51
|
Xu J, Zhao C, Huang X, Du W. Regulation of Artemisinin and Its Derivatives on the Assembly Behavior and Cytotoxicity of Amyloid Polypeptides hIAPP and Aβ. ACS Chem Neurosci 2019; 10:4522-4534. [PMID: 31577904 DOI: 10.1021/acschemneuro.9b00385] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The misfolding and aggregation of human islet amyloid polypeptide (hIAPP) and amyloid-β (Aβ) protein are closely associated with type 2 diabetes mellitus (T2DM) and Alzheimer's disease, respectively. Inhibitors of amyloid peptides include short peptides, aromatic organic molecules, nanoparticles, and even metal compounds. Sesquiterpenoid artemisinins are widely used in anti-malaria treatments, and they may modulate glucose homeostasis against diabetes. However, the antidiabetic mechanism of these compounds remains unclear. In this work, four compounds, namely, artemisinin (1), dihydroartemisinin (2), artesunate (3), and artemether (4), were exploited to inhibit the assembly behavior of hIAPP and compared with that of Aβ. Although structurally distinct from other aromatic inhibitors of amyloid peptides, these sesquiterpenoids effectively altered the two peptides' fibril morphologies and disaggregated the mature fibrils mostly to the monomers. The interaction of artemisinins with the two peptides demonstrated a spontaneous, exothermic, and entropy-driven binding process predominantly through hydrophobic and hydrogen bonding interactions. Moreover, they reversed cytotoxicity and membrane leakage by reducing peptides' oligomerization. The results suggested that these compounds had better inhibition and disaggregation capability against hIAPP than against Aβ. Furthermore, the effects of these compounds' structural modification on the amyloid fibril formation of the two peptides were observed. The molecular screening offered a new perspective for artemisinins as promising inhibitors against amyloidosis related diseases.
Collapse
Affiliation(s)
- Jufei Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Cong Zhao
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xiangyi Huang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Weihong Du
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
52
|
Kumar AP, Lee S, Lukman S. Computational and Experimental Approaches to Design Inhibitors of Amylin Aggregation. Curr Drug Targets 2019; 20:1680-1694. [DOI: 10.2174/1389450120666190719164316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 01/21/2023]
Abstract
Amylin is a neuroendocrine peptide hormone secreted by pancreatic ß-cells; however,
amylin is toxic to ß-cells when it is aggregated in type 2 diabetes mellitus (T2DM). It is important to
understand amylin’s structures and aggregation mechanism for the discovery and design of effective
drugs to inhibit amylin aggregation. In this review, we investigated experimental and computational
studies on amylin structures and inhibitors. Our review provides some novel insights into amylin, particularly
for the design of its aggregation inhibitors to treat T2DM. We detailed the potential inhibitors
that have been studied hitherto and highlighted the neglected need to consider different amylin attributes
that depend on the presence/absence of physiologically relevant conditions, such as membranes.
These conditions and the experimental methods can greatly influence the results of studies on amylininhibitor
complexes. Text-mining over 3,000 amylin-related PubMed abstracts suggests the combined
therapeutic potential of amylin with leptin and glucagon-like peptide-1, which are two key hormones
in obesity. The results also suggest that targeting amylin aggregation can contribute to therapeutic efforts
for Alzheimer’s disease (AD). Therefore, we have also reviewed the role of amylin in other conditions
including obesity and AD. Finally, we provided insights for designing inhibitors of different
types (small molecules, proteins, peptides/mimetics, metal ions) to inhibit amylin aggregation.
Collapse
Affiliation(s)
- Ammu Prasanna Kumar
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Sungmun Lee
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, College of Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Suryani Lukman
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
53
|
Faridi A, Sun Y, Mortimer M, Aranha RR, Nandakumar A, Li Y, Javed I, Kakinen A, Fan Q, Purcell AW, Davis TP, Ding F, Faridi P, Ke PC. Graphene quantum dots rescue protein dysregulation of pancreatic β-cells exposed to human islet amyloid polypeptide. NANO RESEARCH 2019; 12:2827-2834. [PMID: 31695851 PMCID: PMC6834229 DOI: 10.1007/s12274-019-2520-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/15/2019] [Accepted: 09/15/2019] [Indexed: 05/20/2023]
Abstract
The amyloid aggregation of peptides and proteins is a hallmark of neurological disorders and type 2 diabetes. Human islet amyloid polypeptide (IAPP), co-secreted with insulin by pancreatic β-cells, plays dual roles in both glycemic control and the pathology of type 2 diabetes. While IAPP can activate the NLRP3 inflammasome and modulate cellular autophagy, apoptosis and extracellular matrix metabolism, no data is available concerning intracellular protein expression upon exposure to the polypeptide. More surprisingly, how intracellular protein expression is modulated by nanoparticle inhibitors of protein aggregation remains entirely unknown. In this study, we first examined the changing proteomes of βTC6, a pancreatic β-cell line, upon exposure to monomeric, oligomeric and fibrillar IAPP, and detailed cellular protein expression rescued by graphene quantum dots (GQDs), an IAPP inhibitor. We found that 29 proteins were significantly dysregulated by the IAPP species, while majority of these proteins were nucleotide-binding proteins. Collectively, our liquid chromatography tandem-mass spectrometry, fluorescence quenching, helium ion microscopy, cytotoxicity and discreet molecular dynamics simulations data revealed a remarkable capacity of GQDs in regulating aberrant protein expression through H-bonding and hydrophobic interactions, pointing to nanomedicine as a new frontier against human amyloid diseases.
Collapse
Affiliation(s)
- Ava Faridi
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Yunxiang Sun
- Department of Physics, Ningbo University, Ningbo 315211, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, China
| | - Ritchlynn R Aranha
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Aparna Nandakumar
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Yuhuan Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ibrahim Javed
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Aleksandr Kakinen
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Qingqing Fan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Anthony W Purcell
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Pouya Faridi
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
54
|
Kakinen A, Xing Y, Arachchi NH, Javed I, Feng L, Faridi A, Douek AM, Sun Y, Kaslin J, Davis TP, Higgins MJ, Ding F, Ke PC. Single-Molecular Heteroamyloidosis of Human Islet Amyloid Polypeptide. NANO LETTERS 2019; 19:6535-6546. [PMID: 31455083 PMCID: PMC6742555 DOI: 10.1021/acs.nanolett.9b02771] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Human amyloids and plaques uncovered post mortem are highly heterogeneous in structure and composition, yet literature concerning the heteroaggregation of amyloid proteins is extremely scarce. This knowledge deficiency is further exacerbated by the fact that peptide delivery is a major therapeutic strategy for targeting their full-length counterparts associated with the pathologies of a range of human diseases, including dementia and type 2 diabetes (T2D). Accordingly, here we examined the coaggregation of full-length human islet amyloid polypeptide (IAPP), a peptide associated with type 2 diabetes, with its primary and secondary amyloidogenic fragments 19-29 S20G and 8-20. Single-molecular aggregation dynamics was obtained by high-speed atomic force microscopy, augmented by transmission electron microscopy, X-ray diffraction, and super-resolution stimulated emission depletion microscopy. The coaggregation significantly prolonged the pause phase of fibril elongation, increasing its dwell time by 3-fold. Surprisingly, unidirectional elongation of mature fibrils, instead of protofilaments, was observed for the coaggregation, indicating a new form of tertiary protein aggregation unknown to existing theoretical models. Further in vivo zebrafish embryonic assay indicated improved survival and hatching, as well as decreased frequency and severity of developmental abnormalities for embryos treated with the heteroaggregates of IAPP with 19-29 S20G, but not with 8-20, compared to the control, indicating the therapeutic potential of 19-29 S20G against T2D.
Collapse
Affiliation(s)
- Aleksandr Kakinen
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Yanting Xing
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Nuwan Hegoda Arachchi
- ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Innovation Campus, Squires Way, NSW 2522, Australia
| | - Ibrahim Javed
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Lei Feng
- ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Innovation Campus, Squires Way, NSW 2522, Australia
| | - Ava Faridi
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Alon M. Douek
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
- Department of Physics, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael J. Higgins
- ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Innovation Campus, Squires Way, NSW 2522, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
55
|
Sun Y, Kakinen A, Zhang C, Yang Y, Faridi A, Davis TP, Cao W, Ke PC, Ding F. Amphiphilic surface chemistry of fullerenols is necessary for inhibiting the amyloid aggregation of alpha-synuclein NACore. NANOSCALE 2019; 11:11933-11945. [PMID: 31188372 PMCID: PMC6589440 DOI: 10.1039/c9nr02407g] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Featuring small sizes, caged structures, low cytotoxicity and the capability to cross biological barriers, fullerene hydroxy derivatives named fullerenols have been explored as nanomedicinal candidates for amyloid inhibition. Understanding the surface chemistry effect of hydroxylation extents and the corresponding amyloid inhibition mechanisms is necessary for enabling applications of fullerenols and also future designs of nanomedicines in mitigating amyloid aggregation. Here, we investigated effects of C60(OH)n with n = 0-40 on the aggregation of NACore (the amyloidogenic core region of the non-amyloid-β component in α-synuclein), the amyloidogenic core of α-synuclein, by computational simulations, transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, thioflavin-T (ThT) fluorescence kinetics and viability assays. Computationally, NACore assembled into cross-β aggregates via intermediates including β-barrels, which are postulated as toxic oligomers of amyloid aggregation. Hydrophobic C60 preferred to self-assemble, and NACore bound to the surface of C60 nano-clusters formed β-sheet rich aggregates - i.e., having little inhibition effect. Amphiphilic C60(OH)n with n = 4-20 displayed significant inhibition effects on NACore aggregation, where hydrogen bonding between hydroxyls and peptide backbones interrupted the formation of β-sheets between peptides adsorbed onto the surfaces of fullerenols or fullerenol nano-assemblies due to hydrophobic interactions. Thus, both cross-β aggregates and β-barrel intermediates were significantly suppressed. With hydroxyls increased to 40, fullerenols became highly hydrophilic with reduced peptide binding and thus an inhibition effect on amyloid aggregation. ThT, FTIR and TEM characterization of C60(OH)n with n = 0, 24, & 40 confirmed the computational predictions. Our results and others underscore the importance of amphiphilic surface chemistry and the capability of polar groups in forming hydrogen bonds with peptide backbones to render amyloid inhibition, offering a new insight for de-novo design of anti-amyloid inhibitors.
Collapse
Affiliation(s)
- Yunxiang Sun
- Department of Physics, Ningbo University, Ningbo, Zhejiang 315211, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Aleksandr Kakinen
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Chi Zhang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Ye Yang
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Ava Faridi
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Weiguo Cao
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
- Corresponding authors
| |
Collapse
|
56
|
Liu C, Huang H, Ma L, Fang X, Wang C, Yang Y. Modulation of β-amyloid aggregation by graphene quantum dots. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190271. [PMID: 31312493 PMCID: PMC6599798 DOI: 10.1098/rsos.190271] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/23/2019] [Indexed: 05/28/2023]
Abstract
Misfolding and abnormal aggregation of β-amyloid peptide is associated with the onset and progress of Alzheimer's disease (AD). Therefore, modulating β-amyloid aggregation is critical for the treatment of AD. Herein, we studied the regulatory effects and mechanism of graphene quantum dots (GQDs) on 1-42 β-amyloid (Aβ1-42) aggregation. GQDs displayed significant regulatory effects on the aggregation of Aβ1-42 peptide as detected by thioflavin T (ThT) assay. Then, the changes of confirmations and structures induced by GQDs on the Aβ1-42 aggregation were monitored by circular dichroism (CD), dynamic light scattering (DLS) and transmission electron microscope (TEM). The in vitro cytotoxicity experiments further demonstrated the feasibility of GQDs on the regulation of Aβ1-42 aggregation. Meanwhile, the structural changes of a Aβ1-42/GQDs mixture in different pH revealed that electrostatic interaction was the major driving force in the co-assembly process of Aβ1-42 and GQDs. The proposed mechanism of the regulatory effects of GQDs on the Aβ1-42 aggregation was also deduced reasonably. This work not only demonstrated the potential feasibility of GQDs as therapeutic drug for AD but also clarified the regulatory mechanism of GQDs on the Aβ1-42 aggregation.
Collapse
Affiliation(s)
- Changliang Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Huan Huang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Lilusi Ma
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Xiaocui Fang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
57
|
Inoue M, Ueda M, Higashi T, Anno T, Fujisawa K, Motoyama K, Mizuguchi M, Ando Y, Jono H, Arima H. Therapeutic Potential of Polyamidoamine Dendrimer for Amyloidogenic Transthyretin Amyloidosis. ACS Chem Neurosci 2019; 10:2584-2590. [PMID: 30912637 DOI: 10.1021/acschemneuro.9b00059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Amyloidogenic transthyretin (ATTR) amyloidosis is caused by a formation of ATTR amyloid fibrils. Because ATTR misfolding triggers the formation of aggregates and amyloid fibrils, which are considered to deposit on the tissues, novel clinically effective therapeutic strategies targeted to those processes are urgently needed. In this study, to discover a new drug candidate for ATTR amyloidosis therapy, we focused on polyamidoamine dendrimer (dendrimer), a 3D-structural nanomaterial, which has a branched cationic polymer repeating polyamidoamine units. Dendrimer (G2) not only inhibited ATTR V30M amyloid fibril formation, but also reduced already formed ATTR V30M amyloid fibrils by reducing β-sheet structure of ATTR V30M protein. Moreover, intravenous administration of dendrimer (G2) reduced TTR deposition in human ATTR V30M transgenic rats. These results indicate that dendrimer (G2) may possess both inhibitory and breaking effects on ATTR V30M amyloid, suggesting that dendrimer has the potential as a dual effective agents against TTR amyloidosis.
Collapse
Affiliation(s)
- Masamichi Inoue
- Program for Leading Graduate Schools ‘Health Life Science: Interdisciplinary and Glocal Oriented (HIGO) Program’, Kumamoto University, Kumamoto 860-8555, Japan
| | | | | | | | | | | | - Mineyuki Mizuguchi
- Laboratory of Structual Biology, Graduate School of Medicine and Pharmaceutical Sciences, Toyama University, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | - Hidetoshi Arima
- Program for Leading Graduate Schools ‘Health Life Science: Interdisciplinary and Glocal Oriented (HIGO) Program’, Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|
58
|
Liu W, Dong X, Sun Y. d-Enantiomeric RTHLVFFARK-NH 2: A Potent Multifunctional Decapeptide Inhibiting Cu 2+-Mediated Amyloid β-Protein Aggregation and Remodeling Cu 2+-Mediated Amyloid β Aggregates. ACS Chem Neurosci 2019; 10:1390-1401. [PMID: 30650306 DOI: 10.1021/acschemneuro.8b00440] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aggregation of amyloid β-protein (Aβ) into β-sheet-rich plaques is a general feature of Alzheimer's disease (AD). Homeostasis dysregulation of Cu2+ mediates Aβ to form high cytotoxic aggregates, which causes cell damage by generation of reactive oxygen species (ROS). To improve the inhibitory potency and explore the multifaceted functions of our previously designed decapeptide, RTHLVFFARK-NH2 (RK10), we have herein reformulated the decapeptide into its d-enantiomer, rk10, and the effects of chirality on Aβ aggregation, Cu2+-mediated Aβ aggregations, and aggregate-remodeling effects were investigated. The results revealed the following: (1) The d-enantiomer presented enhanced inhibitory potency on Aβ fibrillogenesis in comparison to RK10; rk10 and RK10 increased the cell viability from 60% to 91% and 71%, respectively, at an equimolar concentration to Aβ. (2) The enantiomers were chemically equivalent to Cu2+ chelation, ROS suppression and oxidative damage rescue. (3) The d-enantiomer exhibited higher performance to inhibit Cu2+-mediated Aβ aggregation, and more significantly attenuated the cytotoxicity caused by Aβ42-Cu2+ complex than RK10. Cell viability was rescued from 51% to 89% and 74% by coincubating with rk10 and RK10 at 50 μM, respectively. Intracellular ROS levels generated by Aβ42 and Aβ42-Cu2+ species were also remarkably decreased by treating with rk10. (4) The enantiomers could remodel mature Aβ42-Cu2+ aggregates by Cu2+ chelation, and rk10 showed higher performance than RK10, as evidenced by the enhanced cell viability from 57% to 86% by RK10 and to 96% by rk10. The d-enantiomer also showed higher ability than RK10 on protecting the disrupted species from reaggregation. Taken together, D-chiral derivatization of the decapeptide resulted in a potent multifunctional agent in inhibiting Cu2+-mediated Aβ aggregation and remodeling mature Aβ-Cu2+ species. To the best of our knowledge, this is the first investigation on the chirality effect of a multifunctional peptide inhibitor on Cu2+-mediated Aβ aggregation and on the remodeling effect of mature Aβ-Cu2+ aggregates. The work provides new insights into the critical role of chirality in the multifaceted functions of peptide inhibitors against amyloid formation and its toxicity.
Collapse
Affiliation(s)
- Wei Liu
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| |
Collapse
|
59
|
Wu J, Huang J, Kuang S, Chen J, Li X, Chen B, Wang J, Cheng D, Shuai X. Synergistic MicroRNA Therapy in Liver Fibrotic Rat Using MRI-Visible Nanocarrier Targeting Hepatic Stellate Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801809. [PMID: 30886803 PMCID: PMC6402399 DOI: 10.1002/advs.201801809] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/10/2018] [Indexed: 05/02/2023]
Abstract
Liver fibrosis, as one of the leading causes of liver-related morbidity and mortality, has no Food and Drug Administration (FDA)-approved antifibrotic therapy yet. Although microRNA-29b (miRNA-29b) and microRNA-122 (miRNA-122) have great potential in treating liver fibrosis via regulating profibrotic genes in hepatic stellate cells (HSCs), it is still a challenge to achieve a HSC-targeted and meanwhile noninvasively trackable delivery of miRNAs in vivo. Herein, a pH-sensitive and vitamin A (VA)-conjugated copolymer VA-polyethylene glycol-polyethyleneimine-poly(N-(N',N'-diisopropylaminoethyl)-co-benzylamino) aspartamide (T-PBP) is synthesized and assembled into superparamagnetic iron oxide (SPIO)-decorated cationic micelle for miRNA delivery. The T-PBP micelle efficiently transports the miRNA-29b and miRNA-122 to HSC in a magnetic resonance imaging-visible manner, resulting in a synergistic antifibrosis effect via downregulating the expression of fibrosis-related genes, including collagen type I alpha 1, α-smooth muscle actin, and tissue inhibitor of metalloproteinase 1. Consequently, the HSC-targeted combination therapy with miRNA-29b and miRNA-122 demonstrates a prominent antifibrotic efficacy in terms of improving liver function and relieving hepatic fibrosis.
Collapse
Affiliation(s)
- Jun Wu
- The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Jinsheng Huang
- PCFM Lab of Ministry of EducationSchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Sichi Kuang
- The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Jingbiao Chen
- The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Xiaoxia Li
- PCFM Lab of Ministry of EducationSchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Bin Chen
- Department of Orthopaedics and TraumatologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Jin Wang
- The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Du Cheng
- PCFM Lab of Ministry of EducationSchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Xintao Shuai
- The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
- PCFM Lab of Ministry of EducationSchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| |
Collapse
|
60
|
Yousaf M, Ahmad M, Bhatti IA, Nasir A, Hasan M, Jian X, Kalantar-Zadeh K, Mahmood N. In Vivo and In Vitro Monitoring of Amyloid Aggregation via BSA@FGQDs Multimodal Probe. ACS Sens 2019; 4:200-210. [PMID: 30596230 DOI: 10.1021/acssensors.8b01216] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Early detection of peptide aggregate intermediates is quite challenging because of their variable and complex nature as well as due to lack of reliable sensors for diagnosis. Herein, we report the detection of monomers and oligomers using specified fluorescence and a magnetic resonance imaging (MRI) multimodal probe based on bovine-serum-albumin-capped fluorine functionalized graphene quantum dots (BSA@FGQDs). This probe enables in vitro fluorescence-based monitoring of human islet amyloid polypeptide (hIAPP), insulin, and amyloid β(1-42) (Aβ42) monomers and oligomers during the fibrillogenesis dynamic. Up to 90% fluorescence quenching of BSA@FGQDs probe upon addition of amyloid monomers/oligomers was observed due to static quenching and nonradiative energy transfer. Moreover, the BSA@FGQDs probe shows 10 times higher signals in detecting amyloid intermediates and fibrils than that of conventional thioflavin dye. A negative Δ G° value (-36.21 kJ/mol) indicates spontaneous interaction of probe with the peptide. These interactions are hydrogen bonding and hydrophobic as proved by thermodynamic parameters. Visual binding clues of BSA@FGQDs with different morphological states of amyloid protein was achieved through electron microscopy. Furthermore, intravenous and intracranial injection of BSA@FGQDs probe in Alzheimer model mice brain enabled in vivo detection of amyloid plaques in live mice brain by 19F MRI through contrast enhancement. Our proposed probe not only effectively monitors in vitro fibrillation kinetics of number of amyloid proteins with higher sensitivity and specificity than thioflavin dye, but also, the presence of a 19F center makes BSA@FGQDs an effective probe as a noninvasive and nonradiative in vivo detection probe for amyloid plaques.
Collapse
Affiliation(s)
- Maryam Yousaf
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Muhammad Ahmad
- Department of Structure and Environmental Engineering, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Ijaz Ahmad Bhatti
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Abdul Nasir
- Department of Structure and Environmental Engineering, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Murtaza Hasan
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Xian Jian
- School of Materials and Energy, National Engineering Research Centre of Electromagnetic Radiation Control Materials, Centre for Applied Chemistry, University of Electronic Science and Technology, Chengdu 611731, P.R. China
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), 2052 Kensington, New South Wales, Australia
| | - Nasir Mahmood
- School of Engineering, RMIT University, 3001 Melbourne, Victoria, Australia
| |
Collapse
|
61
|
Huang Q, Wang H, Gao H, Cheng P, Zhu L, Wang C, Yang Y. In Situ Observation of Amyloid Nucleation and Fibrillation by FastScan Atomic Force Microscopy. J Phys Chem Lett 2019; 10:214-222. [PMID: 30543438 DOI: 10.1021/acs.jpclett.8b03143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Amyloidogenic proteins are key components in various amyloid diseases. The aggregation process and the local structural changes of the toxic species from toxic oligomers to protofibrils and subsequently to mature fibrils are crucial for understanding the molecular mechanism of the amyloidgenic process and also for developing a treatment strategy. Exploration on amyloid aggregation dynamics in situ under real liquid condition is feasible for reflection of the whole process with biological correlations. Herein we report the in situ dynamic study and structure exploration of Amylin1-37 aggregation by FastScan atomic force microscopy. Amylin1-37 nucleation process was observed in which smaller oligomers or monomers were assimilated by the surrounding big oligomers. Amylin1-37 protofibril aggregation was positively correlated with monomer concentration, whereas no direct relationship was observed between fibril elongation and monomer concentration. Growing end and passivated end were found during Amylin1-37 fibrillation. In the assembly process, the growing end kept its structure, and its stiffness was lower than the aggregate body, whereas the passivated end might experience rearrangements of β-structures, which eventually enabled fibril growth from this end. This work is beneficial to the insights of amyloid fibrillation and may shed light on the development of drugs targeting the specific phase of amyloid aggregation.
Collapse
Affiliation(s)
- Qunxing Huang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , 19 A Yuquan Rd , Shijingshan District, Beijing 100049 , China
| | - Huayi Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , 19 A Yuquan Rd , Shijingshan District, Beijing 100049 , China
| | - Houqian Gao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , 19 A Yuquan Rd , Shijingshan District, Beijing 100049 , China
| | - Peng Cheng
- State Key Laboratory of Tribology, Department of Mechanical Engineering , Tsinghua University , Beijing 100084 , China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , 19 A Yuquan Rd , Shijingshan District, Beijing 100049 , China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , 19 A Yuquan Rd , Shijingshan District, Beijing 100049 , China
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , 19 A Yuquan Rd , Shijingshan District, Beijing 100049 , China
| |
Collapse
|
62
|
Jin Y, Sun Y, Chen Y, Lei J, Wei G. Molecular dynamics simulations reveal the mechanism of graphene oxide nanosheet inhibition of Aβ1–42 peptide aggregation. Phys Chem Chem Phys 2019; 21:10981-10991. [DOI: 10.1039/c9cp01803d] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Graphene oxide nanosheets inhibit Aβ1–42 aggregation by weakening inter-peptide interactions and reducing β-sheet contents mostly via salt bridge, hydrogen bonding and cation–π interactions with charged residues.
Collapse
Affiliation(s)
- Yibo Jin
- Department of Physics
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Fudan University
- Shanghai 200433
| | - Yunxiang Sun
- Department of Physics
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Fudan University
- Shanghai 200433
| | - Yujie Chen
- Department of Physics
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Fudan University
- Shanghai 200433
| | - Jiangtao Lei
- Department of Physics
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Fudan University
- Shanghai 200433
| | - Guanghong Wei
- Department of Physics
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Fudan University
- Shanghai 200433
| |
Collapse
|
63
|
Bai C, Lin D, Mo Y, Lei J, Sun Y, Xie L, Yang X, Wei G. Influence of fullerenol on hIAPP aggregation: amyloid inhibition and mechanistic aspects. Phys Chem Chem Phys 2019; 21:4022-4031. [DOI: 10.1039/c8cp07501h] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
C60(OH)24inhibits hIAPP aggregation by suppressing the fibril-prone structure and destabilizes hIAPP protofibrils by binding to the amyloid core region.
Collapse
Affiliation(s)
- Cuiqin Bai
- Department of Physics
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science (Ministry of Education)
- Fudan University
- Shanghai 200433
- People's Republic of China
| | - Dongdong Lin
- Department of Microelectronic Science and Engineering Science Faculty of Science
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Yuxiang Mo
- College of Physical Science and Technology
- Guangxi Normal University
- 15 Yucai Road
- Guilin
- China
| | - Jiangtao Lei
- Department of Physics
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science (Ministry of Education)
- Fudan University
- Shanghai 200433
- People's Republic of China
| | - Yunxiang Sun
- Department of Physics
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science (Ministry of Education)
- Fudan University
- Shanghai 200433
- People's Republic of China
| | - Luogang Xie
- College of Physics and Electronic Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 453002
- People's Republic of China
| | - Xinju Yang
- Department of Physics
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science (Ministry of Education)
- Fudan University
- Shanghai 200433
- People's Republic of China
| | - Guanghong Wei
- Department of Physics
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science (Ministry of Education)
- Fudan University
- Shanghai 200433
- People's Republic of China
| |
Collapse
|
64
|
Zhao L, Xin Y, Li Y, Yang X, Luo L, Meng F. Ultraeffective Inhibition of Amyloid Fibril Assembly by Nanobody–Gold Nanoparticle Conjugates. Bioconjug Chem 2018; 30:29-33. [DOI: 10.1021/acs.bioconjchem.8b00797] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Liyuan Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yanru Xin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yanan Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
65
|
Xin Y, Zhang H, Hu Q, Tian S, Wang C, Luo L, Meng F. Oligotyrosines Inhibit Amyloid Formation of Human Islet Amyloid Polypeptide in a Tyrosine-Number-Dependent Manner. ACS Biomater Sci Eng 2018; 5:1092-1099. [DOI: 10.1021/acsbiomaterials.8b01384] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yanru Xin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huazhi Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qigang Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sidan Tian
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chenhui Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan Institute of Biotechnology, Wuhan 430075, China
| |
Collapse
|
66
|
Sun Y, Kakinen A, Xing Y, Pilkington EH, Davis TP, Ke PC, Ding F. Nucleation of β-rich oligomers and β-barrels in the early aggregation of human islet amyloid polypeptide. Biochim Biophys Acta Mol Basis Dis 2018; 1865:434-444. [PMID: 30502402 DOI: 10.1016/j.bbadis.2018.11.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/10/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
Abstract
The self-assembly of human islet amyloid polypeptide (hIAPP) into β-sheet rich amyloid aggregates is associated with pancreatic β-cell death in type 2 diabetes (T2D). Prior experimental studies of hIAPP aggregation reported the early accumulation of α-helical intermediates before the rapid conversion into β-sheet rich amyloid fibrils, as also corroborated by our experimental characterizations with transmission electron microscopy and Fourier transform infrared spectroscopy. Although increasing evidence suggests that small oligomers populating early hIAPP aggregation play crucial roles in cytotoxicity, structures of these oligomer intermediates and their conformational conversions remain unknown, hindering our understanding of T2D disease mechanism and therapeutic design targeting these early aggregation species. We further applied large-scale discrete molecule dynamics simulations to investigate the oligomerization of full-length hIAPP, employing multiple molecular systems of increasing number of peptides. We found that the oligomerization process was dynamic, involving frequent inter-oligomeric exchanges. On average, oligomers had more α-helices than β-sheets, consistent with ensemble-based experimental measurements. However, in ~4-6% independent simulations, β-rich oligomers expected as the fibrillization intermediates were observed, especially in the pentamer and hexamer simulations. These β-rich oligomers could adopt β-barrel conformations, recently postulated to be the toxic oligomer species but only observed computationally in the aggregates of short amyloid protein fragments. Free-energy analysis revealed high energies of these β-rich oligomers, supporting the nucleated conformational changes of oligomers in amyloid aggregation. β-barrel oligomers of full-length hIAPP with well-defined three-dimensional structures may play an important pathological role in T2D etiology and may be a therapeutic target for the disease.
Collapse
Affiliation(s)
- Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Aleksandr Kakinen
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Yanting Xing
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Emily H Pilkington
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
67
|
Wang M, Sun Y, Cao X, Peng G, Javed I, Kakinen A, Davis TP, Lin S, Liu J, Ding F, Ke PC. Graphene quantum dots against human IAPP aggregation and toxicity in vivo. NANOSCALE 2018; 10:19995-20006. [PMID: 30350837 PMCID: PMC6212334 DOI: 10.1039/c8nr07180b] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The development of biocompatible nanomaterials has become a new frontier in the detection, treatment and prevention of human amyloid diseases. Here we demonstrated the use of graphene quantum dots (GQDs) as a potent inhibitor against the in vivo aggregation and toxicity of human islet amyloid polypeptide (IAPP), a hallmark of type 2 diabetes. GQDs initiated contact with IAPP through electrostatic and hydrophobic interactions as well as hydrogen bonding, which subsequently drove the peptide fibrillization off-pathway to eliminate the toxic intermediates. Such interactions, probed in vitro by a thioflavin T kinetic assay, fluorescence quenching, circular dichroism spectroscopy, a cell viability assay and in silico by discrete molecular dynamics simulations, translated to a significant recovery of embryonic zebrafish from the damage elicited by IAPP in vivo, as indicated by improved hatching as well as alleviated reactive oxygen species production, abnormality and mortality of the organism. This study points to the potential of using zero-dimensional nanomaterials for in vivo mitigation of a range of amyloidosis.
Collapse
Affiliation(s)
- Miaoyi Wang
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Xueying Cao
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Guotao Peng
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Ibrahim Javed
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Aleksandr Kakinen
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Sijie Lin
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
68
|
Xin Y, Wang X, Luo L, Meng F. Conformation-Dependent Manipulation of Human Islet Amyloid Polypeptide Fibrillation by Shiitake-Derived Lentinan. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31069-31079. [PMID: 30148596 DOI: 10.1021/acsami.8b11078] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Misfolding and aggregation of human islet amyloid polypeptide (hIAPP) into fibrils are important contributions to the pathology of type 2 diabetes. Developing effective inhibitors of protein aggregation and fibrillation has been considered a promising therapeutic approach to preventing and treating type 2 diabetes. Herein, we report that Shiitake-derived polysaccharide lentinan manipulates in vitro hIAPP fibrillation and modulates IAPP-induced cytotoxicity in a conformation-dependent manner. In its triple-helical conformation, lentinan effectively inhibits hIAPP fibrillation, either in bulk solution or in the presence of lipid membrane, suppresses reactive oxygen species (ROS) generation, and attenuates hIAPP-induced cell toxicity. In contrast, lentinan accelerates hIAPP aggregation when it exists in a random-coil conformation and shows no suppression on hIAPP-mediated ROS production. Further investigation shows that the interaction between triple-helical lentinan and monomeric hIAPP is more favorable than the intermolecular binding of hIAPP, which redirects hIAPP aggregates to discrete nontoxic nanocomposites. To the best of our knowledge, this is the first time to report a conformation-dependent inhibition of hIAPP aggregation, which will provide new insights for our understanding of the manipulation mechanisms on hIAPP by natural polysaccharides and open a new avenue for designing and screening potential amyloid inhibitors against type 2 diabetes.
Collapse
Affiliation(s)
- Yanru Xin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Xiuxia Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
- Wuhan Institute of Biotechnology , Wuhan 430075 , China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
- Wuhan Institute of Biotechnology , Wuhan 430075 , China
| |
Collapse
|
69
|
Wang B, Sun Y, Davis TP, Ke PC, Wu Y, Ding F. Understanding Effects of PAMAM Dendrimer Size and Surface Chemistry on Serum Protein Binding with Discrete Molecular Dynamics Simulations. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2018; 6:11704-11715. [PMID: 30881771 PMCID: PMC6413314 DOI: 10.1021/acssuschemeng.8b01959] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Polyamidoamine (PAMAM) dendrimers, a class of polymeric nanoparticles (NPs) with highly-controllable sizes and surface chemistry, are promising candidates for many biomedical applications, including drug and gene delivery, imaging, and inhibition of amyloid aggregation. In circulation, binding of serum proteins with dendritic NPs renders the formation of protein corona and alters the biological identity of the NP core, which may subsequently elicit immunoresponse and cytotoxicity. Understanding the effects of PAMAM size and surface chemistry on serum protein binding is, therefore, crucial to enable their broad biomedical applications. Here, by applying atomistic discrete molecular dynamics (DMD) simulations, we first uncovered the binding of PAMAM with HSA and Ig and detailed the dependences of such binding on PAMAM size and surface modification. Compared to either anionic or cationic surfaces, modifications with neutral phosphorylcholine (PC), polyethylene glycol (PEG), and hydroxyls (OH) significantly reduced binding with proteins. The relatively strong binding between proteins and PAMAM dendrimers with charged surface groups was mainly driven by electrostatic interactions as well as hydrophobic interactions. Using steered DMD (SDMD) simulations, we conducted a force-pulling experiment in silico estimating the critical forces separating PAMAM-protein complexes and deriving the corresponding free energy barriers for dissociation. The SDMD-derived HSA-binding affinities were consistent with existing experimental measurements. Our results highlighted the association dynamics of protein-dendrimer interactions and binding affinities, whose implications range from fundamental nanobio interfacial phenomena to the development of "stealth NPs".
Collapse
Affiliation(s)
- Bo Wang
- department of Physics and Astronomy, Clemson University,
Clemson, SC 29634, USA
- Department of Systems and Computational Biology, Albert
Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yunxiang Sun
- department of Physics and Astronomy, Clemson University,
Clemson, SC 29634, USA
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and
Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381
Royal Parade, Parkville, VIC 3052, Australia
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and
Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381
Royal Parade, Parkville, VIC 3052, Australia
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert
Einstein College of Medicine, Bronx, NY 10461, USA
| | - Feng Ding
- department of Physics and Astronomy, Clemson University,
Clemson, SC 29634, USA
| |
Collapse
|
70
|
IAPP in type II diabetes: Basic research on structure, molecular interactions, and disease mechanisms suggests potential intervention strategies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018. [DOI: 10.1016/j.bbamem.2018.02.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
71
|
Kakinen A, Adamcik J, Wang B, Ge X, Mezzenga R, Davis TP, Ding F, Ke PC. Nanoscale inhibition of polymorphic and ambidextrous IAPP amyloid aggregation with small molecules. NANO RESEARCH 2018; 11:3636-3647. [PMID: 30275931 PMCID: PMC6162064 DOI: 10.1007/s12274-017-1930-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/17/2017] [Accepted: 11/21/2017] [Indexed: 05/22/2023]
Abstract
Understanding how small molecules interface amyloid fibrils on the nanoscale is of importance for developing therapeutic treatment against amyloid-based diseases. Here we show, for the first time, that human islet amyloid polypeptide (IAPP) in the fibrillar form is polymorphic and ambidextrous possessing multiple periodicities. Upon interfacing with small molecule epigallocatechin gallate (EGCG), IAPP aggregation was rendered off pathway assuming the form of soft and disordered clusters, while mature IAPP fibrils displayed kinks and branching but conserved the twisted fibril morphology. These nanoscale phenomena resulted from competitive interactions between EGCG and the IAPP amyloidogenic region, as well as end capping of the fibrils by the small molecule. This information is crucial to delineating IAPP toxicity implicated in type 2 diabetes and developing new inhibitors against amyloidogenesis.
Collapse
Affiliation(s)
- Aleksandr Kakinen
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Jozef Adamcik
- Food & Soft Materials, Department of Health Science & Technology, ETH Zurich, Schmelzbergstrasse 9, LFO, E23, 8092 Zurich, Switzerland
| | - Bo Wang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Xinwei Ge
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Raffaele Mezzenga
- Food & Soft Materials, Department of Health Science & Technology, ETH Zurich, Schmelzbergstrasse 9, LFO, E23, 8092 Zurich, Switzerland
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Department of Chemistry, Warwick University, Gibbet Hill, Coventry, CV4 7AL, United Kingdom
- Address correspondence to Raffaele Mezzenga, ; Thomas P. Davis, ; Feng Ding, ; and Pu Chun Ke,
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
- Address correspondence to Raffaele Mezzenga, ; Thomas P. Davis, ; Feng Ding, ; and Pu Chun Ke,
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Address correspondence to Raffaele Mezzenga, ; Thomas P. Davis, ; Feng Ding, ; and Pu Chun Ke,
| |
Collapse
|
72
|
Xu J, Gong G, Huang X, Du W. Schiff base oxovanadium complexes resist the assembly behavior of human islet amyloid polypeptide. J Inorg Biochem 2018; 186:60-69. [PMID: 29857172 DOI: 10.1016/j.jinorgbio.2018.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/12/2018] [Accepted: 05/16/2018] [Indexed: 10/16/2022]
Abstract
The misfolding and fibrillation of human islet amyloid polypeptide (hIAPP) is related to the pathologic process of type II diabetes mellitus (T2DM). The inhibitors of hIAPP aggregation include aromatic organic molecules, short peptides, and metal complexes. Vanadium complexes have been applied for the treatment of diabetes since the 19th century. However, the antidiabetes mechanism remains unclear. In this work, we used four Schiff base oxidovanadium(IV) complexes, namely VO(bhbb)·H2O (1, and ligand 1 H2bhbb, 2-(5-bromo-2-hydroxylbenzylideneamino) benzoic acid), VO(nhbb)·H2O (2, and lignad 2 H2nhbb, 2-(5-nitro-2-hydroxylbenzylideneamino) benzoic acid), VO(cpmp)2 (3, and ligand 3 Hcpmp, 4-chloro-2-(phenylimino) methyl) phenol), and VO(bpmp)2 (4, and ligand 4 Hbpmp, 4-bromo- 2-(phenylmino) methyl) phenol) to inhibit the fibril formation of hIAPP and reduce peptide-induced cytotoxicity. Results indicated that the four Schiff base oxidovanadium complexes effectively impeded hIAPP aggregation and disaggregated mature fibrils into monomers or oligomers. These V complexes also decreased hIAPP-induced cytotoxicity. Among the four V complexes, 1 is a promising candidate metallodrug considering its inhibitory effect, disaggregation ability, regulation of peptide-induced cytotoxicity, and binding affinity to the peptide. Our research provides a new outlook for the design of oxidovanadium complexes as effective inhibitors of hIAPP against T2DM.
Collapse
Affiliation(s)
- Jufei Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Gehui Gong
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xiangyi Huang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Weihong Du
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
73
|
Ren B, Liu Y, Zhang Y, Cai Y, Gong X, Chang Y, Xu L, Zheng J. Genistein: A Dual Inhibitor of Both Amyloid β and Human Islet Amylin Peptides. ACS Chem Neurosci 2018; 9:1215-1224. [PMID: 29432676 DOI: 10.1021/acschemneuro.8b00039] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abnormal misfolding and aggregation of amyloid peptides into amyloid fibrils are common and critical pathological events in many neurodegenerative diseases. Most inhibitors or drugs have been developed to prevent amyloid aggregation of a specific peptide, showing sequence-dependent inhibition mechanisms. It is more challenging to develop or discover inhibitors capable of preventing the aggregation of two or more different amyloid peptides. Genistein, a major phytoestrogen in soybean, has been widely used as an anti-inflammation and cerebrovascular drug due to its antioxidation and antiacetylcholinesterase effects. Herein, we examine the inhibitory effects of genistein on the aggregation of amyloid-β (Aβ, associated with Alzheimer's disease) and human islet amylin (hIAPP, associated with type 2 diabetes) and Aβ- and hIAPP-induced neurotoxicity using a combination of experimental and computational approaches. Collective experimental results from thioflavin T (ThT), atomic force microscopy (AFM), and circular dichroism (CD) demonstrate that genistein shows strong inhibition ability to prevent the conformational transition of both Aβ and hIAPP monomers to β-sheet structures, thus reducing final amyloid fibrillization from Aβ and hIAPP monomer aggregation by 40-63%. Further 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH), and large unilamellar vesicle (LUV) assays show that genistein helps to increase cell viability, decrease cell apoptosis, and reduce cell membrane leakage, where the cell protection effect of genistein is likely correlated with its reduced membrane leakage. Comparative molecular dynamics (MD) simulations reveal that genistein prefers to bind the β-sheet groove, a common structural motif of amyloid fibrils, of both Aβ and hIAPP oligomers to interfere with their self-aggregation. This work for the first time demonstrates genistein as a dual inhibitor of Aβ and hIAPP aggregation. Further structural optimization and refinement of genistein may generate a series of effective sequence-independent inhibitors against the aggregation and toxicity of different amyloid peptides.
Collapse
Affiliation(s)
- Baiping Ren
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, P. R. China
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Yonglan Liu
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Yanxian Zhang
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Yongqing Cai
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Xiong Gong
- Department of Polymer Engineering, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li, Taoyuan 320, Taiwan
| | - Lijian Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
74
|
Baram M, Gilead S, Gazit E, Miller Y. Mechanistic perspective and functional activity of insulin in amylin aggregation. Chem Sci 2018; 9:4244-4252. [PMID: 29780554 PMCID: PMC5944211 DOI: 10.1039/c8sc00481a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/14/2018] [Indexed: 11/21/2022] Open
Abstract
This work provides the first-ever complete atomic model of insulin–amylin aggregates, identifying the specific interactions that stabilize the insulin–amylin complex.
Insulin is a key regulatory polypeptide that is secreted from pancreatic β-cells and has several important effects on the synthesis of lipids, regulation of enzymatic activities, blood glucose levels and the prevention of hyperglycemia. Insulin was demonstrated to self-assemble into ordered amyloid fibrils upon repeated injections, although the possible biological significance of the supramolecular structures is enigmatic. Amylin is also an amyloidogenic polypeptide that is secreted from pancreatic β-cells and plays an important role in glycemic regulation preventing post-prandial spikes in blood glucose levels. These two amyloidogenic proteins are secreted together from the pancreas and have the ability to interact and produce insulin–amylin aggregates. So far, the molecular architecture of insulin–amylin complexes at the atomic resolution has been unknown. The current work identifies for the first time the specific π–π interactions between Y16 in insulin and F19 in amylin that contribute to the stability of the insulin–amylin complex, by using experimental and molecular modeling techniques. We performed additional experiments that verify the functional activity of insulin in amylin aggregation. Our findings illustrate for the first time the specific interactions between insulin and amylin aggregates at the atomic resolution and provide a new mechanistic perspective on the effect of insulin on amylin aggregation and may pave the way towards pharmacological intervention in this process.
Collapse
Affiliation(s)
- Michal Baram
- Department of Chemistry , Ben-Gurion University of the Negev , Be'er Sheva 84105 , Israel . .,The Ilse Katz Institute for Nanoscale Science & Technology , Ben-Gurion University of the Negev , Be'er Sheva 84105 , Israel
| | - Sharon Gilead
- Department of Molecular Microbiology and Biotechnology , Tel Aviv University , Tel Aviv 69978 , Israel .
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology , Tel Aviv University , Tel Aviv 69978 , Israel . .,Department of Materials Science and Engineering , Iby and Aladar Fleischman Faculty of Engineering , Tel Aviv University , Tel Aviv 69978 , Israel
| | - Yifat Miller
- Department of Chemistry , Ben-Gurion University of the Negev , Be'er Sheva 84105 , Israel . .,The Ilse Katz Institute for Nanoscale Science & Technology , Ben-Gurion University of the Negev , Be'er Sheva 84105 , Israel
| |
Collapse
|
75
|
Ge X, Sun Y, Ding F. Structures and dynamics of β-barrel oligomer intermediates of amyloid-beta16-22 aggregation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1687-1697. [PMID: 29550287 DOI: 10.1016/j.bbamem.2018.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 01/13/2023]
Abstract
Accumulating evidence suggests that soluble oligomers are more toxic than final fibrils of amyloid aggregations. Among the mixture of inter-converting intermediates with continuous distribution of sizes and secondary structures, oligomers in the β-barrel conformation - a common class of protein folds with a closed β-sheet - have been postulated as the toxic species with well-defined three-dimensional structures to perform pathological functions. A common mechanism for amyloid toxicity, therefore, implies that all amyloid peptides should be able to form β-barrel oligomers as the aggregation intermediates. Here, we applied all-atom discrete molecular dynamics (DMD) simulations to evaluate the formation of β-barrel oligomers and characterize their structures and dynamics in the aggregation of a seven-residue amyloid peptide, corresponding to the amyloid core of amyloid-β with a sequence of 16KLVFFAE22 (Aβ16-22). We carried out aggregation simulations with various numbers of peptides to study the size dependence of aggregation dynamics and assembly structures. Consistent with previous computational studies, we observed the formation of β-barrel oligomers in all-atom DMD simulations. Using a network-based approach to automatically identify β-barrel conformations, we systematically characterized β-barrels of various sizes. Our simulations revealed the conformational inter-conversion between β-barrels and double-layer β-sheets due to increased structural strains upon forming a closed β-barrel while maximizing backbone hydrogen bonds. The potential of mean force analysis further characterized the free energy barriers between these two states. The obtained structural and dynamic insights of β-barrel oligomers may help better understand the molecular mechanism of oligomer toxicities and design novel therapeutics targeting the toxic β-barrel oligomers. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
Collapse
Affiliation(s)
- Xinwei Ge
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States.
| |
Collapse
|
76
|
Abstract
The oligomerization and fibrillation of human islet amyloid polypeptide (hIAPP) play a central role in the pathogenesis of type 2 diabetes. Strategies for remodelling the formation of hIAPP oligomers and fibrils have promising application potential in type 2 diabetes therapy. Herein, we demonstrated that PEG-PE micelle could inhibit hIAPP oligomerization and fibrillation through blocking the hydrophobic interaction and the conformational change from random coil to β-sheet structures of hIAPP. In addition, we also found that PEG-PE micelle could remodel the preformed hIAPP fibrils allowing the formation of short fibrils and co-aggregates. Taken together, PEG-PE micelle could rescue hIAPP-induced cytotoxicity by decreasing the content of hIAPP oligomers and fibrils that are related to the oxidative stress and cell membrane permeability. This study could be beneficial for the design and development of antiamyloidogenic agents.
Collapse
|
77
|
Wang M, Kakinen A, Pilkington EH, Davis TP, Ke PC. Differential effects of silver and iron oxide nanoparticles on IAPP amyloid aggregation. Biomater Sci 2018; 5:485-493. [PMID: 28078343 DOI: 10.1039/c6bm00764c] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recent studies have shown promise on the use of small molecules and nanoparticles (NPs) for the inhibition of protein aggregation, a hallmark of neurodegenerative diseases and type 2 diabetes (T2D). Towards this end here we show the differential effects of silver and iron oxide nanoparticles (AgNPs and IONPs) on the mesoscopic properties of human islet amyloid polypeptide (IAPP) aggregation associated with T2D. Both citrate- and branched polyethyleneimine-coated AgNPs (c-AgNPs, bPEI-AgNPs) inhibited IAPP aggregation at 500 μg mL-1, likely through electrostatic attraction and sequestering of IAPP monomers from fibrillation. In comparison, bare, brushed polyethylene glycol- and phosphorylcholine-grafted IONPs (bPEG-IONPs, bPC-IONPs) at 500 μg mL-1 elicited no major effect on IAPP fibril contour length, while bPC-IONPs induced significant fibril softening and looping likely mediated by dipolar interactions. While monovalent Ag+ up to 50 μg mL-1 showed no effect on the contour length or stiffness of IAPP fibrils, multivalent Fe3+ at 5 μg mL-1 halted IAPP fibrillation likely through ion-peptide crosslinking. Except bPEI-AgNPs, all three types of IONPs and c-AgNPs at 100 μg mL-1 alleviated IAPP toxicity in HEK293 cells indicating no clear correlation between protein aggregation and their induced cytotoxicity. This study demonstrates the complexity of protein aggregation intervened by NPs of different physicochemical properties and - together with existing literature - facilitates nanotechnological applications for mitigating amyloid-mediated pathologies.
Collapse
Affiliation(s)
- Miaoyi Wang
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Aleksandr Kakinen
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Emily H Pilkington
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia. and Department of Chemistry, Warwick University, Gibbet Hill, Coventry, CV4 7AL, UK
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| |
Collapse
|
78
|
Ren B, Liu Y, Zhang Y, Zhang M, Sun Y, Liang G, Xu J, Zheng J. Tanshinones inhibit hIAPP aggregation, disaggregate preformed hIAPP fibrils, and protect cultured cells. J Mater Chem B 2018; 6:56-67. [DOI: 10.1039/c7tb02538f] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tanshinones act as common inhibitors to inhibit the aggregation of both hIAPP and Aβ, disaggregate preformed hIAPP and Aβ amyloid fibrils, and protect cells from hIAPP- and Aβ-induced toxicity.
Collapse
Affiliation(s)
- Baiping Ren
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices
- College of Life Science and Chemistry
- Hunan University of Technology
- Zhuzhou 412007
- P. R. China
| | - Yonglan Liu
- Department of Chemical & Biomolecular Engineering
- The University of Akron
- Ohio 44325
- USA
| | - Yanxian Zhang
- Department of Chemical & Biomolecular Engineering
- The University of Akron
- Ohio 44325
- USA
| | - Mingzhen Zhang
- Department of Chemical & Biomolecular Engineering
- The University of Akron
- Ohio 44325
- USA
| | - Yan Sun
- Department of Biochemical Engineering
- Key Laboratory of Systems Bioengineering of the Ministry of Education School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education College
- Chongqing University
- Chongqing 400044
- China
| | - Jianxiong Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices
- College of Life Science and Chemistry
- Hunan University of Technology
- Zhuzhou 412007
- P. R. China
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering
- The University of Akron
- Ohio 44325
- USA
| |
Collapse
|
79
|
Pilkington E, Lai M, Ge X, Stanley WJ, Wang B, Wang M, Kakinen A, Sani MA, Whittaker MR, Gurzov EN, Ding F, Quinn JF, Davis TP, Ke PC. Star Polymers Reduce Islet Amyloid Polypeptide Toxicity via Accelerated Amyloid Aggregation. Biomacromolecules 2017; 18:4249-4260. [PMID: 29035554 PMCID: PMC5729549 DOI: 10.1021/acs.biomac.7b01301] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/13/2017] [Indexed: 01/20/2023]
Abstract
Protein aggregation into amyloid fibrils is a ubiquitous phenomenon across the spectrum of neurodegenerative disorders and type 2 diabetes. A common strategy against amyloidogenesis is to minimize the populations of toxic oligomers and protofibrils by inhibiting protein aggregation with small molecules or nanoparticles. However, melanin synthesis in nature is realized by accelerated protein fibrillation to circumvent accumulation of toxic intermediates. Accordingly, we designed and demonstrated the use of star-shaped poly(2-hydroxyethyl acrylate) (PHEA) nanostructures for promoting aggregation while ameliorating the toxicity of human islet amyloid polypeptide (IAPP), the peptide involved in glycemic control and the pathology of type 2 diabetes. The binding of PHEA elevated the β-sheet content in IAPP aggregates while rendering a new morphology of "stelliform" amyloids originating from the polymers. Atomistic molecular dynamics simulations revealed that the PHEA arms served as rodlike scaffolds for IAPP binding and subsequently accelerated IAPP aggregation by increased local peptide concentration. The tertiary structure of the star nanoparticles was found to be essential for driving the specific interactions required to impel the accelerated IAPP aggregation. This study sheds new light on the structure-toxicity relationship of IAPP and points to the potential of exploiting star polymers as a new class of therapeutic agents against amyloidogenesis.
Collapse
Affiliation(s)
- Emily
H. Pilkington
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - May Lai
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Xinwei Ge
- Department
of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - William J. Stanley
- St
Vincent’s Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia
- Department
of Medicine, St. Vincent’s Hospital, The University of Melbourne, Melbourne, Australia
| | - Bo Wang
- Department
of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Miaoyi Wang
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Aleksandr Kakinen
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Marc-Antonie Sani
- School of
Chemistry, Bio21 Institute, The University
of Melbourne, 30 Flemington
Rd, Parkville, Victoria 3010, Australia
| | - Michael R. Whittaker
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Esteban N. Gurzov
- St
Vincent’s Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia
- Department
of Medicine, St. Vincent’s Hospital, The University of Melbourne, Melbourne, Australia
| | - Feng Ding
- Department
of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - John F. Quinn
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Thomas P. Davis
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- Department
of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, United Kingdom
| | - Pu Chun Ke
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
80
|
Ke PC, Sani MA, Ding F, Kakinen A, Javed I, Separovic F, Davis TP, Mezzenga R. Implications of peptide assemblies in amyloid diseases. Chem Soc Rev 2017; 46:6492-6531. [PMID: 28702523 PMCID: PMC5902192 DOI: 10.1039/c7cs00372b] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neurodegenerative disorders and type 2 diabetes are global epidemics compromising the quality of life of millions worldwide, with profound social and economic implications. Despite the significant differences in pathology - much of which are poorly understood - these diseases are commonly characterized by the presence of cross-β amyloid fibrils as well as the loss of neuronal or pancreatic β-cells. In this review, we document research progress on the molecular and mesoscopic self-assembly of amyloid-beta, alpha synuclein, human islet amyloid polypeptide and prions, the peptides and proteins associated with Alzheimer's, Parkinson's, type 2 diabetes and prion diseases. In addition, we discuss the toxicities of these amyloid proteins based on their self-assembly as well as their interactions with membranes, metal ions, small molecules and engineered nanoparticles. Through this presentation we show the remarkable similarities and differences in the structural transitions of the amyloid proteins through primary and secondary nucleation, the common evolution from disordered monomers to alpha-helices and then to β-sheets when the proteins encounter the cell membrane, and, the consensus (with a few exceptions) that off-pathway oligomers, rather than amyloid fibrils, are the toxic species regardless of the pathogenic protein sequence or physicochemical properties. In addition, we highlight the crucial role of molecular self-assembly in eliciting the biological and pathological consequences of the amyloid proteins within the context of their cellular environments and their spreading between cells and organs. Exploiting such structure-function-toxicity relationship may prove pivotal for the detection and mitigation of amyloid diseases.
Collapse
Affiliation(s)
- Pu Chun Ke
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Marc-Antonie Sani
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Rd, Parkville, VIC 3010, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Aleksandr Kakinen
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ibrahim Javed
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Rd, Parkville, VIC 3010, Australia
| | - Thomas P. Davis
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, United Kingdom
| | - Raffaele Mezzenga
- ETH Zurich, Department of Health Science & Technology, Schmelzbergstrasse 9, LFO, E23, 8092 Zurich, Switzerland
| |
Collapse
|
81
|
Sun Y, Wang B, Ge X, Ding F. Distinct oligomerization and fibrillization dynamics of amyloid core sequences of amyloid-beta and islet amyloid polypeptide. Phys Chem Chem Phys 2017; 19:28414-28423. [PMID: 29038815 PMCID: PMC5657190 DOI: 10.1039/c7cp05695h] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A direct observation of amyloid aggregation from isolated peptides to cross-β fibrils is crucial for understanding the nucleation-dependence process, but the corresponding macroscopic timescales impose a major computational challenge. Using rapid all-atom discrete molecular dynamics simulations, we capture the oligomerization and fibrillization dynamics of the amyloid core sequences of amyloid-β (Aβ) in Alzheimer's disease and islet amyloid polypeptide (IAPP) in type-2 diabetes, namely Aβ16-22 and IAPP22-28. Both peptides and their mixture spontaneously assemble into cross-β aggregates in silico, but follow distinct pathways. Aβ16-22 is highly aggregation-prone with a funneled free energy basin toward multi-layer β-sheet aggregates. IAPP22-28, on the other hand, features the accumulation of unstructured oligomers before the nucleation of β-sheets and growth into double-layer β-sheet aggregates. In the presence of Aβ16-22, the aggregation of IAPP22-28 is promoted by forming co-aggregated multi-layer β-sheets. Our study offers a detailed molecular insight to the long-postulated oligomerization-nucleation process in the amyloid aggregations.
Collapse
Affiliation(s)
- Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA.
| | | | | | | |
Collapse
|
82
|
Wang B, Pilkington EH, Sun Y, Davis TP, Ke PC, Ding F. Modulating protein amyloid aggregation with nanomaterials. ENVIRONMENTAL SCIENCE. NANO 2017; 4:1772-1783. [PMID: 29230295 PMCID: PMC5722024 DOI: 10.1039/c7en00436b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Direct exposure or intake of nanopaticles (NPs) to the human body can invoke a series of biological responses, some of which are deleterious, and as such the role of NPs in vivo requires thorough examination. Over the past decade, it has been established that biomolecules such as proteins can bind NPs to form a 'corona', where the structures and dynamics of NP-associated proteins can assign new functionality, systemic distribution and toxicity. However, the behavior and fate of NPs in biological systems are still far from being fully understood. Growing evidence has shown that some natural or artificial NPs could either up- or down-regulate protein amyloid aggregation, which is associated with neurodegenerative diseases like Alzheimer's and Parkinson's diseases, as well as metabolic diseases such as type 2 diabetes. These effects can be either indirect (e.g., through a crowding effect) or direct, depending on the NP composition, size, shape and surface chemistry. However, efforts to design anti-amyloid NPs for biomedical applications have been largely hindered by insufficient understanding of the complex processes, even though proof-of-concept experiments have been conducted. Therefore, exploring the general mechanisms of NP-meditated protein aggregation marks an emerging field in bio-nano research and a new stage of handling nanotechnology that not only aids in elucidating the origin of nanotoxicity, but also provides a foundation for engineering de novo anti-amyloid nanomedicines. In this review, we summarize research on NP-mediated protein amyloid aggregation, with the goal of contributing to sustained nanotechnology and safe nanomedicine against amyloid diseases.
Collapse
Affiliation(s)
- Bo Wang
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA
| | - Emily H Pilkington
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, UK
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA
| |
Collapse
|
83
|
Lin S, Mortimer M, Chen R, Kakinen A, Riviere JE, Davis TP, Ding F, Ke PC. NanoEHS beyond Toxicity - Focusing on Biocorona. ENVIRONMENTAL SCIENCE. NANO 2017; 7:1433-1454. [PMID: 29123668 PMCID: PMC5673284 DOI: 10.1039/c6en00579a] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The first phase of environmental health and safety of nanomaterials (nanoEHS) studies has been mainly focused on evidence-based investigations that probe the impact of nanoparticles, nanomaterials and nano-enabled products on biological and ecological systems. The integration of multiple disciplines, including colloidal science, nanomaterial science, chemistry, toxicology/immunology and environmental science, is necessary to understand the implications of nanotechnology for both human health and the environment. While strides have been made in connecting the physicochemical properties of nanomaterials with their hazard potential in tiered models, fundamental understanding of nano-biomolecular interactions and their implications for nanoEHS is largely absent from the literature. Research on nano-biomolecular interactions within the context of natural systems not only provides important clues for deciphering nanotoxicity and nanoparticle-induced pathology, but also presents vast new opportunities for screening beneficial material properties and designing greener products from bottom up. This review highlights new opportunities concerning nano-biomolecular interactions beyond the scope of toxicity.
Collapse
Affiliation(s)
- Sijie Lin
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Monika Mortimer
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California 93106, United States
| | - Ran Chen
- Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, Kansas 66506, United States
| | - Aleksandr Kakinen
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Jim E. Riviere
- Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, Kansas 66506, United States
| | - Thomas P. Davis
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, United Kingdom
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Pu Chun Ke
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
84
|
Yousaf M, Huang H, Li P, Wang C, Yang Y. Fluorine Functionalized Graphene Quantum Dots as Inhibitor against hIAPP Amyloid Aggregation. ACS Chem Neurosci 2017; 8:1368-1377. [PMID: 28230965 DOI: 10.1021/acschemneuro.7b00015] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fibrillar deposits of the human islet amyloid polypeptide (hIAPP) are considered as a root of Type II diabetes mellitus. Fluorinated graphene quantum dots (FGQDs) are new carbon nanomaterials with unique physicochemical properties containing highly electronegative F atoms. Herein we report a single step synthesis method of FGQDs with an inhibitory effect on aggregation and cytotoxicity of hIAPP in vitro. Highly fluorescent and water dispersible FGQDs, less than 3 nm in size, were synthesized by the microwave-assisted hydrothermal method. Efficient inhibition capability of FGQDs to amyloid aggregation was demonstrated. The morphologies of hIAPP aggregates were observed to change from the entangled long fibrils to short thin fibrils and amorphous aggregates in the presence of FGQDs. In thioflavin T fluorescence analysis, inhibited aggregation with prolonged lag time and reduced fluorescence intensity at equilibrium were observed when hIAPP was incubated together with FGQDs. Circular dichroism spectrum results reveal that FGQDs could inhibit conformational transition of the peptide from native structure to β-sheets. FGQDs could also rescue the cytotoxicity of INS-1 cells induced by hIAPP in a dose dependent manner. This study could be beneficial for design and preparation of inhibitors for amyloids, which is important for prevention and treatment of amyloidosis.
Collapse
Affiliation(s)
- Maryam Yousaf
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences , 19 A Yuquan Rd, Shijingshan District, Beijing, P. R. China 100049
| | - Huan Huang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Ping Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences , 19 A Yuquan Rd, Shijingshan District, Beijing, P. R. China 100049
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences , 19 A Yuquan Rd, Shijingshan District, Beijing, P. R. China 100049
| |
Collapse
|
85
|
Pilkington EH, Xing Y, Wang B, Kakinen A, Wang M, Davis TP, Ding F, Ke PC. Effects of Protein Corona on IAPP Amyloid Aggregation, Fibril Remodelling, and Cytotoxicity. Sci Rep 2017; 7:2455. [PMID: 28550295 PMCID: PMC5446405 DOI: 10.1038/s41598-017-02597-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/12/2017] [Indexed: 01/24/2023] Open
Abstract
Aggregation of islet amyloid polypeptide (IAPP), a peptide hormone co-synthesized and co-stored with insulin in pancreatic cells and also co-secreted to the circulation, is associated with beta-cell death in type-2 diabetes (T2D). In T2D patients IAPP is found aggregating in the extracellular space of the islets of Langerhans. Although the physiological environments of these intra- and extra-cellular compartments and vascular systems significantly differ, the presence of proteins is ubiquitous but the effects of protein binding on IAPP aggregation are largely unknown. Here we examined the binding of freshly-dissolved IAPP as well as pre-formed fibrils with two homologous proteins, namely cationic lysozyme (Lys) and anionic alpha-lactalbumin (aLac), both of which can be found in the circulation. Biophysical characterizations and a cell viability assay revealed distinct effects of Lys and aLac on IAPP amyloid aggregation, fibril remodelling and cytotoxicity, pointing to the role of protein "corona" in conferring the biological impact of amyloidogenic peptides. Systematic molecular dynamics simulations further provided molecular and structural details for the observed differential effects of proteins on IAPP amyloidosis. This study facilitates our understanding of the fate and transformation of IAPP in vivo, which are expected to have consequential bearings on IAPP glycemic control and T2D pathology.
Collapse
Affiliation(s)
- Emily H Pilkington
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Yanting Xing
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
| | - Bo Wang
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
| | - Aleksandr Kakinen
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Miaoyi Wang
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
- Department of Chemistry, Warwick University, Gibbet Hill, Coventry, CV4 7AL, United Kingdom.
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA.
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| |
Collapse
|
86
|
Shcharbin D, Shcharbina N, Dzmitruk V, Pedziwiatr-Werbicka E, Ionov M, Mignani S, de la Mata FJ, Gómez R, Muñoz-Fernández MA, Majoral JP, Bryszewska M. Dendrimer-protein interactions versus dendrimer-based nanomedicine. Colloids Surf B Biointerfaces 2017; 152:414-422. [PMID: 28167455 DOI: 10.1016/j.colsurfb.2017.01.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
Abstract
Dendrimers are hyperbranched polymers belonging to the huge class of nanomedical devices. Their wide application in biology and medicine requires understanding of the fundamental mechanisms of their interactions with biological systems. Summarizing, electrostatic force plays the predominant role in dendrimer-protein interactions, especially with charged dendrimers. Other kinds of interactions have been proven, such as H-bonding, van der Waals forces, and even hydrophobic interactions. These interactions depend on the characteristics of both participants: flexibility and surface charge of a dendrimer, rigidity of protein structure and the localization of charged amino acids at its surface. pH and ionic strength of solutions can significantly modulate interactions. Ligands and cofactors attached to a protein can also change dendrimer-protein interactions. Binding of dendrimers to a protein can change its secondary structure, conformation, intramolecular mobility and functional activity. However, this strongly depends on rigidity versus flexibility of a protein's structure. In addition, the potential applications of dendrimers to nanomedicine are reviwed related to dendrimer-protein interactions.
Collapse
Affiliation(s)
- Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of NASB, Minsk, Belarus.
| | | | - Volha Dzmitruk
- Institute of Biophysics and Cell Engineering of NASB, Minsk, Belarus
| | - Elzbieta Pedziwiatr-Werbicka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Serge Mignani
- Université Paris Descartes, Laboratoire de Chimie et de Biochimie pharmacologiques et toxicologique, Paris, France
| | - F Javier de la Mata
- Departamento Química Orgánica y Química Inorgánica, Universidad de Alcalá, Alcalá de Henares, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Spain
| | - Rafael Gómez
- Departamento Química Orgánica y Química Inorgánica, Universidad de Alcalá, Alcalá de Henares, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Spain
| | - Maria Angeles Muñoz-Fernández
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Spain; Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain; Spanish HIV-HGM BioBank, Madrid, Spain
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination, CNRS, Toulouse, France; Université de Toulouse, Toulouse, France
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
87
|
Buczkowski A, Urbaniak P, Piekarski H, Palecz B. Spectroscopic and calorimetric studies on the interaction between PAMAM G4-OH and 5-fluorouracil in aqueous solutions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 171:401-405. [PMID: 27569773 DOI: 10.1016/j.saa.2016.08.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/08/2016] [Accepted: 08/16/2016] [Indexed: 06/06/2023]
Abstract
The results of spectroscopic measurements (an increase in solubility, equilibrium dialysis, 1H NMR titration) and calorimetric measurements (isothermal titration ITC) indicate spontaneous (ΔG<0) binding of 5-fluorouracil molecules by PAMAM G4-OH dendrimer with terminal hydroxyl groups in an aqueous solution. PAMAM G4-OH dendrimer bonds about n=8±1 molecules of the drug with an equilibrium constant of K=70±10. The process of saturating the dendrimer active sites by the drug molecules is exothermal (ΔH<0) and is accompanied by an advantageous change in entropy (ΔS>0). The parameters of binding 5-fluorouracil by PAMAM G4-OH dendrimer were compared with those of binding this drug by the macromolecules of PAMAM G3-OH and G5-OH.
Collapse
Affiliation(s)
- Adam Buczkowski
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 165, Lodz 90-236, Poland.
| | - Pawel Urbaniak
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland
| | - Henryk Piekarski
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 165, Lodz 90-236, Poland
| | - Bartlomiej Palecz
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 165, Lodz 90-236, Poland.
| |
Collapse
|
88
|
Guo J, Sun W, Li L, Liu F, Lu W. Brazilin inhibits fibrillogenesis of human islet amyloid polypeptide, disassembles mature fibrils, and alleviates cytotoxicity. RSC Adv 2017. [DOI: 10.1039/c7ra05742c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Inhibitory effect of brazilin on the fibrillogenesis of hIAPP was explored using biochemical, biophysical, cytobiological and molecular simulation experiments. Brazilin was a potential compound for therapeutic treatment of type II diabetes mellitus.
Collapse
Affiliation(s)
- Jingjing Guo
- Department of Biochemical Engineering
- Key Laboratory of Systems Bioengineering of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Wanqi Sun
- Department of Chemical and Biological Engineering
- The University of Alabama
- Tuscaloosa
- USA
| | - Li Li
- College of Marine and Environmental Sciences
- Tianjin University of Science & Technology
- Tianjin 300457
- P. R. China
| | - Fufeng Liu
- Department of Biochemical Engineering
- Key Laboratory of Systems Bioengineering of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Wenyu Lu
- Department of Biochemical Engineering
- Key Laboratory of Systems Bioengineering of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| |
Collapse
|
89
|
Bhasikuttan AC, Mohanty J. Detection, inhibition and disintegration of amyloid fibrils: the role of optical probes and macrocyclic receptors. Chem Commun (Camb) 2017; 53:2789-2809. [DOI: 10.1039/c6cc08727b] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This article provides a brief account of the recent reports on the early detection of amyloid fibril formation using fluorescent dyes and inhibition and disintegration of fibrils using macrocyclic receptors, which find applications in the treatment of fibril associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Achikanath C. Bhasikuttan
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
- Homi Bhabha National Institute
| | - Jyotirmayee Mohanty
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
- Homi Bhabha National Institute
| |
Collapse
|
90
|
Chen R, Riviere JE. Biological and environmental surface interactions of nanomaterials: characterization, modeling, and prediction. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27863136 DOI: 10.1002/wnan.1440] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 01/05/2023]
Abstract
The understanding of nano-bio interactions is deemed essential in the design, application, and safe handling of nanomaterials. Proper characterization of the intrinsic physicochemical properties, including their size, surface charge, shape, and functionalization, is needed to consider the fate or impact of nanomaterials in biological and environmental systems. The characterizations of their interactions with surrounding chemical species are often hindered by the complexity of biological or environmental systems, and the drastically different surface physicochemical properties among a large population of nanomaterials. The complexity of these interactions is also due to the diverse ligands of different chemical properties present in most biomacromolecules, and multiple conformations they can assume at different conditions to minimize their conformational free energy. Often these interactions are collectively determined by multiple physical or chemical forces, including electrostatic forces, hydrogen bonding, and hydrophobic forces, and calls for multidimensional characterization strategies, both experimentally and computationally. Through these characterizations, the understanding of the roles surface physicochemical properties of nanomaterials and their surface interactions with biomacromolecules can play in their applications in biomedical and environmental fields can be obtained. To quantitatively decipher these physicochemical surface interactions, computational methods, including physical, statistical, and pharmacokinetic models, can be used for either analyses of large amounts of experimental characterization data, or theoretical prediction of the interactions, and consequent biological behavior in the body after administration. These computational methods include molecular dynamics simulation, structure-activity relationship models such as biological surface adsorption index, and physiologically-based pharmacokinetic models. WIREs Nanomed Nanobiotechnol 2017, 9:e1440. doi: 10.1002/wnan.1440 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ran Chen
- Institute of Computational Comparative Medicine, Kansas State University, Manhattan, KS, USA.,Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, KS, USA
| | - Jim E Riviere
- Institute of Computational Comparative Medicine, Kansas State University, Manhattan, KS, USA.,Department of Anatomy and Physiology, College of Veterinary Medicine, Institute of Computational Comparative Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
91
|
Nguyen PT, Sharma R, Rej R, De Carufel CA, Roy R, Bourgault S. Low generation anionic dendrimers modulate islet amyloid polypeptide self-assembly and inhibit pancreatic β-cell toxicity. RSC Adv 2016. [DOI: 10.1039/c6ra15373a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The self-assembly and cytotoxicity of the amyloidogenic peptide IAPP can be controlled with low generation anionic dendrimers.
Collapse
Affiliation(s)
- Phuong T. Nguyen
- Department of Chemistry
- Pharmaqam
- University of Québec in Montreal
- Montreal
- Canada
| | - Rishi Sharma
- Department of Chemistry
- Pharmaqam
- University of Québec in Montreal
- Montreal
- Canada
| | - Rabindra Rej
- Department of Chemistry
- Pharmaqam
- University of Québec in Montreal
- Montreal
- Canada
| | | | - René Roy
- Department of Chemistry
- Pharmaqam
- University of Québec in Montreal
- Montreal
- Canada
| | - Steve Bourgault
- Department of Chemistry
- Pharmaqam
- University of Québec in Montreal
- Montreal
- Canada
| |
Collapse
|
92
|
Sun Q, Zhao J, Zhang Y, Yang H, Zhou P. A natural hyperbranched proteoglycan inhibits IAPP amyloid fibrillation and attenuates β-cell apoptosis. RSC Adv 2016. [DOI: 10.1039/c6ra23429a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A natural amphiphilic hyperbranched proteoglycan efficiently inhibits IAPP fibrillation and attenuates β-cell apoptosis for type 2 diabetes treatment.
Collapse
Affiliation(s)
- Qing Sun
- Department of Macromolecular Science
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai
- China
| | - Juan Zhao
- Department of Macromolecular Science
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai
- China
| | - Yuan Zhang
- Department of Medicine
- St Vincent's Hospital
- The University of Melbourne
- Fitzroy
- Australia
| | - Hongjie Yang
- Yueyang Hospital of Integrated Chinese and Western Medicine
- Shanghai University of Traditional Chinese Medicine
- Shanghai
- China
| | - Ping Zhou
- Department of Macromolecular Science
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai
- China
| |
Collapse
|