51
|
Najafzadeh B, Asadzadeh Z, Motafakker Azad R, Mokhtarzadeh A, Baghbanzadeh A, Alemohammad H, Abdoli Shadbad M, Vasefifar P, Najafi S, Baradaran B. The oncogenic potential of NANOG: An important cancer induction mediator. J Cell Physiol 2020; 236:2443-2458. [PMID: 32960465 DOI: 10.1002/jcp.30063] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSCs) are a unique population in the tumor, but they only comprise 2%-5% of the tumor bulk. Although CSCs share several features with embryonic stem cells, CSCs can give rise to the tumor cells. CSCs overexpress embryonic transcription factor NANOG, which is downregulated in differentiated tissues. This transcription factor confers CSC's stemness, unlimited self-renewal, metastasis, invasiveness, angiogenesis, and drug-resistance with the assistance of WNT, OCT4, SOX2, Hedgehog, BMI-1, and other complexes. NANOG facilitates CSCs development via multiple pathways, like angiogenesis and lessening E-cadherin expression levels, which paves the road for metastasis. Moreover, NANOG represses apoptosis and leads to drug-resistance. This review aims to highlight the pivotal role of NANOG and the pertained pathways in CSCs. Also, this current study intends to demonstrate that targeting NANOG can dimmish the CSCs, sensitize the tumor to chemotherapy, and eradicate the cancer cells.
Collapse
Affiliation(s)
- Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Parisa Vasefifar
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
52
|
Yu Z, Dmitrieva NI, Walts AD, Jin H, Liu Y, Ping X, Ferrante EA, Qiu L, Holland SM, Freeman AF, Chen G, Boehm M. STAT3 modulates reprogramming efficiency of human somatic cells; insights from autosomal dominant Hyper IgE syndrome caused by STAT3 mutations. Biol Open 2020; 9:bio052662. [PMID: 32580970 PMCID: PMC7502598 DOI: 10.1242/bio.052662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022] Open
Abstract
Human induced pluripotent stem cell (iPSC) technology has opened exciting opportunities for stem-cell-based therapy. However, its wide adoption is precluded by several challenges including low reprogramming efficiency and potential for malignant transformation. Better understanding of the molecular mechanisms of the changes that cells undergo during reprograming is needed to improve iPSCs generation efficiency and to increase confidence for their clinical use safety. Here, we find that dominant negative mutations in STAT3 in patients with autosomal-dominant hyper IgE (Job's) syndrome (AD-HIES) result in greatly reduced reprograming efficiency of primary skin fibroblasts derived from skin biopsies. Analysis of normal skin fibroblasts revealed upregulation and phosphorylation of endogenous signal transducer and activator of transcription 3 (STAT3) and its binding to the NANOG promoter following transduction with OKSM factors. This coincided with upregulation of NANOG and appearance of cells expressing pluripotency markers. Upregulation of NANOG and number of pluripotent cells were greatly reduced throughout the reprograming process of AD-HIES fibroblasts that was restored by over-expression of functional STAT3. NANOGP8, the human-specific NANOG retrogene that is often expressed in human cancers, was also induced during reprogramming, to very low but detectable levels, in a STAT3-dependent manner. Our study revealed the critical role of endogenous STAT3 in facilitating reprogramming of human somatic cells.
Collapse
Affiliation(s)
- Zhen Yu
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natalia I Dmitrieva
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Avram D Walts
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hui Jin
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yangtengyu Liu
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xianfeng Ping
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elisa A Ferrante
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Guibin Chen
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manfred Boehm
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
53
|
Jia Z, Zhang Y, Yan A, Wang M, Han Q, Wang K, Wang J, Qiao C, Pan Z, Chen C, Hu D, Ding X. 1,25-dihydroxyvitamin D3 signaling-induced decreases in IRX4 inhibits NANOG-mediated cancer stem-like properties and gefitinib resistance in NSCLC cells. Cell Death Dis 2020; 11:670. [PMID: 32820157 PMCID: PMC7441324 DOI: 10.1038/s41419-020-02908-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 11/24/2022]
Abstract
Recent studies have demonstrated that acquisition of cancer stem-like properties plays an essential role in promoting epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) resistance in non-small cell lung cancer (NSCLC); however, how to regulate cancer stem-like properties and EGFR-TKI resistance is largely unclear. In this study, we discovered that increased iroquois-class homeodomain protein 4 (IRX4) was related to gefitinib resistance in NSCLC cells. Knockdown of IRX4 inhibited cell proliferation, sphere formation, and the expression of CD133, ALDH1A1, NANOG, Sox2 and Notch1, and the transcriptional activity of NANOG promoter. IRX4 overexpression increased the protein level of NANOG and CD133 in PC-9 cells. Combination of knocking-down IRX4 with gefitinib increased cell apoptosis and decreased cell viability and the expression of p-EGFR and NANOG in PC-9/GR cells. IRX4 knockdown in a PC-9/GR xenograft tumor model inhibited tumor progression and the expression of NANOG and CD133 more effectively than single treatment alone. Knockdown of NANOG inhibited the expression of CD133 and restored gefitinib cytotoxicity, and NANOG overexpression-induced cancer stem-like properties and gefitinib resistance could be obviously reversed by knocking-down IRX4. Further, we found that 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) reduced obviously the expression of IRX4 and NANOG by inhibiting the activation of TGF-β1/Smad3 signaling pathway; moreover, combination of 1,25(OH)2D3 and gefitinib decreased cell viability and proliferation or tumor progression and the expression of IRX4 and NANOG compared with single treatment alone both in PC-9/GR cells and in a PC-9/GR xenograft tumor model. These results reveal that inhibition of IRX4-mediated cancer stem-like properties by regulating 1,25(OH)2D3 signaling may increase gefitinib cytotoxicity. Combination therapy of gefitinib and 1,25(OH)2D3 by targeting IRX4 and NANOG, could provide a promising strategy to improve gefitinib cytotoxicity.
Collapse
Affiliation(s)
- Zhirong Jia
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Yameng Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Aiwen Yan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Meisa Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Qiushuang Han
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Kaiwei Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Jie Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198, Nanjing, China.,Department of Pharmacy, the First Affiliated Hospital of Xinjiang Medical University, 830054, Urumqi, China
| | - Chen Qiao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198, Nanjing, China.,Precision Medicine Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Zhenzhen Pan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Chuansheng Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Dong Hu
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Medical School, Anhui University of Science and Technology, 232001, Huainan, China.
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198, Nanjing, China. .,Precision Medicine Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198, Nanjing, China.
| |
Collapse
|
54
|
Prostate cancer-derived holoclones: a novel and effective model for evaluating cancer stemness. Sci Rep 2020; 10:11329. [PMID: 32647229 PMCID: PMC7347552 DOI: 10.1038/s41598-020-68187-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer accounts for approximately 13.5% of all newly diagnosed male cancer cases. Significant clinical burdens remain in terms of ineffective prognostication, with overtreatment of insignificant disease. Additionally, the pathobiology underlying disease heterogeneity remains poorly understood. As the role of cancer stem cells in the perpetuation of aggressive carcinoma is being substantiated by experimental evidence, it is crucially important to understand the molecular mechanisms, which regulate key features of cancer stem cells. We investigated two methods for in vitro cultivation of putative prostate cancer stem cells based on ‘high-salt agar’ and ‘monoclonal cultivation’. Data demonstrated ‘monoclonal cultivation’ as the superior method. We demonstrated that ‘holoclones’ expressed canonical stem markers, retained the exclusive ability to generate poorly differentiated tumours in NOD/SCID mice and possessed a unique mRNA-miRNA gene signature. miRNA:Target interactions analysis visualised potentially critical regulatory networks, which are dysregulated in prostate cancer holoclones. The characterisation of this tumorigenic population lays the groundwork for this model to be used in the identification of proteomic or small non-coding RNA therapeutic targets for the eradication of this critical cellular population. This is significant, as it provides a potential route to limit development of aggressive disease and thus improve survival rates.
Collapse
|
55
|
Huang T, Song X, Xu D, Tiek D, Goenka A, Wu B, Sastry N, Hu B, Cheng SY. Stem cell programs in cancer initiation, progression, and therapy resistance. Am J Cancer Res 2020; 10:8721-8743. [PMID: 32754274 PMCID: PMC7392012 DOI: 10.7150/thno.41648] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past few decades, substantial evidence has convincingly revealed the existence of cancer stem cells (CSCs) as a minor subpopulation in cancers, contributing to an aberrantly high degree of cellular heterogeneity within the tumor. CSCs are functionally defined by their abilities of self-renewal and differentiation, often in response to cues from their microenvironment. Biological phenotypes of CSCs are regulated by the integrated transcriptional, post-transcriptional, metabolic, and epigenetic regulatory networks. CSCs contribute to tumor progression, therapeutic resistance, and disease recurrence through their sustained proliferation, invasion into normal tissue, promotion of angiogenesis, evasion of the immune system, and resistance to conventional anticancer therapies. Therefore, elucidation of the molecular mechanisms that drive cancer stem cell maintenance, plasticity, and therapeutic resistance will enhance our ability to improve the effectiveness of targeted therapies for CSCs. In this review, we highlight the key features and mechanisms that regulate CSC function in tumor initiation, progression, and therapy resistance. We discuss factors for CSC therapeutic resistance, such as quiescence, induction of epithelial-to-mesenchymal transition (EMT), and resistance to DNA damage-induced cell death. We evaluate therapeutic approaches for eliminating therapy-resistant CSC subpopulations, including anticancer drugs that target key CSC signaling pathways and cell surface markers, viral therapies, the awakening of quiescent CSCs, and immunotherapy. We also assess the impact of new technologies, such as single-cell sequencing and CRISPR-Cas9 screening, on the investigation of the biological properties of CSCs. Moreover, challenges remain to be addressed in the coming years, including experimental approaches for investigating CSCs and obstacles in therapeutic targeting of CSCs.
Collapse
|
56
|
Mcgrath NA, Fu J, Gu SZ, Xie C. Targeting cancer stem cells in cholangiocarcinoma (Review). Int J Oncol 2020; 57:397-408. [PMID: 32468022 PMCID: PMC7307587 DOI: 10.3892/ijo.2020.5074] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
The incidence of cholangiocarcinoma has been increasing steadily over the past 50 years, but the survival rates remained low due to the disease being highly resistant to non-surgical treatment interventions. Cancer stem cell markers are expressed in cholangiocarcinoma, suggesting that they serve a significant role in the physiology of the disease. Cancer stem cells are frequently implicated in tumor relapse and acquired resistance to a number of therapeutic strategies, including chemotherapy, radiation and immune checkpoint inhibitors. Novel targeted therapies to eradicate cancer stem cells may assist in overcoming treatment resistance in cholangiocarcinoma and reduce the rates of relapse and recurrence. Several signaling pathways have been previously documented to regulate the development and survival of cancer stem cells, including Notch, janus kinase/STAT, Hippo/yes-associated protein 1 (YAP1), Wnt and Hedgehog signaling. Although pharmacological agents have been developed to target these pathways, only modest effects were reported in clinical trials. The Hippo/YAP1 signaling pathway has come to the forefront in the field of cancer stem cell research due to its reported involvement in epithelium-mesenchymal transition, cell adhesion, organogenesis and tumorigenesis. In the present article, recent findings in terms of cancer stem cell research in cholangiocarcinoma were reviewed, where the potential therapeutic targeting of cancer stem cells in this disease was discussed.
Collapse
Affiliation(s)
- Nicole A Mcgrath
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Jianyang Fu
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Sophie Z Gu
- Johns Hopkins University School of Medicine, Baltimore, MD 20215, USA
| | - Changqing Xie
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| |
Collapse
|
57
|
Valadão IC, Ralph ACL, Bordeleau F, Dzik LM, Borbely KSC, Geraldo MV, Reinhart-King CA, Freitas VM. High type I collagen density fails to increase breast cancer stem cell phenotype. PeerJ 2020; 8:e9153. [PMID: 32435546 PMCID: PMC7227653 DOI: 10.7717/peerj.9153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/18/2020] [Indexed: 11/20/2022] Open
Abstract
Breast cancer is a highly frequent and lethal malignancy which metastasis and relapse frequently associates with the existence of breast cancer stem cells (CSCs). CSCs are undifferentiated, aggressive and highly resistant to therapy, with traits modulated by microenvironmental cells and the extracellular matrix (ECM), a biologically complex and dynamic structure composed mainly by type I collagen (Col-I). Col-I enrichment in the tumor-associated ECM leads to microenvironment stiffness and higher tumor aggressiveness and metastatic potential. While Col-I is also known to induce tumor stemness, it is unknown if such effect is dependent of Col-I density. To answer this question, we evaluated the stemness phenotype of MDA-MB-231 and MCF-7 human breast cancer cells cultured within gels of varying Col-I densities. High Col-I density increased CD44+CD24− breast cancer stem cell (BCSC) immunophenotype but failed to potentiate Col-I fiber alignment, cell self-renewal and clonogenicity in MDA-MB-231 cells. In MCF-7 cells, high Col-I density decreased total levels of variant CD44 (CD44v). Common to both cell types, high Col-I density induced neither markers related to CSC nor those related with mechanically-induced cell response. We conclude that high Col-I density per se is not sufficient to fully develop the BCSC phenotype.
Collapse
Affiliation(s)
- Iuri C Valadão
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Carolina L Ralph
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - François Bordeleau
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Luciana M Dzik
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Karen S C Borbely
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Cell Biology Laboratory, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil.,Faculty of Nutrition, Federal University of Alagoas, Maceió, Brazil
| | - Murilo V Geraldo
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | - Vanessa M Freitas
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
58
|
Molecular fossils “pseudogenes” as functional signature in biological system. Genes Genomics 2020; 42:619-630. [DOI: 10.1007/s13258-020-00935-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/03/2020] [Indexed: 12/11/2022]
|
59
|
Assoun EN, Meyer AN, Jiang MY, Baird SM, Haas M, Donoghue DJ. Characterization of iPS87, a prostate cancer stem cell-like cell line. Oncotarget 2020; 11:1075-1084. [PMID: 32256979 PMCID: PMC7105161 DOI: 10.18632/oncotarget.27524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/03/2020] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer affects hundreds of thousands of men and families throughout the world. Although chemotherapy, radiation, surgery, and androgen deprivation therapy are applied, these therapies do not cure metastatic prostate cancer. Patients treated by androgen deprivation often develop castration resistant prostate cancer which is incurable. Novel approaches of treatment are clearly necessary. We have previously shown that prostate cancer originates as a stem cell disease. A prostate cancer patient sample, #87, obtained from prostatectomy surgery, was collected and frozen as single cell suspension. Cancer stem cell cultures were grown, single cell-cloned, and shown to be tumorigenic in SCID mice. However, outside its natural niche, the cultured prostate cancer stem cells lost their tumor-inducing capability and stem cell marker expression after approximately 8 transfers at a 1:3 split ratio. Tumor-inducing activity could be restored by inducing the cells to pluripotency using the method of Yamanaka. Cultures of human prostate-derived normal epithelial cells acquired from commercial sources were similarly induced to pluripotency and these did not acquire a tumor phenotype in vivo. To characterize the iPS87 cell line, cells were stained with antibodies to various markers of stem cells including: ALDH7A1, LGR5, Oct4, Nanog, Sox2, Androgen Receptor, and Retinoid X Receptor. These markers were found to be expressed by iPS87 cells, and the high tumorigenicity in SCID mice of iPS87 was confirmed by histopathology. This research thus characterizes the iPS87 cell line as a cancer-inducing, stem cell-like cell line, which can be used in the development of novel treatments for prostate cancer.
Collapse
Affiliation(s)
- Erika N. Assoun
- Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA 92093, USA
| | - April N. Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, San Diego, CA 92093, USA
| | - Maggie Y. Jiang
- Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA 92093, USA
| | - Stephen M. Baird
- Department of Pathology, University of California San Diego, La Jolla, San Diego, CA 92093, USA
| | - Martin Haas
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, San Diego, CA 92093, USA
| | - Daniel J. Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, San Diego, CA 92093, USA
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, San Diego, CA 92093, USA
| |
Collapse
|
60
|
Nappi A, Di Cicco E, Miro C, Cicatiello AG, Sagliocchi S, Mancino G, Ambrosio R, Luongo C, Di Girolamo D, De Stefano MA, Porcelli T, Stornaiuolo M, Dentice M. The NANOG Transcription Factor Induces Type 2 Deiodinase Expression and Regulates the Intracellular Activation of Thyroid Hormone in Keratinocyte Carcinomas. Cancers (Basel) 2020; 12:cancers12030715. [PMID: 32197405 PMCID: PMC7140064 DOI: 10.3390/cancers12030715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
Type 2 deiodinase (D2), the principal activator of thyroid hormone (TH) signaling in target tissues, is expressed in cutaneous squamous cell carcinomas (SCCs) during late tumorigenesis, and its repression attenuates the invasiveness and metastatic spread of SCC. Although D2 plays multiple roles in cancer progression, nothing is known about the mechanisms regulating D2 in cancer. To address this issue, we investigated putative upstream regulators of D2 in keratinocyte carcinomas. We found that the expression of D2 in SCC cells is positively regulated by the NANOG transcription factor, whose expression, besides being causally linked to embryonic stemness, is associated with many human cancers. We also found that NANOG binds to the D2 promoter and enhances D2 transcription. Notably, blockage of D2 activity reduced NANOG-induced cell migration as well as the expression of key genes involved in epithelial-mesenchymal transition in SCC cells. In conclusion, our study reveals a link among endogenous endocrine regulators of cancer, thyroid hormone and its activating enzyme, and the NANOG regulator of cancer biology. These findings could provide the basis for the development of TH inhibitors as context-dependent anti-tumor agents.
Collapse
Affiliation(s)
- Annarita Nappi
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (E.D.C.); (C.M.); (A.G.C.); (S.S.); (G.M.); (M.A.D.S.)
| | - Emery Di Cicco
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (E.D.C.); (C.M.); (A.G.C.); (S.S.); (G.M.); (M.A.D.S.)
| | - Caterina Miro
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (E.D.C.); (C.M.); (A.G.C.); (S.S.); (G.M.); (M.A.D.S.)
| | - Annunziata Gaetana Cicatiello
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (E.D.C.); (C.M.); (A.G.C.); (S.S.); (G.M.); (M.A.D.S.)
| | - Serena Sagliocchi
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (E.D.C.); (C.M.); (A.G.C.); (S.S.); (G.M.); (M.A.D.S.)
| | - Giuseppina Mancino
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (E.D.C.); (C.M.); (A.G.C.); (S.S.); (G.M.); (M.A.D.S.)
| | | | - Cristina Luongo
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy; (C.L.); (D.D.G.); (T.P.)
| | - Daniela Di Girolamo
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy; (C.L.); (D.D.G.); (T.P.)
| | - Maria Angela De Stefano
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (E.D.C.); (C.M.); (A.G.C.); (S.S.); (G.M.); (M.A.D.S.)
| | - Tommaso Porcelli
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy; (C.L.); (D.D.G.); (T.P.)
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy;
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (E.D.C.); (C.M.); (A.G.C.); (S.S.); (G.M.); (M.A.D.S.)
- CEINGE–Biotecnologie Avanzate Scarl, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
61
|
The Cancer Stem Cell in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12030684. [PMID: 32183251 PMCID: PMC7140091 DOI: 10.3390/cancers12030684] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
The recognition of intra-tumoral cellular heterogeneity has given way to the concept of the cancer stem cell (CSC). According to this concept, CSCs are able to self-renew and differentiate into all of the cancer cell lineages present within the tumor, placing the CSC at the top of a hierarchical tree. The observation that these cells—in contrast to bulk tumor cells—are able to exclusively initiate new tumors, initiate metastatic spread and resist chemotherapy implies that CSCs are solely responsible for tumor recurrence and should be therapeutically targeted. Toward this end, dissecting and understanding the biology of CSCs should translate into new clinical therapeutic approaches. In this article, we review the CSC concept in cancer, with a special focus on hepatocellular carcinoma.
Collapse
|
62
|
Lin Q, Wu Z, Yue X, Yu X, Wang Z, Song X, Xu L, He Y, Ge Y, Tan S, Wang T, Song H, Yuan D, Gong Y, Gao L, Liang X, Ma C. ZHX2 restricts hepatocellular carcinoma by suppressing stem cell-like traits through KDM2A-mediated H3K36 demethylation. EBioMedicine 2020; 53:102676. [PMID: 32114388 PMCID: PMC7047184 DOI: 10.1016/j.ebiom.2020.102676] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/16/2020] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
Background Liver cancer stem cells (CSCs) are critical determinants of HCC relapse and therapeutic resistance, but the mechanisms underlying the maintenance of CSCs are poorly understood. We aimed to explore the role of tumor repressor Zinc-fingers and homeoboxes 2 (ZHX2) in liver CSCs. Methods CD133+ or EPCAM+ stem-like liver cancer cells were sorted from tumor tissues of HCC patients and HCC cell lines by flow cytometry. In addition, sorafenib-resistant cells, tumor-sphere forming cells and side population (SP) cells were respectively cultured and isolated as hepatic CSCs. The tumor-initiating and chemoresistance properties of ZHX2-overexpressing and ZHX2-knockdown cells were analyzed in vivo and in vitro. Microarray, luciferase reporter assay, chromatin immunoprecipitation (ChIP) and ChIP-on-chip analyses were performed to explore ZHX2 target genes. The expression of ZHX2 and its target gene were determined by quantitative RT-PCR, western blot, immunofluorescence and immunohistochemical staining in hepatoma cells and tumor and adjacent tissues from HCC patients. Results ZHX2 expression was significantly reduced in liver CSCs from different origins. ZHX2 deficiency led to enhanced liver tumor progression and expansion of CSC populations in vitro and in vivo. Re-expression of ZHX2 restricted capabilities of hepatic CSCs in supporting tumor initiation, self-renewal and sorafenib-resistance. Mechanically, ZHX2 suppressed liver CSCs via inhibiting KDM2A-mediated demethylation of histone H3 lysine 36 (H3K36) at the promoter regions of stemness-associated transcription factors, such as NANOG, SOX4 and OCT4. Moreover, patients with lower expression of ZHX2 and higher expression of KDM2A in tumor tissues showed significantly poorer survival. Conclusion ZHX2 counteracts stem cell traits through transcriptionally repressing KDM2A in HCC. Our data will aid in a better understanding of molecular mechanisms underlying HCC relapse and drug resistance.
Collapse
Affiliation(s)
- Qinghai Lin
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, 44# Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, 44# Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Xuetian Yue
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, 44# Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Xiangguo Yu
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, 44# Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Zehua Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, 44# Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Xiaojia Song
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, 44# Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Leiqi Xu
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, 44# Wenhua Xi Road, Jinan, Shandong 250012, PR China; Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Ying He
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, 44# Wenhua Xi Road, Jinan, Shandong 250012, PR China; Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Yutong Ge
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, 44# Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Siyu Tan
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, 44# Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Tixiao Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, 44# Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Hui Song
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, 44# Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, PR China
| | - Yaoqin Gong
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Basic Medical Sciences, Jinan, Shandong, PR China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, 44# Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, 44# Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, 44# Wenhua Xi Road, Jinan, Shandong 250012, PR China; Advanced Medical Research Institute, Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
63
|
Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F, Cui H. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 2020; 5:8. [PMID: 32296030 PMCID: PMC7005297 DOI: 10.1038/s41392-020-0110-5] [Citation(s) in RCA: 1122] [Impact Index Per Article: 224.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/15/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022] Open
Abstract
Since cancer stem cells (CSCs) were first identified in leukemia in 1994, they have been considered promising therapeutic targets for cancer therapy. These cells have self-renewal capacity and differentiation potential and contribute to multiple tumor malignancies, such as recurrence, metastasis, heterogeneity, multidrug resistance, and radiation resistance. The biological activities of CSCs are regulated by several pluripotent transcription factors, such as OCT4, Sox2, Nanog, KLF4, and MYC. In addition, many intracellular signaling pathways, such as Wnt, NF-κB (nuclear factor-κB), Notch, Hedgehog, JAK-STAT (Janus kinase/signal transducers and activators of transcription), PI3K/AKT/mTOR (phosphoinositide 3-kinase/AKT/mammalian target of rapamycin), TGF (transforming growth factor)/SMAD, and PPAR (peroxisome proliferator-activated receptor), as well as extracellular factors, such as vascular niches, hypoxia, tumor-associated macrophages, cancer-associated fibroblasts, cancer-associated mesenchymal stem cells, extracellular matrix, and exosomes, have been shown to be very important regulators of CSCs. Molecules, vaccines, antibodies, and CAR-T (chimeric antigen receptor T cell) cells have been developed to specifically target CSCs, and some of these factors are already undergoing clinical trials. This review summarizes the characterization and identification of CSCs, depicts major factors and pathways that regulate CSC development, and discusses potential targeted therapy for CSCs.
Collapse
Affiliation(s)
- Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Pengfei Shi
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Gaichao Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Jie Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Wen Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Jiayi Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Guanghui Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Xiaowen Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China.
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China.
| |
Collapse
|
64
|
Chen X, Xu H, Hou J, Wang H, Zheng Y, Li H, Cai H, Han X, Dai J. Epithelial cell senescence induces pulmonary fibrosis through Nanog-mediated fibroblast activation. Aging (Albany NY) 2019; 12:242-259. [PMID: 31891567 PMCID: PMC6977687 DOI: 10.18632/aging.102613] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease tightly correlated with aging. The pathological features of IPF include epithelial cell senescence and abundant foci of highly activated pulmonary fibroblasts. However, the underlying mechanism between epithelial cell senescence and pulmonary fibroblast activation remain to be elucidated. In our study, we demonstrated that Nanog, as a pluripotency gene, played an essential role in the activation of pulmonary fibroblasts. In the progression of IPF, senescent epithelial cells could contribute to the activation of pulmonary fibroblasts via increasing the expression of senescence-associated secretory phenotype (SASP). In addition, we found activated pulmonary fibroblasts exhibited aberrant activation of Wnt/β-catenin signalling and elevated expression of Nanog. Further study revealed that the activation of Wnt/β-catenin signalling was responsible for senescent epithelial cell-induced Nanog phenotype in pulmonary fibroblasts. β-catenin was observed to bind to the promoter of Nanog during the activation of pulmonary fibroblasts. Targeted inhibition of epithelial cell senescence or Nanog could effectively suppress the activation of pulmonary fibroblasts and impair the development of pulmonary fibrosis, indicating a potential for the exploration of novel anti-fibrotic strategies.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,Immunology and Reproduction Biology Laboratory and State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, China
| | - Hongyang Xu
- Department of Critical Care Medicine, The Affiliated WuXi People's Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Jiwei Hou
- Immunology and Reproduction Biology Laboratory and State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, China
| | - Hui Wang
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yi Zheng
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Hui Li
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Hourong Cai
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory and State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, China
| | - Jinghong Dai
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
65
|
Wang S, Mao C, Liu S. Peptides encoded by noncoding genes: challenges and perspectives. Signal Transduct Target Ther 2019; 4:57. [PMID: 31871775 PMCID: PMC6908703 DOI: 10.1038/s41392-019-0092-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/17/2019] [Accepted: 10/27/2019] [Indexed: 01/01/2023] Open
Abstract
In recent years, noncoding gene (NCG) translation events have been frequently discovered. The resultant peptides, as novel findings in the life sciences, perform unexpected functions of increasingly recognized importance in many fundamental biological and pathological processes. The emergence of these novel peptides, in turn, has advanced the field of genomics while indispensably aiding living organisms. The peptides from NCGs serve as important links between extracellular stimuli and intracellular adjustment mechanisms. These peptides are also important entry points for further exploration of the mysteries of life that may trigger a new round of revolutionary biotechnological discoveries. Insights into NCG-derived peptides will assist in understanding the secrets of life and the causes of diseases, and will also open up new paths to the treatment of diseases such as cancer. Here, a critical review is presented on the action modes and biological functions of the peptides encoded by NCGs. The challenges and future trends in searching for and studying NCG peptides are also critically discussed.
Collapse
Affiliation(s)
- Shuo Wang
- Changhai Hospital, Shanghai, 200433 China
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019-5300 USA
| | | |
Collapse
|
66
|
Vered M, Shnaiderman-Shapiro A, Zlotogorski-Hurvitz A, Salo T, Yahalom R. Cancer-associated fibroblasts in the tumor microenvironment of tongue carcinoma is a heterogeneous cell population. Acta Histochem 2019; 121:151446. [PMID: 31604589 DOI: 10.1016/j.acthis.2019.151446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES To examine different immunophenotypes of cancer-associated fibroblasts (CAFs) in tongue squamous cell carcinoma (TSCC) and to investigate how they related to clinical outcomes. METHODS Serial sections from 54 cases of TSCC were immunohistochemically stained with α-smooth muscle actin (αSMA, CAF marker) to determine CAF density, and double-immunostained with αSMA combined with CD80 and CD86 (myeloid/monocytic-derived cell markers), Nanog (mesenchymal stem cell marker) and CD133 (hematopoietic/endothelial stem cell marker). Density of cells co-expressing these marker combinations was semi-quantitatively assessed in 5 randomly selected high power fields within the tumor area and scored as 1 - one-to-five stained cells in each field, 2 - more than 5 stained cells in each field; any finding less than score 1, was allocated a score of 0. RESULTS There were 26 CAF-poor, 16 CAF-rich and 12 CAF-intermediated cases. CD86+αSMA+ cells were the most frequent (80.4%) followed by CD80+αSMA+ (72%) and Nanog+αSMA+ cells (56%). The CD133+αSMA+ phenotype was found only in association with blood vessels. High density of αSMA+ CAFs was associated with disease recurrence and poor survival (p < 0.05). Increased density of CD86+αSMA+ cells was significantly associated with CAF-rich tumors and with poor survival (p < 0.05). CONCLUSION In TSCC, CAFs demonstrate heterogeneous and overlapping phenotypes with the myeloid/monocytic type being the most frequent and having an impact on the clinical outcomes. Further studies are needed in order to further characterize CAF phenotypes in carcinomas of various oral sites, as this may open new frontiers for personalized medicine.
Collapse
Affiliation(s)
- Marilena Vered
- Dept. Oral Pathology, Oral Medicine and Oral Radiology, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel; Institute of Pathology, The Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.
| | - Anna Shnaiderman-Shapiro
- Dept. Oral Pathology, Oral Medicine and Oral Radiology, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ayelet Zlotogorski-Hurvitz
- Dept. Oral Pathology, Oral Medicine and Oral Radiology, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel; Dept. Oral and Maxillofacial Surgery, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel
| | - Tuula Salo
- Cancer and Translational Research Unit, University of Oulu and MRC, Oulu University Hospital, Oulu, Finland; Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, and HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Ran Yahalom
- Dept. Oral and Maxillofacial Surgery, The Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| |
Collapse
|
67
|
Park SW, Do HJ, Choi W, Kim JH. Fli-1 promotes proliferation and upregulates NANOGP8 expression in T-lymphocyte leukemia cells. Biochimie 2019; 168:1-9. [PMID: 31626853 DOI: 10.1016/j.biochi.2019.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/10/2019] [Indexed: 11/27/2022]
Abstract
Friend leukemia integration 1 (Fli-1) is a member of the E26 transformation-specific (ETS) transcription factor family. Fli-1 regulates normal hematopoiesis and vasculogenesis, and its aberrant expression underlies virus-induced leukemias and various types of human cancers. NANOGP8, a retro-pseudogene of stem cell mediator NANOG, is expressed predominantly in cancer cells and plays a role in tumorigenesis. In this study, we demonstrate that Fli-1 expression enhances human acute T-cell leukemia Jurkat cell proliferation and that Fli-1 acts as a transcriptional activator of NANOGP8 expression in these cells. NANOGP8 and Fli-1 are highly expressed in Jurkat cells, whereas NANOG was undetectable at both the RNA and protein levels. Moreover, the expression of endogenous NANOGP8 was significantly influenced by gain of function and loss of function of Fli-1. Promoter-reporter assays showed that NANOGP8 transcription was significantly upregulated by dose-dependent Fli-1 overexpression. A series of deletion mutagenesis of NANOGP8 promoter sequence revealed that NANOGP8 promoter activity was tightly regulated and found the minimal promoter region sufficient to activate NANOGP8 transcription mediated by Fli-1. Moreover, site-directed mutagenesis of the putative binding site abolished both NANOGP8 full-length and minimal promoter activities. Binding assays revealed that Fli-1 directly interacts with the potent binding site in NANOG promoter region. Taken together, our data demonstrate that Fli-1 is a novel upstream transcriptional activator of NANOGP8 and provide the molecular details of Fli-1-mediated NANOGP8 gene expression. Ultimately, these findings may contribute to understanding the expanded regulatory mechanisms of oncogenic NANOGP8 and ETS family transcription factors in leukemogenesis.
Collapse
Affiliation(s)
- Sung-Won Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-Si, Gyeonggi-Do, 13488, South Korea
| | - Hyun-Jin Do
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-Si, Gyeonggi-Do, 13488, South Korea
| | - Wonbin Choi
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-Si, Gyeonggi-Do, 13488, South Korea
| | - Jae-Hwan Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-Si, Gyeonggi-Do, 13488, South Korea.
| |
Collapse
|
68
|
Davis JE, Kirk J, Ji Y, Tang DG. Tumor Dormancy and Slow-Cycling Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1164:199-206. [PMID: 31576550 DOI: 10.1007/978-3-030-22254-3_15] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cancer cell heterogeneity is a universal feature of human tumors and represents a significant barrier to the efficacy and duration of anticancer therapies, especially targeted therapeutics. Among the heterogeneous cancer cell populations is a subpopulation of relatively quiescent cancer cells, which are in the G0/G1 cell-cycle phase and refractory to anti-mitotic drugs that target proliferative cells. These slow-cycling cells (SCCs) preexist in untreated tumors and frequently become enriched in treatment-failed tumors, raising the possibility that these cells may mediate therapy resistance and tumor relapse. Here we review several general concepts on tumor cell heterogeneity, quiescence, and tumor dormancy. We discuss the potential relationship between SCCs and cancer stem cells (CSCs). We also present our current understanding of how SCCs and cancer dormancy might be regulated. Increasing knowledge of SCCs and tumor dormancy should lead to identification of novel molecular regulators and therapeutic targets of tumor relapse, residual diseases, and metastasis.
Collapse
Affiliation(s)
- John E Davis
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jason Kirk
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Yibing Ji
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
69
|
Choi S, Yu J, Park A, Dubon MJ, Do J, Kim Y, Nam D, Noh J, Park KS. BMP-4 enhances epithelial mesenchymal transition and cancer stem cell properties of breast cancer cells via Notch signaling. Sci Rep 2019; 9:11724. [PMID: 31409851 PMCID: PMC6692307 DOI: 10.1038/s41598-019-48190-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/26/2019] [Indexed: 01/07/2023] Open
Abstract
Bone morphogenetic protein (BMP) signaling and Notch signaling play important roles in tumorigenesis in various organs and tissues, including the breast. BMP-4 enhanced epithelial mesenchymal transition (EMT) and stem cell properties in both mammary epithelial cell line and breast carcinoma cell line. BMP-4 increased the expression of EMT biomarkers, such as fibronectin, laminin, N-cadherin, and Slug. BMP-4 also activated Notch signaling in these cells and increased the sphere forming efficiency of the non-transformed mammary epithelial cell line MCF-10A. In addition, BMP-4 upregulated the sphere forming efficiency, colony formation efficiency, and the expression of cancer stem cell markers, such as Nanog and CD44, in the breast carcinoma cell line MDA-MB-231. Inhibition of Notch signaling downregulated EMT and stem cell properties induced by BMP-4. Down-regulation of Smad4 using siRNA impaired the BMP-4-induced activation of Notch signaling, as well as the BMP-4-mediated EMT. These results suggest that EMT and stem cell properties are increased in mammary epithelial cells and breast cancer cells through the activation of Notch signaling in a Smad4-dependent manner in response to BMP-4.
Collapse
Affiliation(s)
- Sanghyuk Choi
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Jinyeong Yu
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Aran Park
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Maria Jose Dubon
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Jungbeom Do
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Youngjae Kim
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Donghyun Nam
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Jinok Noh
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Ki-Sook Park
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea. .,East-West Medical Research Institute, Kyung Hee University, Seoul, 02447, Korea. .,College of Medicine, Kyung Hee University, Seoul, 02447, Korea.
| |
Collapse
|
70
|
Sneha S, Nagare RP, Manasa P, Vasudevan S, Shabna A, Ganesan TS. Analysis of Human Stem Cell Transcription Factors. Cell Reprogram 2019; 21:171-180. [DOI: 10.1089/cell.2019.0005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Smarakan Sneha
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| | - Rohit P. Nagare
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| | - Pacharia Manasa
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| | - Sekar Vasudevan
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| | - Aboo Shabna
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| | - Trivadi Sundaram Ganesan
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| |
Collapse
|
71
|
Kuciak M, Mas C, Borges I, Sánchez-Gómez P, Ruiz i Altaba A. Chimeric NANOG repressors inhibit glioblastoma growth in vivo in a context-dependent manner. Sci Rep 2019; 9:3891. [PMID: 30846719 PMCID: PMC6405761 DOI: 10.1038/s41598-019-39473-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/25/2019] [Indexed: 01/02/2023] Open
Abstract
Targeting stemness promises new therapeutic strategies against highly invasive tumors. While a number of approaches are being tested, inhibiting the core transcription regulatory network of cancer stem cells is an attractive yet challenging possibility. Here we have aimed to provide the proof of principle for a strategy, previously used in developmental studies, to directly repress the targets of a salient stemness and pluripotency factor: NANOG. In doing so we expected to inhibit the expression of so far unknown mediators of pro-tumorigenic NANOG function. We chose NANOG since previous work showed the essential requirement for NANOG activity for human glioblastoma (GBM) growth in orthotopic xenografts, and it is apparently absent from many adult human tissues thus likely minimizing unwanted effects on normal cells. NANOG repressor chimeras, which we name NANEPs, bear the DNA-binding specificity of NANOG through its homeodomain (HD), and this is linked to transposable human repressor domains. We show that in vitro and in vivo, NANEP5, our most active NANEP with a HES1 repressor domain, mimics knock-down (kd) of NANOG function in GBM cells. Competition orthotopic xenografts also reveal the effectiveness of NANEP5 in a brain tumor context, as well as the specificity of NANEP activity through the abrogation of its function via the introduction of specific mutations in the HD. The transcriptomes of cells expressing NANEP5 reveal multiple potential mediators of pro-tumorigenic NANEP/NANOG action including intercellular signaling components. The present results encourage further studies on the regulation of context-dependent NANEP abundance and function, and the development of NANEP-based anti-cancer therapies.
Collapse
Affiliation(s)
- Monika Kuciak
- Department of Genetic Medicine and Development, University of Geneva Medical School, Rue Michel Servet 1, CH-1211, Geneva, Switzerland
| | - Christophe Mas
- Department of Genetic Medicine and Development, University of Geneva Medical School, Rue Michel Servet 1, CH-1211, Geneva, Switzerland
- Oncotheis Sàrl. 18 chemin des Aulx, CH-1228 Plan-Les-Ouates, Geneva, Switzerland
| | - Isabel Borges
- Department of Genetic Medicine and Development, University of Geneva Medical School, Rue Michel Servet 1, CH-1211, Geneva, Switzerland
| | | | - Ariel Ruiz i Altaba
- Department of Genetic Medicine and Development, University of Geneva Medical School, Rue Michel Servet 1, CH-1211, Geneva, Switzerland.
| |
Collapse
|
72
|
Hu YB, Yan C, Mu L, Mi YL, Zhao H, Hu H, Li XL, Tao DD, Wu YQ, Gong JP, Qin JC. Exosomal Wnt-induced dedifferentiation of colorectal cancer cells contributes to chemotherapy resistance. Oncogene 2019; 38:1951-1965. [PMID: 30390075 PMCID: PMC6756234 DOI: 10.1038/s41388-018-0557-9] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/02/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSCs) are inherently resistant to chemotherapy, and CSCs in chemotherapy-failed recurrent tumors are enriched; however, the cellular origin of chemotherapy-induced CSC enrichment remains unclear. Communication with stromal fibroblasts may induce cancer cell dedifferentiation into CSCs through secreted factors. We recently demonstrated that fibroblast-derived exosomes promote chemoresistance in colorectal cancer (CRC). Here, we report that fibroblasts confer CRC chemoresistance via exosome-induced reprogramming (dedifferentiation) of bulk CRC cells to phenotypic and functional CSCs. At the molecular level, we provided evidence that the major reprogramming regulators in fibroblast-exosomes are Wnts. Exosomal Wnts were found to increase Wnt activity and drug resistance in differentiated CRC cells, and inhibiting Wnt release diminished this effect in vitro and in vivo. Together, our results indicate that exosomal Wnts derived from fibroblasts could induce the dedifferentiation of cancer cells to promote chemoresistance in CRC, and suggest that interfering with exosomal Wnt signaling may help to improve chemosensitivity and the therapeutic window.
Collapse
Affiliation(s)
- Y-B Hu
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - C Yan
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - L Mu
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Y-L Mi
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - H Zhao
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - H Hu
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - X-L Li
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - D-D Tao
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Y-Q Wu
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - J-P Gong
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - J-C Qin
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
73
|
Duan W, Lopez MJ. Effects of enzyme and cryoprotectant concentrations on yield of equine adipose-derived multipotent stromal cells. Am J Vet Res 2019; 79:1100-1112. [PMID: 30256145 DOI: 10.2460/ajvr.79.10.1100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate effects of various concentrations of collagenase and dimethyl sulfoxide (DMSO) on yield of equine adipose-derived multipotent stromal cells (ASCs) before and after cryopreservation. SAMPLE Supragluteal subcutaneous adipose tissue from 7 Thoroughbreds. PROCEDURES Tissues were incubated with digests containing 0.1%, 0.05%, or 0.025% type I collagenase. Part of each resulting stromal vascular fraction was cryopreserved in 80% fetal bovine serum (FBS), 10% DMSO, and 10% Dulbecco modified Eagle medium F-12 and in 95% FBS and 5% DMSO. Half of each fresh and cryopreserved heterogeneous cell population was not immunophenotyped (unsorted) or was immunophenotyped for CD44+, CD105+, and major histocompatability complex class II (MHCII; CD44+-CD105+-MHCII+ cells and CD44+-CD105+-MHCII- cells). Cell proliferation (cell viability assay), plasticity (CFU frequency), and lineage-specific target gene and oncogene expression (reverse transcriptase PCR assays) were determined in passage 1 cells before and after culture in induction media. RESULTS Digestion with 0.1% collagenase yielded the highest number of nucleated cells. Cell surface marker expression and proliferation rate were not affected by collagenase concentration. Cryopreservation reduced cell expansion rate and CD44+-CD105+-MHCII- CFUs; it also reduced osteogenic plasticity of unsorted cells. However, effects appeared to be unrelated to DMSO concentrations. There were also variable effects on primordial gene expression among cell isolates. CONCLUSIONS AND CLINICAL RELEVANCE Results supported the use of 0.1% collagenase in an adipose tissue digest and 5% DMSO in cryopreservation medium for isolation and cryopreservation, respectively, of equine ASCs. These results may be used as guidelines for standardization of isolation and cryopreservation procedures for equine ASCs.
Collapse
|
74
|
Qian J, Rankin EB. Hypoxia-Induced Phenotypes that Mediate Tumor Heterogeneity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1136:43-55. [PMID: 31201715 DOI: 10.1007/978-3-030-12734-3_3] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intratumoral heterogeneity is an important factor contributing to metastasis and therapy resistance. The phenotypic diversity of cancer cells within the tumor microenvironment is strongly influenced by microenvironmental factors such as hypoxia. Clinically, hypoxia and the hypoxia inducible transcription factors HIF-1 and HIF-2 are associated with cancer stem cells, metastasis and drug resistance in multiple tumor types. Experimental models have demonstrated an important functional role for HIF signaling in driving CSC, metastatic and drug resistant phenotypes in vitro and in vivo. Here we will review recent studies that highlight novel mechanisms by which hypoxia promotes cancer stem cell, metastatic and drug resistant phenotypes.
Collapse
Affiliation(s)
- Jin Qian
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Erinn B Rankin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Obstetrics & Gynecologic Oncology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
75
|
AMPK Promotes SPOP-Mediated NANOG Degradation to Regulate Prostate Cancer Cell Stemness. Dev Cell 2018; 48:345-360.e7. [PMID: 30595535 DOI: 10.1016/j.devcel.2018.11.033] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/11/2018] [Accepted: 11/27/2018] [Indexed: 12/22/2022]
Abstract
NANOG is an essential transcriptional factor for the maintenance of embryonic stem cells (ESCs) and cancer stem cells (CSCs) in prostate cancer (PCa). However, the regulation mechanism of NANOG protein stability in cancer progression is still elusive. Here, we report that NANOG is degraded by SPOP, a frequently mutated tumor suppressor of PCa. Cancer-associated mutations of SPOP or the mutation of NANOG at S68Y abrogates the SPOP-mediated NANOG degradation, leading to elevated PCa cancer stemness and poor prognosis. In addition, SPOP-mediated NANOG degradation is controlled by the AMPK-BRAF signal axis through the phosphorylation of NANOG at Ser68, which blocked the interaction between SPOP and NANOG. Thus, our study provides a regulation mechanism of PCa stemness controlled by phosphorylation-mediated NANOG stability, which helps to identify novel drug targets and improve therapeutic strategy for PCa.
Collapse
|
76
|
Zheng L, You N, Huang X, Gu H, Wu K, Mi N, Li J. COMMD7 Regulates NF-κB Signaling Pathway in Hepatocellular Carcinoma Stem-like Cells. MOLECULAR THERAPY-ONCOLYTICS 2018; 12:112-123. [PMID: 30719501 PMCID: PMC6350112 DOI: 10.1016/j.omto.2018.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/07/2018] [Indexed: 12/26/2022]
Abstract
Previous studies showed that the COpper Metabolism gene MURR1 Domain (COMMD) family of proteins was abnormally expressed in hepatocellular carcinoma (HCC). This study aimed to explore the roles of COMMD1 and COMMD7 in regulating nuclear factor κB (NF-κB) signaling in HCC stem cells (HCSCs). In vivo, the expression of COMMD7 and COMMD1 was determined in 35 pairs of HCC cancer tissues and adjacent tissues, and the effect of COMMD7 silencing on xenograft tumor growth was evaluated. In vitro, the effects of COMMD7 silencing and COMMD1 overexpression on HCSC function were assessed. Results found that the expression levels of COMMD7 were higher, whereas COMMD1 levels were lower in HCC tissues and HCSCs. COMMD7 silencing or COMMD1 overexpression inhibited cell proliferation, migration, and invasion through suppression of NF-κB p65. Furthermore, COMMD7 positively regulated NF-κB by upregulating protein inhibitor for activated stat 4 (PIAS4). This study demonstrates that COMMD7 has a dual regulatory role in the NF-κB signaling pathway in Nanog+ HCSCs.
Collapse
Affiliation(s)
- Lu Zheng
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Army Medical University, PLA, Chongqing, China
| | - Nan You
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Army Medical University, PLA, Chongqing, China
| | - Xiaobing Huang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Army Medical University, PLA, Chongqing, China
| | - Huiying Gu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Army Medical University, PLA, Chongqing, China
| | - Ke Wu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Army Medical University, PLA, Chongqing, China
| | - Na Mi
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Army Medical University, PLA, Chongqing, China
| | - Jing Li
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Army Medical University, PLA, Chongqing, China
| |
Collapse
|
77
|
Zhang Q, Chai S, Wang W, Wan C, Zhang F, Li Y, Wang F. Macrophages activate mesenchymal stem cells to acquire cancer-associated fibroblast-like features resulting in gastric epithelial cell lesions and malignant transformation in vitro. Oncol Lett 2018; 17:747-756. [PMID: 30655826 PMCID: PMC6313054 DOI: 10.3892/ol.2018.9703] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 02/13/2018] [Indexed: 12/15/2022] Open
Abstract
The majority of premalignant gastric lesions develop in the mucosa that has been modified by chronic inflammation. As components of the gastritis microenvironment, mesenchymal stem cells (MSCs) and macrophages are critically involved in the initiation and development of the chronic gastritis-associated gastric epithelial lesions/malignancy process. However, in this process, the underlying mechanism of macrophages interacting with MSCs, particularly the effect of macrophages on MSCs phenotype and function remains to be elucidated. The present study revealed that human umbilical cord-derived MSCs were induced to differentiate into cancer-associated fibroblasts (CAFs) phenotype by co-culture with macrophages (THP-1 cells) in vitro, and which resulted in gastric epithelial lesions/potential malignancy via epithelial-mesenchymal transition-like changes. The results of the present study indicated that macrophages could induce MSCs to acquire CAF-like features and a pro-inflammatory phenotype to remodel the inflammatory microenvironment, which could potentiate oncogenic transformation of gastric epithelium cells. The present study provides potential targets and options for inflammation-associated gastric cancer prevention and intervention.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Shuo Chai
- Clinical Laboratory and Diagnostic Center, Department of Clinical Laboratory Science, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Wei Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Chengcheng Wan
- Clinical Laboratory and Diagnostic Center, Department of Clinical Laboratory Science, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Feng Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Yuyun Li
- Clinical Laboratory and Diagnostic Center, Department of Clinical Laboratory Science, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Fengchao Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| |
Collapse
|
78
|
Exosomes Regulate the Transformation of Cancer Cells in Cancer Stem Cell Homeostasis. Stem Cells Int 2018; 2018:4837370. [PMID: 30344611 PMCID: PMC6174755 DOI: 10.1155/2018/4837370] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023] Open
Abstract
In different biological model systems, exosomes are considered mediators of cell-cell communication between different cell populations. Exosomes, as extracellular vesicles, participate in physiological and pathological processes by transmitting signaling molecules such as proteins, nucleic acids, and lipids. The tumor's microenvironment consists of many types of cells, including cancer stem cells and mesenchymal cells. It is well known that these cells communicate with each other and thereby regulate the progression of the tumor. Recent studies have provided evidence that exosomes mediate the interactions between different types of cells in the tumor microenvironment, providing further insight into how these cells interact through exosome signaling. Cancer stem cells are a small kind of heterogeneous cells that existed in tumor tissues or cancer cell lines. These cells possess a stemness phenotype with a self-renewal ability and multipotential differentiation which was considered the reason for the failure of conventional cancer therapies and tumor recurrence. However, a highly dynamic equilibrium was found between cancer stem cells and cancer cells, and this indicates that cancer stem cells are no more special target and blocking the transformation of cancer stem cells and cancer cells seem to be a more significant therapy strategy. Whether exosomes, as an information transforming carrier between cells, regulated cancer cell transformation in cancer stem cell dynamic equilibrium and targeting exosome signaling attenuated the formation of cancer stem cells and finally cure cancers is worthy of further study.
Collapse
|
79
|
Pelekanou V, Notas G, Athanasouli P, Alexakis K, Kiagiadaki F, Peroulis N, Kalyvianaki K, Kampouri E, Polioudaki H, Theodoropoulos P, Tsapis A, Castanas E, Kampa M. BCMA (TNFRSF17) Induces APRIL and BAFF Mediated Breast Cancer Cell Stemness. Front Oncol 2018; 8:301. [PMID: 30131941 PMCID: PMC6091000 DOI: 10.3389/fonc.2018.00301] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/18/2018] [Indexed: 01/16/2023] Open
Abstract
Recent advances in cancer immunology revealed immune-related properties of cancer cells as novel promising therapeutic targets. The two TNF superfamily members, APRIL (TNFSF13), and BAFF (TNFSF13B), which are type II membrane proteins, released in active forms by proteolytic cleavage and are primarily involved in B-lymphocyte maturation, have also been associated with tumor growth and aggressiveness in several solid tumors, including breast cancer. In the present work we studied the effect of APRIL and BAFF on epithelial to mesenchymal transition, migration, and stemness of breast cancer cells. Our findings show that both molecules increase epithelial to mesenchymal transition and migratory capacity of breast cancer cells, as well as cancer stem cell numbers, by increasing the expression of pluripotency genes such as ALDH1A1, KLF4, and NANOG. These effects are mediated by their common receptor BCMA (TNFRSF17) and the JNK signaling pathway. Interestingly, transcriptional data analysis from breast cancer cells and patients revealed that androgens can increase APRIL transcription and subsequently, in an autocrine/paracrine manner, enhance its pluripotency effect. In conclusion, our data suggest a possible role of APRIL and BAFF in breast cancer disease progression and provide evidence for a new possible mechanism of therapy resistance, that could be particularly relevant in aromatase inhibitors-treated patients, were local androgen is increased.
Collapse
Affiliation(s)
- Vasiliki Pelekanou
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - George Notas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Paraskevi Athanasouli
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Konstantinos Alexakis
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Fotini Kiagiadaki
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Nikolaos Peroulis
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Konstantina Kalyvianaki
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Errika Kampouri
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Hara Polioudaki
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | | | - Andreas Tsapis
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Elias Castanas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Marilena Kampa
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
80
|
Rasti A, Mehrazma M, Madjd Z, Abolhasani M, Saeednejad Zanjani L, Asgari M. Co-expression of Cancer Stem Cell Markers OCT4 and NANOG Predicts Poor Prognosis in Renal Cell Carcinomas. Sci Rep 2018; 8:11739. [PMID: 30082842 PMCID: PMC6079110 DOI: 10.1038/s41598-018-30168-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 07/20/2018] [Indexed: 12/26/2022] Open
Abstract
Many renal cancer patients experience disease recurrence after combined treatments or immunotherapy due to permanence of cancer stem cells (CSCs). This study was conducted to evaluate the expression patterns and clinical significance of octamer-binding transcription factor 4 (OCT4) and NANOG as the key stem cell factors in renal cell carcinoma (RCC). A total of 186 RCC tissues were immunostained on a tissue microarray (TMA) for the putative CSC markers OCT4 and NANOG. Subsequently, the correlation among the expression of these markers, the clinicopathological variables and survival outcomes were determined. OCT4 and NANOG were expressed in both the nucleus and the cytoplasm of RCC cells. Coexpression of OCT4 and NANOG in renal cancer was significantly associated with RCC subtypes. A significant association was found among nuclear coexpression of OCT4 and NANOG, worse PFS in RCC, and the clear cell renal cell carcinomas (ccRCC) subtype. The OCT4-nuclear high/NANOG-nuclear high phenotype in RCC and ccRCC subtype indicated aggressive tumor behavior and predicted a worse clinical outcome, which may be a useful biomarker to identify patients at high risk of postoperative recurrence and metastasis. Cytoplasmic expression of NANOG could be considered as a novel independent prognostic predictor in patients with renal cancer.
Collapse
Affiliation(s)
- Arezoo Rasti
- Oncopathology Research Centre, Iran University of medical Sciences (IUMS), Tehran, Iran
| | - Mitra Mehrazma
- Oncopathology Research Centre, Iran University of medical Sciences (IUMS), Tehran, Iran. .,Hasheminejad Kidney Center, Iran University of Medical Sciences, (IUMS), Tehran, Iran.
| | - Zahra Madjd
- Oncopathology Research Centre, Iran University of medical Sciences (IUMS), Tehran, Iran. .,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Maryam Abolhasani
- Oncopathology Research Centre, Iran University of medical Sciences (IUMS), Tehran, Iran.,Hasheminejad Kidney Center, Iran University of Medical Sciences, (IUMS), Tehran, Iran
| | | | - Mojgan Asgari
- Oncopathology Research Centre, Iran University of medical Sciences (IUMS), Tehran, Iran.,Hasheminejad Kidney Center, Iran University of Medical Sciences, (IUMS), Tehran, Iran
| |
Collapse
|
81
|
Xu DD, Wang Y, Zhou PJ, Qin SR, Zhang R, Zhang Y, Xue X, Wang J, Wang X, Chen HC, Wang X, Pan YW, Zhang L, Yan HZ, Liu QY, Liu Z, Chen SH, Chen HY, Wang YF. The IGF2/IGF1R/Nanog Signaling Pathway Regulates the Proliferation of Acute Myeloid Leukemia Stem Cells. Front Pharmacol 2018; 9:687. [PMID: 30013477 PMCID: PMC6036281 DOI: 10.3389/fphar.2018.00687] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 06/07/2018] [Indexed: 12/17/2022] Open
Abstract
Acute myeloid leukemia is an aggressive disease characterized by clonal proliferation and differentiation into immature hematopoietic cells of dysfunctional myeloid precursors. Accumulating evidence shows that CD34+CD38- leukemia stem cells (LSCs) are responsible for drug resistance, metastasis, and relapse of leukemia. In this study, we found that Nanog, a transcription factor in stem cells, is significantly overexpressed in CD34+ populations from patients with acute myeloid leukemia and in LSCs from leukemia cell lines. Our data demonstrate that the knockdown of Nanog inhibited proliferation and induced cell cycle arrest and cell apoptosis. Moreover, Nanog silencing suppressed the leukemogenesis of LSCs in mice. In addition, we found that these functions of Nanog were regulated by the insulin-like growth factor receptor (IGF1R) signaling pathway. Nanog overexpression rescued the colony formation ability of LSCs treated with picropodophyllin (PPP), an IGF1R inhibitor. By contrast, knockdown of Nanog abolished the effects of IGF2 on the colony formation ability of these LSCs. These findings suggest that the IGF2/IGF1R/Nanog signaling pathway plays a critical role in LSC proliferation.
Collapse
Affiliation(s)
- Dan-Dan Xu
- College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.,Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Ying Wang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Peng-Jun Zhou
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Shu-Rong Qin
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Rong Zhang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi Zhang
- Department of Biochemistry and Molecular Medicine, Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Xue Xue
- Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Jianping Wang
- Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Xia Wang
- Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Hong-Ce Chen
- Department of Pathogen Biology and Immunology, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiao Wang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yu-Wei Pan
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Li Zhang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Hai-Zhao Yan
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Japan
| | - Qiu-Ying Liu
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhong Liu
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Su-Hong Chen
- College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Hong-Yuan Chen
- Department of Pathogen Biology and Immunology, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi-Fei Wang
- College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
82
|
Huang B, Lv DJ, Wang C, Shu FP, Gong ZC, Xie T, Yu YZ, Song XL, Xie JJ, Li S, Liu YM, Qi H, Zhao SC. Suppressed epithelial-mesenchymal transition and cancer stem cell properties mediate the anti-cancer effects of ethyl pyruvate via regulation of the AKT/nuclear factor-κB pathway in prostate cancer cells. Oncol Lett 2018; 16:2271-2278. [PMID: 30008929 PMCID: PMC6036506 DOI: 10.3892/ol.2018.8958] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/31/2018] [Indexed: 01/05/2023] Open
Abstract
Castration-resistant prostate cancer (CRPC) is a leading cause of mortality among cases of prostate cancer (PCa). Current treatment options for CRPC are limited. Ethyl pyruvate (EP), a lipophilic derivative of pyruvic acid, has been reported to have antitumor activities. In the present study, the efficacy of EP against PCa was investigated using two human PCa cell lines and a mouse xenograft tumor model. PC3 and CWR22RV1 cells were treated with EP, and cytotoxicity was evaluated via Cell Counting Kit-8 and colony formation assays, while cell cycle distribution was assessed by flow cytometry. Changes in cell migration and invasion caused by EP treatment were also evaluated with Transwell and wound healing assays, and changes in the expression of intracellular signaling pathway components were detected by western blotting. EP treatment reduced cell viability, induced G1 arrest, and activated the intrinsic apoptosis pathway. Additionally, the in vivo experiments revealed that EP administration markedly inhibited tumor growth. EP also reversed epithelial-mesenchymal transition and suppressed cancer stem cell properties in part through negative regulation of AKT/nuclear factor-κB signaling. These results indicate that EP has anticancer activity in vitro and in vivo, and is therefore a promising therapeutic agent for the treatment of PCa.
Collapse
Affiliation(s)
- Bin Huang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Dao-Jun Lv
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Chong Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Fang-Peng Shu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhi-Cheng Gong
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Tao Xie
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yu-Zhong Yu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xian-Lu Song
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Jia-Jia Xie
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Sen Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ya-Meng Liu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Huan Qi
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shan-Chao Zhao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
83
|
Zhang D, Tang DG, Rycaj K. Cancer stem cells: Regulation programs, immunological properties and immunotherapy. Semin Cancer Biol 2018; 52:94-106. [PMID: 29752993 DOI: 10.1016/j.semcancer.2018.05.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
Abstract
It is becoming increasingly clear that virtually all types of human cancers harbor a small population of stem-like cancer cells (i.e., cancer stem cells, CSCs). These CSCs preexist in primary tumors, can self-renew and are more tolerant of standard treatments, such as antimitotic and molecularly targeted agents, most of which preferentially eliminate differentiated and proliferating cancer cells. CSCs are therefore postulated as the root of therapy resistance, relapse and metastasis. Aside from surgery, radiation, and chemotherapy, immunotherapy is now established as the fourth pillar in the therapeutic armamentarium for patients with cancer, especially late-stage and advanced cancers. A better understanding of CSC immunological properties should lead to development of novel immunologic approaches targeting CSCs, which, in turn, may help prevent tumor recurrence and eliminate residual diseases. Here, with a focus on CSCs in solid tumors, we review CSC regulation programs and recent transcriptomics-based immunological profiling data specific to CSCs. By highlighting CSC antigens that could potentially be immunogenic, we further discuss how CSCs can be targeted immunologically.
Collapse
Affiliation(s)
- Dingxiao Zhang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA; Key Lab of Agricultural Animal Genetics, Breeding & Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA; Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Kiera Rycaj
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
84
|
Ling K, Jiang L, Liang S, Kwong J, Yang L, Li Y, PingYin, Deng Q, Liang Z. Nanog interaction with the androgen receptor signaling axis induce ovarian cancer stem cell regulation: studies based on the CRISPR/Cas9 system. J Ovarian Res 2018; 11:36. [PMID: 29716628 PMCID: PMC5930492 DOI: 10.1186/s13048-018-0403-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/29/2018] [Indexed: 02/07/2023] Open
Abstract
Background Ovarian cancer stem cells (OCSCs) contribute to the poor prognosis of ovarian cancer. Involvement of the androgen receptor (AR) in the malignant behaviors of other tumors has been reported. However, whether AR associates with Nanog (a stem cell marker) and participates in OCSC functions remain unclear. In this study, we investigated the interaction of Nanog with AR and examined whether this interaction induced stem-like properties in ovarian cancer cells. Methods AR and Nanog expression in ovarian tumors was evaluated. Using the CRISPR/Cas9 system, we constructed a Nanog green fluorescent protein (GFP) marker cell model to investigate the expression and co-localization of Nanog and AR. Then, we examined the effect of androgen on the Nanog promoter in ovarian cancer cell lines (A2780 and SKOV3). After androgen or anti-androgen treatment, cell proliferation, migration, sphere formation, colony formation and tumorigenesis were assessed in vitro and in vivo. Results Both AR and Nanog expression were obviously high in ovarian tumors. Our results showed that Nanog expression was correlated with AR expression. The androgen 5α-dihydrotestosterone (DHT) activated Nanog promoter transcription. Meanwhile, Nanog GFP-positive cells treated with DHT exhibited higher levels of proliferation, migration, sphere formation and colony formation. We also observed that the tumorigenesis of Nanog GFP-positive cells was significantly higher than that of the GFP-negative cells. Xenografts of Nanog GFP-positive cells showed significant differences when treated with androgen or anti-androgen drugs in vivo. Conclusions The interaction of Nanog with the AR signaling axis might induce or contribute to OCSC regulation. In addition, androgen might promote stemness characteristics in ovarian cancer cells by activating the Nanog promoter. This finding merits further study because it may provide a new understanding of OCSC regulation from a hormone perspective and lead to the reevaluation of stem cell therapy for ovarian cancer. Electronic supplementary material The online version of this article (10.1186/s13048-018-0403-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kaijian Ling
- Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Lupin Jiang
- Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Shi Liang
- Bjrigham Young University, ID 272 Rigby Hall, Rexburg, 83460-4500, USA
| | - Joseph Kwong
- Department of Obstetrics & Gynaecology Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Leiyan Yang
- Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yudi Li
- Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - PingYin
- Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Qingchun Deng
- Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| | - Zhiqing Liang
- Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
85
|
Pang Y, Mao C, Liu S. Encoding activities of non-coding RNAs. Am J Cancer Res 2018; 8:2496-2507. [PMID: 29721095 PMCID: PMC5928905 DOI: 10.7150/thno.24677] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 02/25/2018] [Indexed: 12/14/2022] Open
Abstract
The universal expression of various non-coding RNAs (ncRNAs) is now considered the main feature of organisms' genomes. Many regions in the genome are transcribed but not annotated to encode proteins, yet contain small open reading frames (smORFs). A widely accepted opinion is that a vast majority of ncRNAs are not further translated. However, increasing evidence underlines a series of intriguing translational events from the ncRNAs, which were previously considered to lack coding potential. Recent studies also suggest that products derived from such novel translational events display important regulatory functions in many fundamental biological and pathological processes. Here we give a critical review on the potential coding capacity of ncRNAs, in particular, about what is known and unknown in this emerging area. We also discuss the possible underlying coding mechanisms of these extraordinary ncRNAs and possible roles of peptides or proteins derived from the ncRNAs in disease development and theranostics. Our review offers an extensive resource for studying the biology of ncRNAs and sheds light into the use of ncRNAs and their corresponding peptides or proteins for disease diagnosis and therapy.
Collapse
|
86
|
Ying C, Xiao BD, Qin Y, Wang BR, Liu XY, Wang RW, Fang L, Yan H, Zhou XM, Wang YG. GOLPH2-regulated oncolytic adenovirus, GD55, exerts strong killing effect on human prostate cancer stem-like cells in vitro and in vivo. Acta Pharmacol Sin 2018; 39:405-414. [PMID: 28880012 DOI: 10.1038/aps.2017.91] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/05/2017] [Indexed: 12/14/2022]
Abstract
GOLPH2 (also called GP73) is a Golgi glycoprotein, which has been identified as a novel tumor marker upregulated in various cancers, including prostate cancer (PCa). GD55 is a novel GOLPH2-regulated oncolytic adenovirus that exhibits a strong killing effect on hepatoma cells. Here, we investigate the antitumor effect of GD55 on prostate cancer stem cell (CSC)-like cells in vitro and in vivo. Prostate CSC-like sphere cells were acquired and enriched by culturing DU145, LNCap or P3 prostate cancer cells in suspension. The prostate CSC-like sphere cells were capable of self-renewal, differentiation and quiescence, displaying tumorigenic feature and chemo-resistance to 5-FU, doxorubicin and DDP. Treatment with GD55 (1, 5, 10 MOI) dose-dependently suppressed the viability of DU145 sphere cells, which was a more pronounced compared to its cytotoxic action on the parental DU145 cells. In a mouse xenograft prostate CSC-like model, intratumoral injection of GD55 markedly suppressed the growth rate of xenograft tumors and induced higher levels of cell death and necrosis within the tumor tissues. Our results demonstrate that GD55 infection exerts strong anticancer effects on prostate CSC-like cells in vitro and in vivo, and has a potential to be used in the clinical therapy of PCa.
Collapse
|
87
|
miR-199a-3p targets stemness-related and mitogenic signaling pathways to suppress the expansion and tumorigenic capabilities of prostate cancer stem cells. Oncotarget 2018; 7:56628-56642. [PMID: 27447749 PMCID: PMC5302940 DOI: 10.18632/oncotarget.10652] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 06/13/2016] [Indexed: 12/22/2022] Open
Abstract
Human cancers exhibit significant cellular heterogeneity featuring tumorigenic cancer stem cells (CSCs) in addition to more differentiated progeny with limited tumor-initiating capabilities. Recent studies suggest that microRNAs (miRNAs) regulate CSCs and tumor development. A previous library screening for differential miRNA expression in CD44+ (and other) prostate CSC vs. non-CSC populations identified miR-199a-3p to be among the most highly under-expressed miRNAs in CSCs. In this study, we characterized the biological functions of miR-199a-3p in CD44+ prostate cancer (PCa) cells and in tumor regeneration. Overexpression of miR-199a-3p in purified CD44+ or bulk PCa cells, including primary PCa, inhibited proliferation and clonal expansion without inducing apoptosis. miR-199a-3p overexpression also diminished tumor-initiating capacities of CD44+ PCa cells as well as tumor regeneration from bulk PCa cells. Importantly, inducible miR-199a-3p expression in pre-established prostate tumors in NOD/SCID mice inhibited tumor growth. Using target prediction program and luciferase assays, we show mechanistically that CD44 is a direct functional target of miR-199a-3p in PCa cells. Moreover, miR-199a-3p also directly or indirectly targeted several additional mitogenic molecules, including c-MYC, cyclin D1 (CCND1) and EGFR. Taken together, our results demonstrate how the aberrant loss of a miRNA-mediated mechanism can lead to the expansion and tumorigenic activity of prostate CSCs, further supporting the development and implementation of miRNA mimics for cancer treatment.
Collapse
|
88
|
Wang Y, Shao N, Mao X, Zhu M, Fan W, Shen Z, Xiao R, Wang C, Bao W, Xu X, Yang C, Dong J, Yu D, Wu Y, Zhu C, Wen L, Lu X, Lu YJ, Feng N. MiR-4638-5p inhibits castration resistance of prostate cancer through repressing Kidins220 expression and PI3K/AKT pathway activity. Oncotarget 2018; 7:47444-47464. [PMID: 27329728 PMCID: PMC5216953 DOI: 10.18632/oncotarget.10165] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/06/2016] [Indexed: 02/01/2023] Open
Abstract
MicroRNAs (miRNAs) are short, conserved segments of non-coding RNA which play a significant role in prostate cancer development and progression. To identify miRNAs associated with castration resistance, we performed miRNA microarray analysis comparing castration resistant prostate cancer (CRPC) with androgen dependent prostate cancer (ADPC). We identified common underexpression of miR-4638-5p in CRPC compared to ADPC samples, which were further confirmed by quantitative PCR analysis. The role of miR-4638-5p in prostate cancer androgen-independent growth has been demonstrated both in vitro and in vivo. We also identified Kidins220 as a target gene directly regulated by miR-4638-5p and shRNA-mediated knockdown of Kidins220 phenocopied miR-4638-5p restoration. Subsequently, we revealed that Kidins220 activates PI3K/AKT pathway, which plays a key role in CRPC. Loss of miR- 4638-5p may lead to CRPC through the activity of Kidins220 and PI3K/AKT pathway. Furthermore, we found that miR-4638-5p, through regulating Kidins220 and the downstream activity of VEGF and PI3K/AKT pathway, influences prostate cancer progression via angiogenesis. The identification of miR-4638-5p down-regulation in CRPC and the understanding of the functional role of miR-4638-5p and its downstream genes/pathways have the potential to develop biomarkers for CRPC onset and to identify novel targets for novel forms of treatments of this lethal form of PCa.
Collapse
Affiliation(s)
- Yang Wang
- Department of Urology, Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China.,Wuxi Medical School, Jiangnan University, Wuxi, China
| | - Ning Shao
- Department of Urology, Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China.,Wuxi Medical School, Jiangnan University, Wuxi, China
| | - Xueying Mao
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Minmin Zhu
- Department of Urology, Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China
| | - Weifei Fan
- Jiangsu Province Geriatric Institute, Nanjing, China
| | - Zhixiang Shen
- Jiangsu Province Geriatric Institute, Nanjing, China
| | - Rong Xiao
- College of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chuncai Wang
- College of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Wenping Bao
- College of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Xinyu Xu
- Department of Urology, Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China
| | - Chun Yang
- Department of Urology, Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China
| | - Jian Dong
- Department of Urology, Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China
| | - Deshui Yu
- Department of Urology, Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China
| | - Yan Wu
- Department of Urology, Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China
| | - Caixia Zhu
- Department of Urology, Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China
| | - Liting Wen
- Department of Urology, Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China
| | - Xiaojie Lu
- Centre for Translational Medicine, Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China
| | - Yong-Jie Lu
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Ninghan Feng
- Department of Urology, Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China.,Wuxi Medical School, Jiangnan University, Wuxi, China
| |
Collapse
|
89
|
Pseudogene BMI1P1 expression as a novel predictor for acute myeloid leukemia development and prognosis. Oncotarget 2018; 7:47376-47386. [PMID: 27329719 PMCID: PMC5216948 DOI: 10.18632/oncotarget.10156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/06/2016] [Indexed: 12/18/2022] Open
Abstract
The BMI1P1 levels of 144 de novo AML patients and 36 healthy donors were detected by real-time quantitative PCR (RQ-PCR). BMI1P1 was significantly down-regulated in AML compared with control (P < 0.001). A receiver operating characteristic (ROC) curve revealed that BMI1P1 expression could differentiate patients with AML from control subjects (AUC = 0.895, 95% CI: 0.835–0.954, P < 0.001). The percentage of blasts in bone marrow (BM) was significantly lower in BMI1P1 high-expressed group versus low-expressed group (P = 0.008). BMI1P1 high-expressed cases had significantly higher complete remission (CR) than BMI1P1 low-expressed cases (P = 0.023). Furthermore, Kaplan–Meier demonstrated that both whole AML cohort and non-M3-AML patients with low BMI1P1 expression showed shorter leukemia free survival (LFS, P = 0.002 and P = 0.01, respectively) and overall survival (OS, P < 0.001 and P = 0.011, respectively) than those with high BMI1P1 expression. Multivariate analysis also showed that BMI1P1 over-expression was an independent favorable prognostic factor for OS in both whole and non-M3 cohort of AML patients (HR = 0.462, 95% CI = 0.243–0.879, P = 0.019 and HR = 0.483, 95% CI = 0.254–0.919, P = 0.027). To further investigate the significance of BMI1P1 expression in the follow-up of AML patients, we monitored the BMI1P1 level in 26 de novo AML patients and found that the BMI1P1 level increased significantly from the initial diagnosis to post-CR (P < 0.001). These results indicated that BMI1P1 might contribute to the diagnosis of AML and the assessment of therapeutic effect.
Collapse
|
90
|
Blockade of ACK1/TNK2 To Squelch the Survival of Prostate Cancer Stem-like Cells. Sci Rep 2018; 8:1954. [PMID: 29386546 PMCID: PMC5792546 DOI: 10.1038/s41598-018-20172-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/15/2018] [Indexed: 01/08/2023] Open
Abstract
Prostate cancer stem-like cells (PCSCs) are not only enriched in the CD44+PSA-/lo subpopulation but also employ androgen-independent signaling mechanisms for survival. CD44+ PCSCs defy androgen deprivation, resist chemo- and radiotherapy and are highly tumorigenic. Human prostate tissue microarray (TMA) staining revealed an increased membranous staining of CD44 in the luminal compartment in higher grade G7-G9 tumors versus staining of the basal layer in benign hyperplasia. To uncover tyrosine kinase/s critical for the survival of the CD44+PSA-/lo subpopulation, we performed an unbiased screen targeting 87 tyrosine kinases with gene specific siRNAs. Among a subset of tyrosine kinases crucial for PCSC survival, was a non-receptor tyrosine kinase, ACK1/TNK2, a critical regulator of castration resistant prostate cancer (CRPC) growth. Consistently, activated ACK1 as measured by phosphorylation at Tyr284 was significant in the CD44+PSA-/lo population. Conversely, pharmacological inhibition by ACK1 inhibitor, (R)-9bMS mitigated CD44+PSA-/lo sphere formation, overcame resistance to radiation-induced cell death, induced significant apoptosis in PCSCs and inhibited CD44+PSA-/lo xenograft tumor growth in castrated mice suggesting dependency of PCSCs on ACK1 for survival. Thus, blockade of ACK1/TNK2 could be a new therapeutic modality to target recalcitrant PCSCs.
Collapse
|
91
|
Jiang L, Shan J, Shen J, Wang Y, Yan P, Liu L, Zhao W, Xu Y, Zhu W, Su L, Chen J, Cheng F, Yao H, Xu H, Qian C, Liang Z. Androgen/androgen receptor axis maintains and promotes cancer cell stemness through direct activation of Nanog transcription in hepatocellular carcinoma. Oncotarget 2018; 7:36814-36828. [PMID: 27167111 PMCID: PMC5095041 DOI: 10.18632/oncotarget.9192] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/16/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and malignant cancers. The HCC incidence gets a strong sexual dimorphism as men are the major sufferers in this disaster. Although several studies have uncovered the presentative correlation between the axis of androgen/androgen receptor (AR) and HCC incidence, the mechanism is still largely unknown. Cancer stem cells (CSCs) are a small subgroup of cancer cells contributing to multiple tumors malignant behaviors, which play an important role in oncogenesis of various cancers including HCC. However, whether androgen/AR axis involves in regulation of HCC cells stemness remains unclear. Our previous study had identified that the pluripotency factor Nanog is not only a stemness biomarker, but also a potent regulator of CSCs in HCC. In this study, we revealed androgen/AR axis can promote HCC cells stemness by transcriptional activation of Nanog expression through directly binding to its promoter. In HCC tissues, we found that AR expression was abnormal high and got correlation with Nanog. Then, by labeling cellular endogenous Nanog with green fluorescent protein (GFP) through CRISPR/Cas9 system, it verified the co-localization of AR and Nanog in HCC cells. With in vitro experiments, we demonstrated the axis can promote HCC cells stemness, which effect is in a Nanog-dependent manner and through activating its transcription. And the xenografted tumor experiments confirmed the axis effect on tumorigenesis facilitation in vivo. Above all, we revealed a new sight of androgen/AR axis roles in HCC and provided a potential way for suppressing the axis in HCC therapy.
Collapse
Affiliation(s)
- Lupin Jiang
- Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Juanjuan Shan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Junjie Shen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yanzhou Wang
- Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ping Yan
- Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Limei Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wenxu Zhao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yanmin Xu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wei Zhu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Li Su
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jun Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Feifei Cheng
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hong Yao
- Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Huicheng Xu
- Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Cheng Qian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhiqing Liang
- Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
92
|
Saygin C, Samour M, Chumakova A, Jarrar A, Lathia JD, Reizes O. Reporter Systems to Study Cancer Stem Cells. Methods Mol Biol 2018; 1516:319-333. [PMID: 27221339 DOI: 10.1007/7651_2016_360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancer stem cells have been identified in primary tumors, patient derived xenografts, and established cancer cell lines. The development of reporters has enabled investigators to rapidly enrich for these cells and more importantly track these cells in real time. Here we describe the current state of the reporter field and their use and limitations in multiple cancers.
Collapse
Affiliation(s)
- Caner Saygin
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NC 10, Cleveland, OH, 44195, USA
| | - Mohamed Samour
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NC 10, Cleveland, OH, 44195, USA.,Medicine Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Anastasia Chumakova
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NC 10, Cleveland, OH, 44195, USA
| | - Awad Jarrar
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NC 10, Cleveland, OH, 44195, USA
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NC 10, Cleveland, OH, 44195, USA.,Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, 44195, USA.,Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA
| | - Ofer Reizes
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NC 10, Cleveland, OH, 44195, USA. .,Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA. .,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, 44195, USA. .,Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
93
|
Nicotine-enhanced stemness and epithelial-mesenchymal transition of human umbilical cord mesenchymal stem cells promote tumor formation and growth in nude mice. Oncotarget 2017; 9:591-606. [PMID: 29416638 PMCID: PMC5787492 DOI: 10.18632/oncotarget.22712] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 11/01/2017] [Indexed: 12/12/2022] Open
Abstract
Cigarette smoking is a well-known risk factor in the development and progression of malignant diseases. Nicotine, the major constituent in cigarette smoke, has also shown negative effects on stem cells. Mesenchymal stem cells (MSCs) have been widely demonstrated to migrate into tumors and play key roles in cancer progression. However, the mechanisms by which nicotine impacts MSCs and tumorigenesis of lung cancer are still undetermined. In this study we investigated the effects of nicotine on human umbilical cord mesenchymal stem cells (hUC-MSCs) and the impacts of nicotine-treated hUC-MSCs on tumor formation and progression. We found that nicotine has a toxic effect on hUC-MSCs and changes the morphology, inhibits proliferation and promotes apoptosis of hUC-MSCs in a dose-dependent manner. Nicotine-treated hUC-MSCs produce higher level of IL-6. Moreover, nicotine promotes migration, stemness and epithelial-mesenchymal transition (EMT) of hUC-MSCs by inhibiting E-cadherin expression and upregulating mesenchymal markers such as N-cadherin and Vimentin, leading to the induction of stem cell markers Sox2, Nanog, Sall4, Oct4 and CD44. Migration and proliferation of non-small cell lung cancer A549 cells and breast cancer MCF-7 cells are promoted after their coculture with nicotine-treated hUC-MSCs in a cell-cell contact-independent manner. Furthermore, nicotine-treated hUC-MSCs promote tumor formation and growth of A549 cells in nude mice. These studies demonstrated that the enhanced stemness and EMT of hUC-MSCs induced by nicotine are critical for the development of tobacco-related cancers.
Collapse
|
94
|
Peng Y, Prater AR, Deutscher SL. Targeting aggressive prostate cancer-associated CD44v6 using phage display selected peptides. Oncotarget 2017; 8:86747-86768. [PMID: 29156833 PMCID: PMC5689723 DOI: 10.18632/oncotarget.21421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/31/2017] [Indexed: 12/13/2022] Open
Abstract
There is a crucial need to identify new biomarkers associated with aggressive prostate cancer (PCa) including those associated with cancer stem cells (CSCs). CD44v6, generated by alternative splicing of CD44, has been proposed as a CSC biomarker due to its correlation with aggressive PCa disease. We hypothesized that phage display selected peptides that target CD44v6 may serve as theranostic agents for aggressive PCa. Here, a 15 amino acid peptide ("PFT") was identified by affinity selection against a peptide derived from the v6 region of CD44v6. Synthesized PFT exhibited specific binding to CD44v6 with an equilibrium dissociation constant (Kd) of 743.4 nM. PFT also bound CD44v6 highly expressed on human PCa cell lines. Further, an aggressive form of PCa cells (v6A3) was isolated and tagged by a novel CSC reporter vector. The v6A3 cells had a CSC-like phenotype including enriched CD44v6 expression, enhanced clonogenicity, resistance to chemotherapeutics, and generation of heterogeneous offspring. PFT exhibited preferential binding to v6A3 cells compared to parental cells. Immunohistofluorescence studies with human PCa tissue microarrays (TMA) indicated that PFT was highly accurate in detecting CD44v6-positive aggressive PCa cells, and staining positivity was significantly higher in late stage, metastatic and higher-grade samples. Taken together, this study provides for the first time phage display selected peptides that target CD44v6 overexpressed on PCa cells. Peptide PFT may be explored as an aid in the diagnosis and therapy of advanced PCa disease.
Collapse
Affiliation(s)
- Ying Peng
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.,Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, USA
| | - Austin R Prater
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.,Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, USA
| | - Susan L Deutscher
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.,Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, USA
| |
Collapse
|
95
|
Human cancer stem cells are a target for cancer prevention using (-)-epigallocatechin gallate. J Cancer Res Clin Oncol 2017; 143:2401-2412. [PMID: 28942499 PMCID: PMC5693978 DOI: 10.1007/s00432-017-2515-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 08/31/2017] [Indexed: 02/06/2023]
Abstract
Purpose Our previous experiments show that the main constituent of green-tea catechins, (−)-epigallocatechin gallate (EGCG), completely prevents tumor promotion on mouse skin initiated with 7,12-dimethylbenz(a)anthracene followed by okadaic acid and that EGCG and green tea extract prevent cancer development in a wide range of target organs in rodents. Therefore, we focused our attention on human cancer stem cells (CSCs) as targets of cancer prevention and treatment with EGCG. Methods The numerous reports concerning anticancer activity of EGCG against human CSCs enriched from cancer cell lines were gathered from a search of PubMed, and we hope our review of the literatures will provide a broad selection for the effects of EGCG on various human CSCs. Results Based on our theoretical study, we discuss the findings as follows: (1) Compared with the parental cells, human CSCs express increased levels of the stemness markers Nanog, Oct4, Sox2, CD44, CD133, as well as the EMT markers, Twist, Snail, vimentin, and also aldehyde dehydrogenase. They showed decreased levels of E-cadherin and cyclin D1. (2) EGCG inhibits the transcription and translation of genes encoding stemness markers, indicating that EGCG generally inhibits the self-renewal of CSCs. (3) EGCG inhibits the expression of the epithelial-mesenchymal transition phenotypes of human CSCs. (4) The inhibition of EGCG of the stemness of CSCs was weaker compared with parental cells. (5) The weak inhibitory activity of EGCG increased synergistically in combination with anticancer drugs. Conclusions Green tea prevents human cancer, and the combination of EGCG and anticancer drugs confers cancer treatment with tissue-agnostic efficacy.
Collapse
|
96
|
C-terminal truncated hepatitis B virus X protein regulates tumorigenicity, self-renewal and drug resistance via STAT3/Nanog signaling pathway. Oncotarget 2017; 8:23507-23516. [PMID: 28186991 PMCID: PMC5410322 DOI: 10.18632/oncotarget.15183] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 01/16/2017] [Indexed: 01/04/2023] Open
Abstract
Hepatitis B virus (HBV) is a major risk factor of chronic liver disease and hepatocellular carcinoma (HCC). Random integration of HBV DNA into the host genome is frequent in HCC leading to truncation of the HBV DNA, particularly at the C-terminal end of the HBV X protein (HBx). C-terminally truncated HBx (HBx-ΔC) has been implicated in playing a pro-oncogenic role in hepatocarcinogenesis. However, the mechanism whereby HBx-ΔC1 contributes to hepatocarcinogenesis remains unclear. In this study, we investigated the functional role of HBx-ΔC1 in regulating liver cancer stem cell (CSC) properties. Using Tet-on inducible system, we found that HBx-ΔC1 enhanced CSC properties including self-renewal, tumorigenicity, chemoresistance, migration and expression of liver CSC markers, when compared with the full-length HBx counterpart and vector control. Interestingly, HBx-ΔC1 conferred resistance in HCC cells towards sorafenib treatment through suppression of apoptotic cascade. In addition, HBx-ΔC1 upregulated a panel of stemness genes, in which Nanog was found to be among the most significant one in both trasnfected cell lines. Consistently, Nanog was upregulated in human HCC samples which had HBx-ΔC1 expression. Furthermore, the induction of CSC properties by HBx-ΔC1 was via the Stat3/Nanog pathway, as administration of Stat3 inhibitor abolished the HBx-ΔC1-induced self-renewing capacity. In conclusion, our data suggest that HBx-ΔC1 enhances liver CSCs properties through Stat3/Nanog cascade, and provide a new insight for the therapeutic intervention for HBV-related HCC.
Collapse
|
97
|
Soni P, Qayoom S, Husain N, Kumar P, Chandra A, Ojha BK, Gupta RK. CD24 and Nanog expression in Stem Cells in Glioblastoma: Correlation with Response to Chemoradiation and Overall Survival. Asian Pac J Cancer Prev 2017; 18:2215-2219. [PMID: 28843258 PMCID: PMC5697483 DOI: 10.22034/apjcp.2017.18.8.2215] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background and aim: Glioblastoma (GBM) is one of the most common and aggressive brain tumors with a median survival of 12-14 months. The aim of present study was to evaluate the gene expression profile of stem cell markers Nanog and CD24 in GBM and to determine its relationship to outcome in terms of treatment response and overall survival. Material and methods: This was a retrospective as well as retrospective study which included 51 histologically confirmed cases of GBM. Expression of CD24, and Nanog was evaluated by RT-PCR. Control tissue included debrided brain tissue from open head injury cases. All cases of GBM underwent total surgical resection and subsequently chemotherapy. Immediate treatment response was evaluated at 3 months using Response Evaluation Criteria In Solid Tumors (RECIST) guidelines and overall survival was measured at 36 months. Result: As compared to control gene, expression of CD24 and Nanog was seen to be unregulated to 24.5% and 31.7% respectively. However, the difference in mean expression of cases and controls was not statistically significant. Correlation between expressions of these two markers was also not statistically significant. On univariate cox regression analysis, cases with >2 fold expression of CD24 and Nanog had significantly poor survival as compared to those with <2 fold expression. On multivariate analysis > 2 fold CD24 expression had a statistically significant correlation with poor survival. Conclusion: An overexpression of CD24 by more than two fold was associated with poor overall survival in GBM. Poor survival may be related to increased “stemness” of tumour cells. Targeted therapy inclusive of drugs targeting stem cells directly or indirectly may be a promising therapeutic option.
Collapse
Affiliation(s)
- Priyanka Soni
- Department of Pathology, Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India.
| | | | | | | | | | | | | |
Collapse
|
98
|
Kumari S, Senapati D, Heemers HV. Rationale for the development of alternative forms of androgen deprivation therapy. Endocr Relat Cancer 2017; 24:R275-R295. [PMID: 28566530 PMCID: PMC5886376 DOI: 10.1530/erc-17-0121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 05/30/2017] [Indexed: 12/31/2022]
Abstract
With few exceptions, the almost 30,000 prostate cancer deaths annually in the United States are due to failure of androgen deprivation therapy. Androgen deprivation therapy prevents ligand-activation of the androgen receptor. Despite initial remission after androgen deprivation therapy, prostate cancer almost invariably progresses while continuing to rely on androgen receptor action. Androgen receptor's transcriptional output, which ultimately controls prostate cancer behavior, is an alternative therapeutic target, but its molecular regulation is poorly understood. Recent insights in the molecular mechanisms by which the androgen receptor controls transcription of its target genes are uncovering gene specificity as well as context-dependency. Heterogeneity in the androgen receptor's transcriptional output is reflected both in its recruitment to diverse cognate DNA binding motifs and in its preferential interaction with associated pioneering factors, other secondary transcription factors and coregulators at those sites. This variability suggests that multiple, distinct modes of androgen receptor action that regulate diverse aspects of prostate cancer biology and contribute differentially to prostate cancer's clinical progression are active simultaneously in prostate cancer cells. Recent progress in the development of peptidomimetics and small molecules, and application of Chem-Seq approaches indicate the feasibility for selective disruption of critical protein-protein and protein-DNA interactions in transcriptional complexes. Here, we review the recent literature on the different molecular mechanisms by which the androgen receptor transcriptionally controls prostate cancer progression, and we explore the potential to translate these insights into novel, more selective forms of therapies that may bypass prostate cancer's resistance to conventional androgen deprivation therapy.
Collapse
Affiliation(s)
- Sangeeta Kumari
- Department of Cancer BiologyCleveland Clinic, Cleveland, Ohio, USA
| | | | - Hannelore V Heemers
- Department of Cancer BiologyCleveland Clinic, Cleveland, Ohio, USA
- Department of UrologyCleveland Clinic, Cleveland, Ohio, USA
- Department of Hematology/Medical OncologyCleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
99
|
Effects of quantum dots on the ROS amount of liver cancer stem cells. Colloids Surf B Biointerfaces 2017; 155:193-199. [DOI: 10.1016/j.colsurfb.2017.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 04/05/2017] [Accepted: 04/10/2017] [Indexed: 12/25/2022]
|
100
|
Deng L, Xiang X, Yang F, Xiao D, Liu K, Chen Z, Zhang R, Feng G. Functional evidence that the self-renewal gene NANOG regulates esophageal squamous cancer development. Biochem Biophys Res Commun 2017; 490:161-168. [PMID: 28601640 DOI: 10.1016/j.bbrc.2017.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/06/2017] [Indexed: 10/19/2022]
Abstract
Cancer cell molecular mimicry of stem cells (SC) follows with enhanced proliferative and renewal capacities. In support, numerous mediators of SC self-renewal have been evinced to exhibit oncogenic potential. More and more researches showed that the embryonic stem cell self-renewal genes express in various cancer cells. In this study, we sought to test the tumorigenic functions of NANOG, particularly, in esophageal cancer (EC). Using quantitative RT-PCR and western blotting, we confirmed that EC cells highly express NANOG mRNA and protein. We then constructed a shRNA-mediated plasmid to knockdown of NANOG mRNA. We observed that NANOG deficiency in Eca109 cells decreased clone formation, cell proliferation, and showed G1 arrest. To further investigate the functions and mechanisms of NANOG in Eca109 cells, we detected the changes of multiple signaling molecules when NANOG deficiency. We foud that NANOG deficiency affected multiple genes, particularly, supressed drug-resistance via down-regulated ABCG2 in Eca109 cells, and caused G1 arrest by down-regulated cyclin D1 (CCND1) expression. The present loss-of-function work, establish the integral role for NANOG in Eca109 cell proliferation, drug resistance, and shed light on its mechanisms of action.
Collapse
Affiliation(s)
- Li Deng
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Xiaocong Xiang
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Fei Yang
- Orthopedics, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Dongqin Xiao
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Kang Liu
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Zhu Chen
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Ruolan Zhang
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Gang Feng
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan 637000, China.
| |
Collapse
|