51
|
Wellenbeck W, Mampel J, Naumer C, Knepper A, Neubauer P. Fast-track development of a lactase production process with Kluyveromyces lactis by a progressive parameter-control workflow. Eng Life Sci 2016; 17:1185-1194. [PMID: 32624746 DOI: 10.1002/elsc.201600031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/12/2016] [Accepted: 09/07/2016] [Indexed: 11/12/2022] Open
Abstract
The time-to-market challenge is key to success for consumer goods affiliated industries. In recent years, the dairy industry faces a fast and constantly growing demand for enzymatically produced lactose-free milk products, mainly driven by emerging markets in South America and Asia. In order to take advantage of this opportunity, we developed a fermentation process for lactase (β-galactosidase) from Kluyveromyces lactis within short time. Here, we describe the process of stepwise increasing the level of control over relevant process parameters during scale-up that established a highly efficient and stable production system. Process development started with evolutionary engineering to generate catabolite-derepressed variants of the K. lactis wild-type strain. A high-throughput screening mimicking fed-batch cultivation identified a constitutive lactase overproducer with 260-fold improved activity of 4.4 U per milligram dry cell weight when cultivated in glucose minimal medium. During scale-up, process control was progressively increased up to the level of conventional, fully controlled fed-batch cultivations by simulating glucose feed, applying pH- and dissolved oxygen tension (DOT)-sensor technology to small scale, and by the use of a milliliter stirred tank bioreactor. Additionally, process development was assisted by design-of-experiments optimization of the growth medium employing the response surface methodology.
Collapse
Affiliation(s)
- Wenzel Wellenbeck
- BRAIN AG (Biotechnology Research and Information Network) Zwingenberg Germany
| | - Jörg Mampel
- BRAIN AG (Biotechnology Research and Information Network) Zwingenberg Germany
| | - Christian Naumer
- BRAIN AG (Biotechnology Research and Information Network) Zwingenberg Germany
| | - Andreas Knepper
- Bioprocess Engineering Department of Biotechnology Technische Universität Berlin Berlin Germany
| | - Peter Neubauer
- Bioprocess Engineering Department of Biotechnology Technische Universität Berlin Berlin Germany
| |
Collapse
|
52
|
Konecna A, Toth Hervay N, Valachovic M, Gbelska Y. ERG6 gene deletion modifies Kluyveromyces lactis susceptibility to various growth inhibitors. Yeast 2016; 33:621-632. [PMID: 27668979 DOI: 10.1002/yea.3212] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/13/2016] [Accepted: 09/21/2016] [Indexed: 11/09/2022] Open
Abstract
The ERG6 gene encodes an S-adenosylmethionine dependent sterol C-24 methyltransferase in the ergosterol biosynthetic pathway. In this work we report the results of functional analysis of the Kluyveromyces lactis ERG6 gene. We cloned the KlERG6 gene, which was able to complement the erg6Δ mutation in both K. lactis and Saccharomyces cerevisiae. The lack of ergosterol in the Klerg6 deletion mutant was accompanied by increased expression of genes encoding the last steps of the ergosterol biosynthesis pathway as well as the KlPDR5 gene encoding an ABC transporter. The Klerg6Δ mutation resulted in reduced cell susceptibility to amphotericin B, nystatin and pimaricin and increased susceptibility to azole antifungals, fluphenazine, terbinafine, brefeldin A and caffeine. The susceptibility phenotype was suppressed by the KlPDR16 gene encoding one of the phosphatidylinositol transfer proteins belonging to the Sec14 family. Decreased activity of KlPdr5p in Klerg6Δ mutant (measured as the ability to efflux rhodamine 6G) together with increased amount of KlPDR5 mRNA suggest that the zymosterol which accumulates in the Klerg6Δ mutant may not fully compensate for ergosterol in the membrane targeting of efflux pumps. These results point to the fact that defects in sterol transmethylation appear to cause a multitude of physiological effects in K. lactis cells. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Alexandra Konecna
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Microbiology and Virology, Bratislava, Slovak Republic
| | - Nora Toth Hervay
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Microbiology and Virology, Bratislava, Slovak Republic
| | - Martin Valachovic
- Slovak Academy of Sciences, Institute of Animal Biochemistry and Genetics, Ivanka pri Dunaji, Slovak Republic
| | - Yvetta Gbelska
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Microbiology and Virology, Bratislava, Slovak Republic
| |
Collapse
|
53
|
Toth Hervay N, Konecna A, Balazfyova Z, Svrbicka A, Gbelska Y. Insight into the Kluyveromyces lactis Pdr1p regulon. Can J Microbiol 2016; 62:918-931. [PMID: 27556366 DOI: 10.1139/cjm-2016-0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The overexpression of efflux pumps is an important mechanism leading to the development of multidrug resistance phenomenon. The transcription factor KlPdr1p, belonging to the Zn2Cys6 family, is a central regulator of efflux pump expression in Kluyveromyces lactis. To better understand how KlPDR1-mediated drug resistance is achieved in K. lactis, we used DNA microarrays to identify genes whose expression was affected by deletion or overexpression of the KlPDR1 gene. Eighty-nine targets of the KlPDR1 were identified. From those the transcription of 16 genes was induced in the transformant overexpressing KlPDR1* and simultaneously repressed in the Klpdr1Δ deletion mutant. Almost all of these genes contain putative binding motifs for the AP-1-like transcription factors in their promoters. Furthermore, we studied the possible interplay between KlPdr1p and KlYap1p transcription factors. Our results show that KlYap1p does not significantly contribute to the regulation of KlPDR1 gene expression in the presence of azoles. However, KlPDR1 expression markedly increased in the presence of hydrogen peroxide and hinged upon the presence of KlYap1p. Our results show that although both KlPdr1p and KlYap1p transcription factors are involved in the control of K. lactis multidrug resistance, further studies will be needed to determine their interplay.
Collapse
Affiliation(s)
- Nora Toth Hervay
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Microbiology and Virology, Ilkovicova 6, Mlynska dolina, 842 15 Bratislava, Slovak Republic.,Comenius University in Bratislava, Faculty of Natural Sciences, Department of Microbiology and Virology, Ilkovicova 6, Mlynska dolina, 842 15 Bratislava, Slovak Republic
| | - Alexandra Konecna
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Microbiology and Virology, Ilkovicova 6, Mlynska dolina, 842 15 Bratislava, Slovak Republic.,Comenius University in Bratislava, Faculty of Natural Sciences, Department of Microbiology and Virology, Ilkovicova 6, Mlynska dolina, 842 15 Bratislava, Slovak Republic
| | - Zuzana Balazfyova
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Microbiology and Virology, Ilkovicova 6, Mlynska dolina, 842 15 Bratislava, Slovak Republic.,Comenius University in Bratislava, Faculty of Natural Sciences, Department of Microbiology and Virology, Ilkovicova 6, Mlynska dolina, 842 15 Bratislava, Slovak Republic
| | - Alexandra Svrbicka
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Microbiology and Virology, Ilkovicova 6, Mlynska dolina, 842 15 Bratislava, Slovak Republic.,Comenius University in Bratislava, Faculty of Natural Sciences, Department of Microbiology and Virology, Ilkovicova 6, Mlynska dolina, 842 15 Bratislava, Slovak Republic
| | - Yvetta Gbelska
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Microbiology and Virology, Ilkovicova 6, Mlynska dolina, 842 15 Bratislava, Slovak Republic.,Comenius University in Bratislava, Faculty of Natural Sciences, Department of Microbiology and Virology, Ilkovicova 6, Mlynska dolina, 842 15 Bratislava, Slovak Republic
| |
Collapse
|
54
|
Cardarelli S, D'Amici S, Tassone P, Tramonti A, Uccelletti D, Mancini P, Saliola M. Characterization of the transcription factor encoding gene, KlADR1: metabolic role in Kluyveromyces lactis and expression in Saccharomyces cerevisiae. MICROBIOLOGY-SGM 2016; 162:1933-1944. [PMID: 27655407 DOI: 10.1099/mic.0.000374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In Saccharomyces cerevisiae, Adr1 is a zinc-finger transcription factor involved in the transcriptional activation of ADH2. Deletion of KlADR1, its putative ortholog in Kluyveromyces lactis, led to reduced growth in glycerol, oleate and yeast extract-peptone medium suggesting, as in S. cerevisiae, its requirement for glycerol, fatty acid and nitrogen utilization. Moreover, growth comparison on yeast extract and peptone plates showed in K. lactis a KlAdr1-dependent growth trait not present in S. cerevisiae, indicating different metabolic roles of the two factors in their environmental niches. KlADR1 is required for growth under respiratory and fermentative conditions like KlADH, alcohol dehydrogenase genes necessary for metabolic adaptation during the growth transition. Using in-gel native alcohol dehydrogenase assay, we showed that this factor affected the Adh pattern by altering the balance between these activities. Since the activity most affected by KlAdr1 is KlAdh3, a deletion analysis of the KlADH3 promoter allowed the isolation of a DNA fragment through which KlAdr1 modulated its expression. The expression of the KlADR1-GFP gene allowed the intracellular localization of the factor in K. lactis and S. cerevisiae, suggesting in the two yeasts a common mechanism of KlAdr1 translocation under fermentative and respiratory conditions. Finally, the chimeric Kl/ScADR1 gene encoding the zinc-finger domains of KlAdr1 fused to the transactivating domains of the S. cerevisiae factor activated in Scadr1Δ the transcription of ADH2 in a ScAdr1-dependent fashion.
Collapse
Affiliation(s)
- Silvia Cardarelli
- Department of Biology and Biotechnology 'C. Darwin', Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Sirio D'Amici
- Department of Biology and Biotechnology 'C. Darwin', Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Paola Tassone
- Department of Biology and Biotechnology 'C. Darwin', Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Angela Tramonti
- CNR Department of Biochemical Sciences 'Rossi Fanelli', Istituto di Biologia e Patologia Molecolari, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Daniela Uccelletti
- Department of Biology and Biotechnology 'C. Darwin', Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Patrizia Mancini
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Michele Saliola
- Department of Biology and Biotechnology 'C. Darwin', Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
55
|
Rippert D, Heinisch JJ. Investigation of the role of four mitotic septins and chitin synthase 2 for cytokinesis in Kluyveromyces lactis. Fungal Genet Biol 2016; 94:69-78. [PMID: 27422440 DOI: 10.1016/j.fgb.2016.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 11/15/2022]
Abstract
Septins are key components of the cell division machinery from yeast to humans. The model yeast Saccharomyces cerevisiae has five mitotic septins, Cdc3, Cdc10, Cdc11, Cdc12, and Shs1. Here we characterized the five orthologs from the genetically less-redundant milk yeast Kluyveromyces lactis. We found that except for KlSHS1 all septin genes are essential. Klshs1 deletions displayed temperature-sensitive growth and morphological defects. Heterologous complementation analyses revealed that all five K. lactis genes encode functional orthologs of their S. cerevisiae counterparts. Fluorophore-tagged versions of the K. lactis septins localized to a ring at the incipient bud site and split into two separate rings at the bud neck later in cytokinesis. One of the key proteins recruited to the bud neck by septins in S. cerevisiae is the chitin synthase Chs2, which synthesizes the primary septum. KlCHS2 was found to be essential and deletions showed cytokinetic defects upon spore germination. KlChs2-GFP also localized to the bud neck and to punctate structures in K. lactis. We conclude that cytokinesis in K. lactis is similar to S. cerevisiae and chimeric septin complexes are fully functional in both yeasts. In contrast to some S. cerevisiae strains, KlChs2 and KlCdc10 were found to be essential.
Collapse
Affiliation(s)
- Dorthe Rippert
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, 49076 Osnabrück, Germany
| | - Jürgen J Heinisch
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, 49076 Osnabrück, Germany.
| |
Collapse
|
56
|
Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances. Fungal Genet Biol 2016; 89:126-136. [DOI: 10.1016/j.fgb.2015.12.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/18/2015] [Accepted: 12/05/2015] [Indexed: 12/16/2022]
|
57
|
Heinisch JJ, Brandt R. Signaling pathways and posttranslational modifications of tau in Alzheimer's disease: the humanization of yeast cells. MICROBIAL CELL 2016; 3:135-146. [PMID: 28357346 DOI: 10.15698/mic2016.04.489] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In the past decade, yeast have been frequently employed to study the molecular mechanisms of human neurodegenerative diseases, generally by means of heterologous expression of genes encoding the relevant hallmark proteins. However, it has become evident that substantial posttranslational modifications of many of these proteins are required for the development and progression of potentially disease relevant changes. This is exemplified by the neuronal tau proteins, which are critically involved in a class of neuro-degenerative diseases collectively called tauopathies and which includes Alz-heimer's disease (AD) as its most common representative. In the course of the disease, tau changes its phosphorylation state and becomes hyperphosphory-lated, gets truncated by proteolytic cleavage, is subject to O-glycosylation, sumoylation, ubiquitinylation, acetylation and some other modifications. This poses the important question, which of these posttranslational modifications are naturally occurring in the yeast model or can be reconstituted by heterol-ogous gene expression. Here, we present an overview on common modifica-tions as they occur in tau during AD, summarize their potential relevance with respect to disease mechanisms and refer to the native yeast enzyme orthologs capable to perform these modifications. We will also discuss potential approaches to humanize yeast in order to create modification patterns resembling the situation in mammalian cells, which could enhance the value of Saccharomyces cerevisiae and Kluyveromyces lactis as disease models.
Collapse
Affiliation(s)
- Jürgen J Heinisch
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, Barbarastr. 11, D-49076 Osnabrück, Germany
| | - Roland Brandt
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Neurobiologie, Barbarastr. 11, D-49076 Osnabrück, Germany
| |
Collapse
|
58
|
Heinisch JJ, Brandt R. Signaling pathways and posttranslational modifications of tau in Alzheimer's disease: the humanization of yeast cells. MICROBIAL CELL 2016. [PMID: 28357346 DOI: 10.15698/mic2016.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the past decade, yeast have been frequently employed to study the molecular mechanisms of human neurodegenerative diseases, generally by means of heterologous expression of genes encoding the relevant hallmark proteins. However, it has become evident that substantial posttranslational modifications of many of these proteins are required for the development and progression of potentially disease relevant changes. This is exemplified by the neuronal tau proteins, which are critically involved in a class of neuro-degenerative diseases collectively called tauopathies and which includes Alz-heimer's disease (AD) as its most common representative. In the course of the disease, tau changes its phosphorylation state and becomes hyperphosphory-lated, gets truncated by proteolytic cleavage, is subject to O-glycosylation, sumoylation, ubiquitinylation, acetylation and some other modifications. This poses the important question, which of these posttranslational modifications are naturally occurring in the yeast model or can be reconstituted by heterol-ogous gene expression. Here, we present an overview on common modifica-tions as they occur in tau during AD, summarize their potential relevance with respect to disease mechanisms and refer to the native yeast enzyme orthologs capable to perform these modifications. We will also discuss potential approaches to humanize yeast in order to create modification patterns resembling the situation in mammalian cells, which could enhance the value of Saccharomyces cerevisiae and Kluyveromyces lactis as disease models.
Collapse
Affiliation(s)
- Jürgen J Heinisch
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, Barbarastr. 11, D-49076 Osnabrück, Germany
| | - Roland Brandt
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Neurobiologie, Barbarastr. 11, D-49076 Osnabrück, Germany
| |
Collapse
|
59
|
Carvalho N, Coelho E, Gales L, Costa V, Teixeira JA, Moradas-Ferreira P. Production of orotic acid by a Klura3Δ mutant of Kluyveromyces lactis. J Biosci Bioeng 2015; 121:625-630. [PMID: 26707627 DOI: 10.1016/j.jbiosc.2015.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/21/2015] [Accepted: 10/15/2015] [Indexed: 11/19/2022]
Abstract
We demonstrated that a Klura3Δ, mutant of the yeast Kluyveromyces lactis is able to produce and secrete into the growth medium considerable amounts of orotic acid. Using yeast extract-peptone-glucose (YPD) based media we optimized production conditions in flask and bioreactor cultures. With cells grown in YPD 5% glucose medium, the best production in flask was obtained with a 1:12.5 ratio for flask: culture volume, 180 rpm, 28°C and 200 mM MOPS for pH stabilization at neutral values (initial culture pH at 8.0). The best production in a 2 L bioreactor was achieved at 500 rpm with 1 vvm aeration, 28°C and pH 7.0. Under these optimum conditions, similar rates of orotic acid production were obtained and maximum concentration achieved after 96 h was 6.7 g/L in flask and bioreactor cultures. These results revealed an excellent reproducibility between both systems and provided evidence for the biotechnological potential of Klura3Δ strain to produce orotic acid since the amounts obtained are comparable to the production in flask using a similar mutant of the industrially valuable Corynebacterium glutamicum.
Collapse
Affiliation(s)
- Nuno Carvalho
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen s/n, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Rua do Campo Alegre 823, 4150-180 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Departamento de Biologia Molecular, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Eduardo Coelho
- Centro de Engenharia Biológica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Luís Gales
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen s/n, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Rua do Campo Alegre 823, 4150-180 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Departamento de Biologia Molecular, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Vítor Costa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen s/n, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Rua do Campo Alegre 823, 4150-180 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Departamento de Biologia Molecular, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - José António Teixeira
- Centro de Engenharia Biológica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Pedro Moradas-Ferreira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen s/n, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Rua do Campo Alegre 823, 4150-180 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Departamento de Biologia Molecular, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
60
|
Gorietti D, Zanni E, Palleschi C, Delfini M, Uccelletti D, Saliola M, Puccetti C, Sobolev A, Mannina L, Miccheli A. 13C NMR based profiling unveils different α-ketoglutarate pools involved into glutamate and lysine synthesis in the milk yeast Kluyveromyces lactis. Biochim Biophys Acta Gen Subj 2015; 1850:2222-7. [DOI: 10.1016/j.bbagen.2015.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/01/2015] [Accepted: 07/22/2015] [Indexed: 12/26/2022]
|
61
|
Ineffective Phosphorylation of Mitogen-Activated Protein Kinase Hog1p in Response to High Osmotic Stress in the Yeast Kluyveromyces lactis. EUKARYOTIC CELL 2015; 14:922-30. [PMID: 26150414 DOI: 10.1128/ec.00048-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/25/2015] [Indexed: 11/20/2022]
Abstract
When treated with a hyperosmotic stimulus, Kluyveromyces lactis cells respond by activating the mitogen-activated protein kinase (MAPK) K. lactis Hog1 (KlHog1) protein via two conserved branches, SLN1 and SHO1. Mutants affected in only one branch can cope with external hyperosmolarity by activating KlHog1p by phosphorylation, except for single ΔKlste11 and ΔKlste50 mutants, which showed high sensitivity to osmotic stress, even though the other branch (SLN1) was intact. Inactivation of both branches by deletion of KlSHO1 and KlSSK2 also produced sensitivity to high salt. Interestingly, we have observed that in ΔKlste11 and ΔKlsho1 ΔKlssk2 mutants, which exhibit sensitivity to hyperosmotic stress, and contrary to what would be expected, KlHog1p becomes phosphorylated. Additionally, in mutants lacking both MAPK kinase kinases (MAPKKKs) present in K. lactis (KlSte11p and KlSsk2p), the hyperosmotic stress induced the phosphorylation and nuclear internalization of KlHog1p, but it failed to induce the transcriptional expression of KlSTL1 and the cell was unable to grow in high-osmolarity medium. KlHog1p phosphorylation via the canonical HOG pathway or in mutants where the SHO1 and SLN1 branches have been inactivated requires not only the presence of KlPbs2p but also its kinase activity. This indicates that when the SHO1 and SLN1 branches are inactivated, high-osmotic-stress conditions activate an independent input that yields active KlPbs2p, which, in turn, renders KlHog1p phosphorylation ineffective. Finally, we found that KlSte11p can alleviate the sensitivity to hyperosmotic stress displayed by a ΔKlsho1 ΔKlssk2 mutant when it is anchored to the plasma membrane by adding the KlSho1p transmembrane segments, indicating that this chimeric protein can substitute for KlSho1p and KlSsk2p.
Collapse
|
62
|
Drozdíková E, Garaiová M, Csáky Z, Obernauerová M, Hapala I. Production of squalene by lactose-fermenting yeast Kluyveromyces lactis
with reduced squalene epoxidase activity. Lett Appl Microbiol 2015; 61:77-84. [DOI: 10.1111/lam.12425] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/25/2015] [Accepted: 04/06/2015] [Indexed: 11/29/2022]
Affiliation(s)
- E. Drozdíková
- Department of Microbiology and Virology; Faculty of Sciences; Comenius University; Bratislava Slovakia
| | - M. Garaiová
- Institute of Animal Biochemistry and Genetics; Slovak Academy of Sciences; Ivanka pri Dunaji Slovakia
| | - Z. Csáky
- Institute of Animal Biochemistry and Genetics; Slovak Academy of Sciences; Ivanka pri Dunaji Slovakia
| | - M. Obernauerová
- Department of Microbiology and Virology; Faculty of Sciences; Comenius University; Bratislava Slovakia
| | - I. Hapala
- Institute of Animal Biochemistry and Genetics; Slovak Academy of Sciences; Ivanka pri Dunaji Slovakia
| |
Collapse
|
63
|
Dugat-Bony E, Straub C, Teissandier A, Onésime D, Loux V, Monnet C, Irlinger F, Landaud S, Leclercq-Perlat MN, Bento P, Fraud S, Gibrat JF, Aubert J, Fer F, Guédon E, Pons N, Kennedy S, Beckerich JM, Swennen D, Bonnarme P. Overview of a surface-ripened cheese community functioning by meta-omics analyses. PLoS One 2015; 10:e0124360. [PMID: 25867897 PMCID: PMC4395090 DOI: 10.1371/journal.pone.0124360] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/02/2015] [Indexed: 11/18/2022] Open
Abstract
Cheese ripening is a complex biochemical process driven by microbial communities composed of both eukaryotes and prokaryotes. Surface-ripened cheeses are widely consumed all over the world and are appreciated for their characteristic flavor. Microbial community composition has been studied for a long time on surface-ripened cheeses, but only limited knowledge has been acquired about its in situ metabolic activities. We applied metagenomic, metatranscriptomic and biochemical analyses to an experimental surface-ripened cheese composed of nine microbial species during four weeks of ripening. By combining all of the data, we were able to obtain an overview of the cheese maturation process and to better understand the metabolic activities of the different community members and their possible interactions. Furthermore, differential expression analysis was used to select a set of biomarker genes, providing a valuable tool that can be used to monitor the cheese-making process.
Collapse
Affiliation(s)
- Eric Dugat-Bony
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
| | - Cécile Straub
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
| | - Aurélie Teissandier
- AgroParisTech, UMR 518 Mathématiques et Informatiques Appliquées, F-75231, Paris, France
- INRA, UMR 518 Mathématiques et Informatiques Appliquées, F-75231, Paris, France
| | - Djamila Onésime
- INRA, Institut Micalis, F-78352, Jouy-en-Josas, France
- AgroParisTech, Institut Micalis, F-78352, Jouy-en-Josas, France
| | - Valentin Loux
- INRA, UR1404 Mathématiques et Informatique Appliquées du Génome à l’Environnement, F-78352, Jouy-en-Josas, France
| | - Christophe Monnet
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
| | - Françoise Irlinger
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
| | - Sophie Landaud
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
| | - Marie-Noëlle Leclercq-Perlat
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
| | - Pascal Bento
- INRA, UR1404 Mathématiques et Informatique Appliquées du Génome à l’Environnement, F-78352, Jouy-en-Josas, France
| | | | - Jean-François Gibrat
- INRA, UR1404 Mathématiques et Informatique Appliquées du Génome à l’Environnement, F-78352, Jouy-en-Josas, France
| | - Julie Aubert
- AgroParisTech, UMR 518 Mathématiques et Informatiques Appliquées, F-75231, Paris, France
- INRA, UMR 518 Mathématiques et Informatiques Appliquées, F-75231, Paris, France
| | - Frédéric Fer
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 518 Mathématiques et Informatiques Appliquées, F-75231, Paris, France
- INRA, UMR 518 Mathématiques et Informatiques Appliquées, F-75231, Paris, France
| | - Eric Guédon
- INRA, Institut Micalis, F-78352, Jouy-en-Josas, France
- AgroParisTech, Institut Micalis, F-78352, Jouy-en-Josas, France
| | - Nicolas Pons
- INRA, US 1367 Metagenopolis, F-78352, Jouy-en-Josas, France
| | - Sean Kennedy
- INRA, US 1367 Metagenopolis, F-78352, Jouy-en-Josas, France
| | - Jean-Marie Beckerich
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
| | - Dominique Swennen
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
| | - Pascal Bonnarme
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
- * E-mail:
| |
Collapse
|
64
|
Tramonti A, Saliola M. Glucose 6-phosphate and alcohol dehydrogenase activities are components of dynamic macromolecular depots structures. Biochim Biophys Acta Gen Subj 2015; 1850:1120-30. [PMID: 25662817 DOI: 10.1016/j.bbagen.2015.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/23/2015] [Accepted: 01/30/2015] [Indexed: 12/26/2022]
Abstract
BACKGROUND Membrane-associated respiratory complexes, purinosome and many intracellular soluble activities have reported to be organized in dynamic multi-component macromolecular complexes using native PAGE, 2D SDS-PAGE, electron and systematic microscopy and genome-wide GFP fusion library. METHODS In-gel staining assays, SDS-PAGE and LC-MSMS techniques were performed on cellular extracts to analyze, isolate and identify the proteins associated with glucose 6-phosphate dehydrogenase (G6PDH) and fermentative alcohol dehydrogenase (ADH) I isoform in both Kluyveromyces lactis and Saccharomyces cerevisiae yeasts. RESULTS Analysis of LC-MSMS data showed that a large number of components, belonging to glycolysis, pentose phosphate, folding and stress response pathways, were associated with G6PDH and Adh1 putative complexes and that a number of these proteins were identical in either network in both yeasts. However, comparison of in-gel staining assays for hexokinase, phosphoglucoisomerase, acetaldehyde dehydrogenase, ADH and G6PDH showed that, despite their identification in these structures, functional localization of these activities varied according to growth conditions and to NAD(P)+/NAD(P)H redox ratio. CONCLUSIONS Reported data show that intracellular proteins are organized in large dynamic 'depots' and the NAD(P)+/NAD(P)H redox balance is one of the major factors regulating the assembly and the re-assortment of components inside the different metabolic structures. GENERAL SIGNIFICANCE The aim of this work is directed towards the comprehension of the mechanisms involved in the assembly, organization, functioning and dynamic re-assortment of cellular components according to physiological and/or pathological conditions.
Collapse
Affiliation(s)
- Angela Tramonti
- Istituto di Biologia e Patologia Molecolari, CNR-Dipartimento di Scienze Biochimiche "Rossi Fanelli", Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Michele Saliola
- Dipartimento di Biologia e Biotecnologia "C. Darwin", Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
65
|
ER stress induced by the OCH1 mutation triggers changes in lipid homeostasis in Kluyveromyces lactis. Res Microbiol 2015; 166:84-92. [PMID: 25576775 DOI: 10.1016/j.resmic.2014.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/24/2014] [Accepted: 12/29/2014] [Indexed: 11/21/2022]
Abstract
In Kluyveromyces lactis yeast, OCH1 encodes for the α-1,6-mannosyltrasferase that adds the initial α-1,6-mannose to the outer-chains of N-glycoproteins. Kloch1-1 mutant cells showed altered calcium homeostasis and endoplasmic reticulum (ER) stress. Since ER plays a major role in lipid biosynthesis and lipid droplet (LD) formation, herein the impact of Och1p depletion on lipid homeostasis was investigated. Transcriptional profiles of genes involved in biosynthesis of fatty acids, their amount and composition changed in mutant cells. An increased amount of ergosterol was determined in these cells. Enhanced transcription of genes involved in both synthesis and mobilization of LDs was also found in Kloch1-1 cells, accompanied by a reduced amount of LDs. We provide evidence that ER alterations, determined by protein misfolding as a result of reduced N-glycosylation, induced altered lipid homeostasis in Kloch1-1 cells. Chemical chaperone 4-phenyl butyrate (4-PBA) slightly alleviated the LD phenotype in cells depleted of Och1p. Remarkably, complete suppression of ER stress, via increased expression of plasma membrane calcium channel subunit Mid1, fully restored lipid homeostasis in mutant cells. To further reinforce this finding, low numbers of LDs were observed in wild type cells when ER stress was triggered by DTT treatment.
Collapse
|
66
|
Lertwattanasakul N, Kosaka T, Hosoyama A, Suzuki Y, Rodrussamee N, Matsutani M, Murata M, Fujimoto N, Tsuchikane K, Limtong S, Fujita N, Yamada M. Genetic basis of the highly efficient yeast Kluyveromyces marxianus: complete genome sequence and transcriptome analyses. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:47. [PMID: 25834639 PMCID: PMC4381506 DOI: 10.1186/s13068-015-0227-x] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 02/19/2015] [Indexed: 05/07/2023]
Abstract
BACKGROUND High-temperature fermentation technology with thermotolerant microbes has been expected to reduce the cost of bioconversion of cellulosic biomass to fuels or chemicals. Thermotolerant Kluyveromyces marxianus possesses intrinsic abilities to ferment and assimilate a wide variety of substrates including xylose and to efficiently produce proteins. These capabilities have been found to exceed those of the traditional ethanol producer Saccharomyces cerevisiae or lignocellulose-bioconvertible ethanologenic Scheffersomyces stipitis. RESULTS The complete genome sequence of K. marxianus DMKU 3-1042 as one of the most thermotolerant strains in the same species has been determined. A comparison of its genomic information with those of other yeasts and transcriptome analysis revealed that the yeast bears beneficial properties of temperature resistance, wide-range bioconversion ability, and production of recombinant proteins. The transcriptome analysis clarified distinctive metabolic pathways under three different growth conditions, static culture, high temperature, and xylose medium, in comparison to the control condition of glucose medium under a shaking condition at 30°C. Interestingly, the yeast appears to overcome the issue of reactive oxygen species, which tend to accumulate under all three conditions. CONCLUSIONS This study reveals many gene resources for the ability to assimilate various sugars in addition to species-specific genes in K. marxianus, and the molecular basis of its attractive traits for industrial applications including high-temperature fermentation. Especially, the thermotolerance trait may be achieved by an integrated mechanism consisting of various strategies. Gene resources and transcriptome data of the yeast are particularly useful for fundamental and applied researches for innovative applications.
Collapse
Affiliation(s)
- Noppon Lertwattanasakul
- />Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Ube, 755-8505 Japan
- />Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900 Thailand
| | - Tomoyuki Kosaka
- />Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515 Japan
| | - Akira Hosoyama
- />National Institute of Technology and Evaluation, Shibuya-ku, Tokyo 151-0066 Japan
| | - Yutaka Suzuki
- />Department of Medical Genome Sciences, The University of Tokyo, Chiba, 277-8562 Japan
| | - Nadchanok Rodrussamee
- />Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Ube, 755-8505 Japan
- />Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Minenosuke Matsutani
- />Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515 Japan
| | - Masayuki Murata
- />Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Ube, 755-8505 Japan
| | - Naoko Fujimoto
- />Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Ube, 755-8505 Japan
| | - Keiko Tsuchikane
- />National Institute of Technology and Evaluation, Shibuya-ku, Tokyo 151-0066 Japan
| | - Savitree Limtong
- />Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900 Thailand
| | - Nobuyuki Fujita
- />National Institute of Technology and Evaluation, Shibuya-ku, Tokyo 151-0066 Japan
| | - Mamoru Yamada
- />Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Ube, 755-8505 Japan
- />Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515 Japan
| |
Collapse
|
67
|
Glycolysis controls plasma membrane glucose sensors to promote glucose signaling in yeasts. Mol Cell Biol 2014; 35:747-57. [PMID: 25512610 DOI: 10.1128/mcb.00515-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sensing of extracellular glucose is necessary for cells to adapt to glucose variation in their environment. In the respiratory yeast Kluyveromyces lactis, extracellular glucose controls the expression of major glucose permease gene RAG1 through a cascade similar to the Saccharomyces cerevisiae Snf3/Rgt2/Rgt1 glucose signaling pathway. This regulation depends also on intracellular glucose metabolism since we previously showed that glucose induction of the RAG1 gene is abolished in glycolytic mutants. Here we show that glycolysis regulates RAG1 expression through the K. lactis Rgt1 (KlRgt1) glucose signaling pathway by targeting the localization and probably the stability of Rag4, the single Snf3/Rgt2-type glucose sensor of K. lactis. Additionally, the control exerted by glycolysis on glucose signaling seems to be conserved in S. cerevisiae. This retrocontrol might prevent yeasts from unnecessary glucose transport and intracellular glucose accumulation.
Collapse
|
68
|
Yamaoka C, Kurita O, Kubo T. Improved ethanol tolerance of Saccharomyces cerevisiae in mixed cultures with Kluyveromyces lactis on high-sugar fermentation. Microbiol Res 2014; 169:907-14. [DOI: 10.1016/j.micres.2014.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 03/29/2014] [Accepted: 04/14/2014] [Indexed: 10/25/2022]
|
69
|
Up against the wall: is yeast cell wall integrity ensured by mechanosensing in plasma membrane microdomains? Appl Environ Microbiol 2014; 81:806-11. [PMID: 25398859 DOI: 10.1128/aem.03273-14] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Yeast cell wall integrity (CWI) signaling serves as a model of the regulation of fungal cell wall synthesis and provides the basis for the development of antifungal drugs. A set of five membrane-spanning sensors (Wsc1 to Wsc3, Mid2, and Mtl1) detect cell surface stress and commence the signaling pathway upon perturbations of either the cell wall structure or the plasma membrane. We here summarize the latest advances in the structure/function relationship primarily of the Wsc1 sensor and critically review the evidence that it acts as a mechanosensor. The relevance and physiological significance of the information obtained for the function of the other CWI sensors, as well as expected future developments, are discussed.
Collapse
|
70
|
Elucidating the response of Kluyveromyces lactis to arsenite and peroxide stress and the role of the transcription factor KlYap8. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1295-306. [DOI: 10.1016/j.bbagrm.2014.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 09/01/2014] [Accepted: 09/05/2014] [Indexed: 11/24/2022]
|
71
|
González-Siso MI, Touriño A, Vizoso Á, Pereira-Rodríguez Á, Rodríguez-Belmonte E, Becerra M, Cerdán ME. Improved bioethanol production in an engineered Kluyveromyces lactis strain shifted from respiratory to fermentative metabolism by deletion of NDI1. Microb Biotechnol 2014; 8:319-30. [PMID: 25186243 PMCID: PMC4353345 DOI: 10.1111/1751-7915.12160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/10/2014] [Accepted: 07/29/2014] [Indexed: 11/30/2022] Open
Abstract
In this paper, we report the metabolic engineering of the respiratory yeast Kluyveromyces lactis by construction and characterization of a null mutant (Δklndi1) in the single gene encoding a mitochondrial alternative internal dehydrogenase. Isolated mitochondria of the Δklndi1 mutant show unaffected rate of oxidation of exogenous NADH, but no oxidation of matrix NADH; this confirms that KlNdi1p is the only internal NADH dehydrogenase in K. lactis mitochondria. Permeabilized cells of the Δklndi1 mutant do not show oxidation of matrix NADH, which suggests that shuttle systems to transfer the NADH from mitochondrial matrix to cytosol, for being oxidized by external dehydrogenases, are not functional. The Δklndi1 mutation decreases the chronological life span in absence of nutrients. The expression of KlNDI1 is increased by glutathione reductase depletion. The Δklndi1 mutation shifts the K. lactis metabolism from respiratory to fermentative: the Δklndi1 strain shows reduced respiration rate and increased ethanol production from glucose, while it does not grow in non-fermentable carbon sources such as lactate. The biotechnological benefit of the Δklndi1 mutant for bioethanol production from waste cheese whey lactose was proved.
Collapse
Affiliation(s)
- María Isabel González-Siso
- Grupo de Investigación EXPRELA, Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071-, A Coruña, Spain
| | | | | | | | | | | | | |
Collapse
|
72
|
Rippert D, Heppeler N, Albermann S, Schmitz HP, Heinisch JJ. Regulation of cytokinesis in the milk yeast Kluyveromyces lactis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2685-97. [PMID: 25110348 DOI: 10.1016/j.bbamcr.2014.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 10/24/2022]
Abstract
Cytokinesis in yeast and mammalian cells is a highly coordinated process mediated by the constriction of an actomyosin ring. In yeasts, it is accompanied by the formation of a chitinous primary septum. Although much is known about the regulation of cytokinesis in budding yeast, overlapping functions of redundant genes complicates genetic analyses. Here, we investigated the effects of various deletion mutants on cytokinesis in the milk yeast Kluyveromyces lactis. To determine the spatiotemporal parameters of cytokinesis components, live-cell imaging of fluorophor-tagged KlMyo1 and a new Lifeact probe for KlAct1 was employed. In contrast to Saccharomyces cerevisiae, where deletion of ScMYO1 is lethal, Klmyo1 deletion was temperature-sensitive. Transmission and scanning electron microscopy demonstrated that the Klmyo1 deletion cells had a defect in the formation of the primary septum and in cell separation; this result was confirmed by FACS analyses. Deletion of KlCYK3 was lethal, whereas in S. cerevisiae a cyk3 deletion is synthetically lethal with hof1 deletion. Growth of Klhof1 mutants was osmoremedial at 25°C, as it is in S. cerevisiae. CYK3 and HOF1 genes cross-complemented in both species, suggesting that they are functional homologs. Inn1, a common interactor for these two regulators, was essential in both yeasts and the encoding genes did not cross-complement. The C2 domain of the Inn1 homologs conferred species specificity. Thus, our work establishes K. lactis as a model yeast to study cytokinesis with less genetic redundancy than S. cerevisiae. The viability of Klmyo1 deletions provides an advantage over budding yeast to study actomyosin-independent cytokinesis. Moreover, the lethality of Klcyk3 null mutants suggests that there are fewer functional redundancies with KlHof1 in K. lactis.
Collapse
Affiliation(s)
- Dorthe Rippert
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, 49076 Osnabrück, Germany
| | - Nele Heppeler
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, 49076 Osnabrück, Germany
| | - Sabine Albermann
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, 49076 Osnabrück, Germany
| | - Hans-Peter Schmitz
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, 49076 Osnabrück, Germany
| | - Jürgen J Heinisch
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, 49076 Osnabrück, Germany.
| |
Collapse
|
73
|
Dias O, Pereira R, Gombert AK, Ferreira EC, Rocha I. iOD907, the first genome-scale metabolic model for the milk yeastKluyveromyces lactis. Biotechnol J 2014; 9:776-90. [DOI: 10.1002/biot.201300242] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/07/2014] [Accepted: 04/23/2014] [Indexed: 11/08/2022]
|
74
|
Fernández IS, Bai XC, Murshudov G, Scheres SHW, Ramakrishnan V. Initiation of translation by cricket paralysis virus IRES requires its translocation in the ribosome. Cell 2014; 157:823-31. [PMID: 24792965 PMCID: PMC4017093 DOI: 10.1016/j.cell.2014.04.015] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/14/2014] [Accepted: 04/11/2014] [Indexed: 01/04/2023]
Abstract
The cricket paralysis virus internal ribosome entry site (CrPV-IRES) is a folded structure in a viral mRNA that allows initiation of translation in the absence of any host initiation factors. By using recent advances in single-particle electron cryomicroscopy, we have solved the structure of CrPV-IRES bound to the ribosome of the yeast Kluyveromyces lactis in both the canonical and rotated states at overall resolutions of 3.7 and 3.8 Å, respectively. In both states, the pseudoknot PKI of the CrPV-IRES mimics a tRNA/mRNA interaction in the decoding center of the A site of the 40S ribosomal subunit. The structure and accompanying factor-binding data show that CrPV-IRES binding mimics a pretranslocation rather than initiation state of the ribosome. Translocation of the IRES by elongation factor 2 (eEF2) is required to bring the first codon of the mRNA into the A site and to allow the start of translation. The high-resolution structure of CrPV-IRES bound to the ribosome was solved by cryoEM Pseudoknot I of CrPV-IRES binds in the decoding center, thus blocking the A site CrPV-IRES mimics a pretranslocation rather than initiation complex of the ribosome Translocation of CrPV-IRES by eEF2 is required for the start of translation
Collapse
Affiliation(s)
- Israel S Fernández
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Xiao-Chen Bai
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Garib Murshudov
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Sjors H W Scheres
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - V Ramakrishnan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| |
Collapse
|
75
|
Jónás Á, Fekete E, Flipphi M, Sándor E, Jäger S, Molnár ÁP, Szentirmai A, Karaffa L. Extra- and intracellular lactose catabolism in Penicillium chrysogenum: phylogenetic and expression analysis of the putative permease and hydrolase genes. J Antibiot (Tokyo) 2014; 67:489-97. [PMID: 24690910 DOI: 10.1038/ja.2014.26] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/10/2013] [Accepted: 02/13/2014] [Indexed: 12/15/2022]
Abstract
Penicillium chrysogenum is used as an industrial producer of penicillin. We investigated its catabolism of lactose, an abundant component of whey used in penicillin fermentation, comparing the type strain NRRL 1951 with the high producing strain AS-P-78. Both strains grew similarly on lactose as the sole carbon source under batch conditions, exhibiting almost identical time profiles of sugar depletion. In silico analysis of the genome sequences revealed that P. chrysogenum features at least five putative β-galactosidase (bGal)-encoding genes at the annotated loci Pc22g14540, Pc12g11750, Pc16g12750, Pc14g01510 and Pc06g00600. The first two proteins appear to be orthologs of two Aspergillus nidulans family 2 intracellular glycosyl hydrolases expressed on lactose. The latter three P. chrysogenum proteins appear to be distinct paralogs of the extracellular bGal from A. niger, LacA, a family 35 glycosyl hydrolase. The P. chrysogenum genome also specifies two putative lactose transporter genes at the annotated loci Pc16g06850 and Pc13g08630. These are orthologs of paralogs of the gene encoding the high-affinity lactose permease (lacpA) in A. nidulans for which P. chrysogenum appears to lack the ortholog. Transcript analysis of Pc22g14540 showed that it was expressed exclusively on lactose, whereas Pc12g11750 was weakly expressed on all carbon sources tested, including D-glucose. Pc16g12750 was co-expressed with the two putative intracellular bGal genes on lactose and also responded on L-arabinose. The Pc13g08630 transcript was formed exclusively on lactose. The data strongly suggest that P. chrysogenum exhibits a dual assimilation strategy for lactose, simultaneously employing extracellular and intracellular hydrolysis, without any correlation to the penicillin-producing potential of the studied strains.
Collapse
Affiliation(s)
- Ágota Jónás
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Erzsébet Fekete
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Michel Flipphi
- 1] Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary [2] Institut de Génétique et Microbiologie, CNRS UMR 8621, Université Paris-Sud, Orsay, France
| | - Erzsébet Sándor
- Institute of Food Processing, Quality Assurance and Microbiology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Szilvia Jäger
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Ákos P Molnár
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Attila Szentirmai
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Levente Karaffa
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
76
|
Santos AM, Silveira WB, Fietto LG, Brandão RL, Castro IM. Kinetics and regulation of lactose transport and metabolism in Kluyveromyces lactis JA6. World J Microbiol Biotechnol 2014; 30:1977-83. [DOI: 10.1007/s11274-014-1620-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 01/31/2014] [Indexed: 11/29/2022]
|
77
|
Gorietti D, Zanni E, Palleschi C, Delfini M, Uccelletti D, Saliola M, Miccheli A. Depletion of casein kinase I leads to a NAD(P)(+)/NAD(P)H balance-dependent metabolic adaptation as determined by NMR spectroscopy-metabolomic profile in Kluyveromyces lactis. Biochim Biophys Acta Gen Subj 2013; 1840:556-64. [PMID: 24144565 DOI: 10.1016/j.bbagen.2013.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/25/2013] [Accepted: 10/12/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND In the Crabtree-negative Kluyveromyces lactis yeast the rag8 mutant is one of nineteen complementation groups constituting the fermentative-deficient model equivalent to the Saccharomyces cerevisiae respiratory petite mutants. These mutants display pleiotropic defects in membrane fatty acids and/or cell walls, osmo-sensitivity and the inability to grow under strictly anaerobic conditions (Rag(-) phenotype). RAG8 is an essential gene coding for the casein kinase I, an evolutionary conserved activity involved in a wide range of cellular processes coordinating morphogenesis and glycolytic flux with glucose/oxygen sensing. METHODS A metabolomic approach was performed by NMR spectroscopy to investigate how the broad physiological roles of Rag8, taken as a model for all rag mutants, coordinate cellular responses. RESULTS Statistical analysis of metabolomic data showed a significant increase in the level of metabolites in reactions directly involved in the reoxidation of the NAD(P)H in rag8 mutant samples with respect to the wild type ones. We also observed an increased de novo synthesis of nicotinamide adenine dinucleotide. On the contrary, the production of metabolites in pathways leading to the reduction of the cofactors was reduced. CONCLUSIONS The changes in metabolite levels in rag8 showed a metabolic adaptation that is determined by the intracellular NAD(P)(+)/NAD(P)H redox balance state. GENERAL SIGNIFICANCE The inadequate glycolytic flux of the mutant leads to a reduced/asymmetric distribution of acetyl-CoA to the different cellular compartments with loss of the fatty acid dynamic respiratory/fermentative adaptive balance response.
Collapse
Affiliation(s)
- D Gorietti
- Department of Chemistry, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|