011] [Accepted: 03/18/2011] [Indexed: 10/18/2022]
|
64
|
Brun EM, Puchades R, Maquieira Á. Analytical methods for anti-doping control in sport: anabolic steroids with 4,9,11-triene structure in urine. Trends Analyt Chem 2011. [DOI: 10.1016/j.trac.2011.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
65
|
Deventer K, Roels K, Delbeke FT, Van Eenoo P. Prevalence of legal and illegal stimulating agents in sports. Anal Bioanal Chem 2011; 401:421-32. [DOI: 10.1007/s00216-011-4863-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 02/25/2011] [Accepted: 03/01/2011] [Indexed: 11/29/2022]
|
66
|
Thevis M, Thomas A, Schänzer W. Current role of LC-MS(/MS) in doping control. Anal Bioanal Chem 2011; 401:405-20. [DOI: 10.1007/s00216-011-4859-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 02/24/2011] [Accepted: 02/26/2011] [Indexed: 11/30/2022]
|
67
|
Thevis M, Kuuranne T, Geyer H, Schänzer W. Annual banned-substance review: analytical approaches in human sports drug testing. Drug Test Anal 2011; 3:1-14. [DOI: 10.1002/dta.245] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 11/19/2010] [Indexed: 12/13/2022]
|
68
|
Colorimetric detection and chromatographic analyses of designer drugs in biological materials: a comprehensive review. Forensic Toxicol 2011. [DOI: 10.1007/s11419-010-0107-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
69
|
Peters R, Stolker A, Mol J, Lommen A, Lyris E, Angelis Y, Vonaparti A, Stamou M, Georgakopoulos C, Nielen M. Screening in veterinary drug analysis and sports doping control based on full-scan, accurate-mass spectrometry. Trends Analyt Chem 2010. [DOI: 10.1016/j.trac.2010.07.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
70
|
Pozo OJ, Van Eenoo P, Deventer K, Elbardissy H, Grimalt S, Sancho JV, Hernandez F, Ventura R, Delbeke FT. Comparison between triple quadrupole, time of flight and hybrid quadrupole time of flight analysers coupled to liquid chromatography for the detection of anabolic steroids in doping control analysis. Anal Chim Acta 2010; 684:98-111. [PMID: 21167991 DOI: 10.1016/j.aca.2010.10.045] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/28/2010] [Accepted: 10/31/2010] [Indexed: 11/18/2022]
Abstract
Triple quadrupole (QqQ), time of flight (TOF) and quadrupole-time of flight (QTOF) analysers have been compared for the detection of anabolic steroids in human urine. Ten anabolic steroids were selected as model compounds based on their ionization and the presence of endogenous interferences. Both qualitative and quantitative analyses were evaluated. QqQ allowed for the detection of all analytes at the minimum required performance limit (MRPL) established by the World Anti-Doping Agency (between 2 and 10 ng mL(-1) in urine). TOF and QTOF approaches were not sensitive enough to detect some of the analytes (3'-hydroxy-stanozolol or the metabolites of boldenone and formebolone) at the established MRPL. Although a suitable accuracy was obtained, the precision was unsatisfactory (RSD typically higher than 20%) for quantitative purposes irrespective of the analyser used. The methods were applied to 30 real samples declared positives either for the misuse of boldenone, stanozolol and/or methandienone. Most of the compounds were detected by every technique, however QqQ was necessary for the detection of some metabolites in a few samples. Finally, the possibility to detect non-target steroids has been explored by the use of TOF and QTOF. The use of this approach revealed that the presence of boldenone and its metabolite in one sample was due to the intake of androsta-1,4,6-triene-3,17-dione. Additionally, the intake of methandienone was confirmed by the post-target detection of a long-term metabolite.
Collapse
Affiliation(s)
- Oscar J Pozo
- DoCoLab, UGent, Department of Clinical Chemistry, Microbiology and Immunology, Technologiepark 30, B-9052 Zwijnaarde, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Current Awareness in Drug Testing and Analysis. Drug Test Anal 2010. [DOI: 10.1002/dta.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|