51
|
Sarapata EA, de Pillis LG. A Comparison and Catalog of Intrinsic Tumor Growth Models. Bull Math Biol 2014; 76:2010-24. [DOI: 10.1007/s11538-014-9986-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 06/11/2014] [Indexed: 11/30/2022]
|
52
|
Ellis HP, Kurian KM. Biological Rationale for the Use of PPARγ Agonists in Glioblastoma. Front Oncol 2014; 4:52. [PMID: 24672773 PMCID: PMC3953711 DOI: 10.3389/fonc.2014.00052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/03/2014] [Indexed: 11/20/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary intrinsic central nervous system tumor and has an extremely poor overall survival with only 10% patients being alive after 5 years. There has been interesting preliminary evidence suggesting that diabetic patients receiving peroxisome proliferator-activated receptor gamma (PPARγ) agonists, a group of anti-diabetic, thiazolidinedione drugs, have an increased median survival for glioblastoma. Although thiazolidinediones are effective oral medications for type 2 diabetes, certain agonists carry the risk for congestive heart failure, myocardial infarction, cardiovascular disease, bone loss, weight gain, and fluid retention as side-effects. The nuclear receptor transcription factor PPARγ has been found to be expressed in high grade gliomas, and its activation has been shown to have several antineoplastic effects on human and rat glioma cell lines, and in some instances an additional protective increase in antioxidant enzymes has been observed in normal astrocytes. At present, no clinical trials are underway with regards to treating glioma patients using PPARγ agonists. This review presents the case for evaluating the potential of PPARγ agonists as novel adjuvants in the treatment of refractory high grade glioma.
Collapse
Affiliation(s)
| | - Kathreena Mary Kurian
- Brain Tumour Research Group, Institute of Clinical Neuroscience, University of Bristol , Bristol , UK
| |
Collapse
|
53
|
Cetinkalp S, Simsir IY, Sahin F, Saydam G, Ural AU, Yilmaz C. Can an oral antidiabetic (rosiglitazone) be of benefit in leukemia treatment? Saudi Pharm J 2013; 23:14-21. [PMID: 25685038 DOI: 10.1016/j.jsps.2013.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/14/2013] [Indexed: 12/22/2022] Open
Abstract
PPARs are ligand-regulated transcription factors and regulate expression of several gene products. Therefore, PPARs are being studied for their possible contribution to the treatment of cancer, atherosclerosis, inflammation, infertility and demyelinating diseases. Primary AML patients were observed to have significantly elevated PPARγ mRNA expression compared to normal peripheral blood or bone marrow mononuclear cells. This study investigated the cytotoxic effects of rosiglitazone maleate, a pure PPARγ agonist, in vitro in HL-60 cell line. This study obtained results which can provide guidance for future studies. Whether the PPARy agonist rosiglitazone maleate may provide additive effects in refractory or relapsing cases of acute leukemia may be set as an objective for the future studies.
Collapse
Affiliation(s)
- Sevki Cetinkalp
- Ege University Medical Faculty, Department of Endocrinology and Metabolism, Izmir, Turkey
| | - Ilgın Yildirim Simsir
- Ege University Medical Faculty, Department of Endocrinology and Metabolism, Izmir, Turkey
| | - Fahri Sahin
- Ege University Medical Faculty, Department of Hematology, Izmir, Turkey
| | - Guray Saydam
- Ege University Medical Faculty, Department of Hematology, Izmir, Turkey
| | - Ali Ugur Ural
- Gulhane Military Medical Academy, Department of Hematology, Ankara, Turkey
| | - Candeger Yilmaz
- Ege University Medical Faculty, Department of Endocrinology and Metabolism, Izmir, Turkey
| |
Collapse
|
54
|
An appraisal of the therapeutic value of lycopene for the chemoprevention of prostate cancer: A nutrigenomic approach. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.03.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
55
|
β-Carotene regulates expression of β-carotene 15,15′-monoxygenase in human alveolar epithelial cells. Arch Biochem Biophys 2013; 539:230-8. [DOI: 10.1016/j.abb.2013.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 09/14/2013] [Accepted: 09/16/2013] [Indexed: 01/28/2023]
|
56
|
Gu C, Gonzalez J, Zhang T, Kamel-Reid S, Wells RA. The aryl hydrocarbon receptor nuclear translocator (ARNT) modulates the antioxidant response in AML cells. Leuk Res 2013; 37:1750-6. [PMID: 24220583 DOI: 10.1016/j.leukres.2013.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/11/2013] [Accepted: 10/12/2013] [Indexed: 10/26/2022]
Abstract
We observed AML cell lines vary in their sensitivity to induction of apoptosis by troglitazone (TG), which induces apoptosis through the generation of intracellular reactive oxygen species (ROS). TG-resistant cell lines had increased abundance of ARNT transcripts and protein. Expression of ARNT in TG-sensitive cells made these cells resistant to both TG and daunorubicin. ARNT-expressing cells had increased expression of SOD2 and Nrf2 transcripts and elevated intracellular GSH concentration. Our results indicate that ARNT expression in AML cells augments antioxidant response and confers resistance to ROS inducers. This suggests ARNT may modulate ROS signaling and drug response in AML.
Collapse
Affiliation(s)
- Chunhong Gu
- The J. Douglas Crashley MDS Research Laboratory, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | | | | | | | | |
Collapse
|
57
|
Imchen T, Manasse J, Min KW, Baek SJ. Characterization of PPAR dual ligand MCC-555 in AOM-induced colorectal tumorigenesis. ACTA ACUST UNITED AC 2013; 65:919-24. [PMID: 23369238 DOI: 10.1016/j.etp.2013.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 12/03/2012] [Accepted: 01/04/2013] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers. Peroxisome proliferator-activated receptor γ (PPARγ) agonists represent a potentially important family of chemopreventive/therapeutic compounds for cancer treatment by affecting cell proliferation, differentiation, and apoptosis. Dual ligands for PPARα and PPARγ, such as netoglitazone (MCC-555), have been developed to improve treatment of metabolic syndromes, including hyperglycemia and hyperlipidemia. Interestingly, these dual ligands also possess anti-proliferative activities against a variety of cancer cell lines with a greater potency than conventional PPARγ specific ligands. In this study, chemopreventive properties of MCC-555 in colorectal tumorigenesis were evaluated using azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) in A/J mice. We found that MCC-555 suppressed AOM-induced ACF in A/J mice, compared to the control group. Administration of MCC-555 resulted in decreased mitoses and increased apoptotic cells in the colon. Furthermore, expression of tumor suppressor protein MUC2 was increased in MCC-555 treated mice. Our data clearly suggest that MCC-555 has an effect on the early events of colon carcinogenesis, thus providing evidence that MCC-555 could be a potential preventive compound for CRC.
Collapse
Affiliation(s)
- Temjenmongla Imchen
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA
| | | | | | | |
Collapse
|
58
|
PPAR Could Contribute to the Pathogenesis of Hepatocellular Carcinoma. PPAR Res 2012; 2012:574180. [PMID: 23316217 PMCID: PMC3533465 DOI: 10.1155/2012/574180] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/07/2012] [Accepted: 11/16/2012] [Indexed: 02/07/2023] Open
Abstract
Viral hepatitis with hepatitis C virus or hepatitis B virus and chronic liver disease such as alcoholic or nonalcoholic steatohepatitis are critical factors in the development of hepatocellular carcinoma (HCC). Furthermore, diabetes is known as an independent risk factor for HCC. Peroxisome proliferator-activated receptor (PPAR) is known to have an important role in fatty liver, and the mechanism of carcinogenesis has been clarified. PPAR controls ligand-dependent transcription, and three subtypes (α, δ, and γ) in humans are known. PPARs could contribute to the mechanisms of cell cycling, anti-inflammatory responses, and apoptosis. Therefore, to clarify the pathogenesis of HCC, we should examine PPAR signaling. In this paper, we have summarized the relevance of PPARs to the pathogenesis of HCC and cancer stem cells and possible therapeutic options through modifying PPAR signaling.
Collapse
|
59
|
Tumor apoptosis in prostate cancer by PGD(2) and its metabolite 15d-PGJ(2) in murine model. Biomed Pharmacother 2012. [PMID: 23206752 DOI: 10.1016/j.biopha.2012.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fifteen-deoxy-Δ(12,14)-PGJ(2) (15d-PGJ(2)) is one of non-enzymatically converted metabolite from prostaglandin D(2) (PGD(2)). Anti-tumor effects of 15d-PGJ(2) in various tumors are partially known, but the detail of in vivo mechanisms of action is still unclear. In this study, we investigated the effects of 15d-PGJ(2) and PGD(2) on murine prostate cancer in vitro and in vivo. Murine prostate cancer cells RM9 were transfected with murine prostaglandin D(2) synthase (mPGDS) gene by using defective retrovirus vector, designated as RM9-mPGDS. In addition, RM9 was also transfected with only defective retrovirus vector, designated as RM9-EV and used as control in this study. The expression and production of the gene were confirmed by RT-PCR and ELISA, respectively. For in vivo study, RM9-mPGDS was injected into the back of C57BL/6 mice, then resulted tumor was used for pathological analysis 14days after the inoculation. Tumor cell apoptosis in the tissue was detected by TUNEL staining. Retrovirally transfected mPGDS in RM9 significantly induced apoptosis in vivo but not in vitro, by TUNEL staining and cell death ELISA, respectively. Our results strongly suggested that the apoptosis induced in RM9-mPGDS in vivo was probably achieved in tumor environment such as hypoxic condition. The introduction of PGDS gene into cancer cells might be a novel therapy against cancer.
Collapse
|
60
|
Wu CW, Farrell GC, Yu J. Functional role of peroxisome-proliferator-activated receptor γ in hepatocellular carcinoma. J Gastroenterol Hepatol 2012; 27:1665-9. [PMID: 22742931 DOI: 10.1111/j.1440-1746.2012.07213.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Major risk factors of HCC include infection with hepatitis B or C viruses, alcohol and non-alcoholic fatty liver disease. HCC is difficult to diagnose at early stage, and has a very poor survival rate when diagnosed at a late stage. The majority of HCC-related deaths result from local invasion (to cause liver failure) or distant metastases. There is an urgent need to identify effective molecular targets for the treatment of the disease. As the target of an established class of therapeutic agent thiazolidinediones (TZDs), peroxisome-proliferator-activated receptor γ (PPARγ) has been widely studied for its role in the development of HCC. A substantial body of evidence based on in vitro and in vivo models indicates that the activation of PPARγ is able to inhibit HCC cell proliferation and tumor growth through inducing cell cycle arrest and apoptosis via the regulation of a panel of downstream effector molecules. PPARγ activation also induces an inhibitory effect on HCC metastasis. Meanwhile, there is new evidence suggesting that PPARγ inhibition could also be anti-tumorigenic. In the present review, we summarize the available information on the role of PPARγ in HCC development and spread, and discuss whether PPARγ activation by TZDs could play a role in the treatment of HCC, summarizing both in vitro and in vivo. Considering the available data, PPARγ seems to exert beneficial effects against HCC and may therefore represent as a therapeutic target.
Collapse
Affiliation(s)
- Chung-Wah Wu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong
| | | | | |
Collapse
|
61
|
Penna F, Pin F, Costamagna D, Reffo P, Baccino FM, Bonelli G, Costelli P. Caspase 2 activation and ER stress drive rapid Jurkat cell apoptosis by clofibrate. PLoS One 2012; 7:e45327. [PMID: 23028936 PMCID: PMC3445471 DOI: 10.1371/journal.pone.0045327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 08/20/2012] [Indexed: 01/10/2023] Open
Abstract
Differently from the antiapoptotic action most commonly assigned to peroxisome proliferators (PPs), we demonstrated that some of them, clofibrate (CF) in particular, display clearcut apoptogenic properties on rat hepatoma cell lines. We and others could confirm that CF as well as various other PPs can induce apoptosis in a variety of cells, including human liver, breast and lung cancer cell lines. The present study was aimed at investigating the cytotoxic action of CF on a neoplastic line of different origin, the human T leukemia Jurkat cells. We observed that CF rapidly triggers an extensive and morphologically typical apoptotic process on Jurkat cells, though not in primary T cells, which is completely prevented by the polycaspase inhibitor zVADfmk. Gene silencing studies demonstrated that CF-induced apoptosis in Jurkat cells is partially dependent on activation of caspase 2. Looking for a possible trigger of caspase 2 activation, we observed increased levels of phosphorylated eIF2α and JNK in CF-treated cells. Moreover, intracellular Ca(2+) homeostasis was perturbed. Together, these findings are suggestive for the occurrence of ER stress, an event that is known to have the potential to activate caspase 2. The present observations demonstrate that CF induces in Jurkat cells a very fast and extensive apoptosis, that involves induction of ER stress and activation of caspases 2 and 3. Since apoptosis in Jurkat cells occurs at pharmacologically relevant concentrations of CF, the present findings encourage further in depth analysis in order to work out the potential implications of CF cytotoxcity on leukemic cells.
Collapse
Affiliation(s)
- Fabio Penna
- Department of Experimental Medicine and Oncology, University of Torino, Torino, Italy
| | - Fabrizio Pin
- Department of Experimental Medicine and Oncology, University of Torino, Torino, Italy
| | - Domiziana Costamagna
- Department of Experimental Medicine and Oncology, University of Torino, Torino, Italy
| | - Patrizia Reffo
- Department of Experimental Medicine and Oncology, University of Torino, Torino, Italy
| | | | - Gabriella Bonelli
- Department of Experimental Medicine and Oncology, University of Torino, Torino, Italy
| | - Paola Costelli
- Department of Experimental Medicine and Oncology, University of Torino, Torino, Italy
| |
Collapse
|
62
|
Yang CM, Lu YL, Chen HY, Hu ML. Lycopene and the LXRα agonist T0901317 synergistically inhibit the proliferation of androgen-independent prostate cancer cells via the PPARγ-LXRα-ABCA1 pathway. J Nutr Biochem 2012; 23:1155-62. [DOI: 10.1016/j.jnutbio.2011.06.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 06/15/2011] [Accepted: 06/24/2011] [Indexed: 11/26/2022]
|
63
|
Susaki Y, Inoue M, Minami M, Sawabata N, Shintani Y, Nakagiri T, Funaki S, Aozasa K, Okumura M, Morii E. Inhibitory effect of PPARγ on NR0B1 in tumorigenesis of lung adenocarcinoma. Int J Oncol 2012; 41:1278-84. [PMID: 22843091 DOI: 10.3892/ijo.2012.1571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 05/18/2012] [Indexed: 11/05/2022] Open
Abstract
NR0B1, an orphan nuclear receptor, is expressed in side population cells and its knockdown reduces tumorigenic and anti-apoptotic potential in lung adenocarcinoma. Peroxisome proliferator-activated receptor γ (PPARγ) is another member of the nuclear receptor family which induces apoptosis in lung cancer. The interaction of NR0B1 with PPARγ was examined. The transactivation ability of PPARγ was inhibited by NR0B1 in lung adenocarcinoma, and the N-terminal region of NR0B1 containing LxxLL motifs mediated its inhibition. Co-immunoprecipitation experiments revealed that this N-terminal region of NR0B1 was essential for the physical interaction with PPARγ. Aldehyde dehydrogenase (ALDH) activity and ALDH3A1 expression, which are correlated with tumorigenic potential of lung adenocarcinoma, increased when NR0B1 expression was induced, but its increase was inhibited by PPARγ overexpression. ALDH activity increased by treatment with PPARγ inhibitor, and the increase was further enhanced when the expression of NR0B1 was induced. Furthermore, the high NR0B1 and low PPARγ expression was a negative prognostic factor in Pathological-Stage IA clinical cases. These results indicate the reciprocal relationship between NR0B1 and PPARγ on the malignant grade of lung adenocarcinoma.
Collapse
Affiliation(s)
- Yoshiyuki Susaki
- Department of Pathology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
PPARG Epigenetic Deregulation and Its Role in Colorectal Tumorigenesis. PPAR Res 2012; 2012:687492. [PMID: 22848209 PMCID: PMC3405724 DOI: 10.1155/2012/687492] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/21/2012] [Indexed: 12/12/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) plays critical roles in lipid storage, glucose metabolism, energy homeostasis, adipocyte differentiation, inflammation, and cancer. Its function in colon carcinogenesis has largely been debated; accumulating evidence, however, supports a role as tumor suppressor through modulation of crucial pathways in cell differentiation, apoptosis, and metastatic dissemination. Epigenetics adds a further layer of complexity to gene regulation in several biological processes. In cancer, the relationship with epigenetic modifications has provided important insights into the underlying molecular mechanisms. These studies have highlighted how epigenetic modifications influence PPARG gene expression in colorectal tumorigenesis. In this paper, we take a comprehensive look at the current understanding of the relationship between PPARγ and cancer development. The role that epigenetic mechanisms play is also addressed disclosing novel crosstalks between PPARG signaling and the epigenetic machinery and suggesting how this dysregulation may contribute to colon cancer development.
Collapse
|
65
|
Rosiglitazone suppresses glioma cell growth and cell cycle by blocking the transforming growth factor-beta mediated pathway. Neurochem Res 2012; 37:2076-84. [PMID: 22707243 DOI: 10.1007/s11064-012-0828-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 05/10/2012] [Accepted: 06/08/2012] [Indexed: 12/25/2022]
Abstract
Glioma is one of the most malignant tumors in the central nervous system. As a peroxisome proliferator-activated receptor γ (PPAR-γ) activator, the thiazolidinediones (TZDs) induce growth arrest and cell death in a broad spectrum of tumor cells. In this study, we investigated the role of rosiglitazone in glioma cells. We found that rosiglitazone, a member of TZDs, suppresses growth of human glioma cell lines U87 and U251. Rosiglitazone also induces cell cycle arrest and apoptosis, which may be the mechanism of its anti-proliferation effect. Next, we found that rosiglitazone suppresses the expression of TGF-beta and its receptor TGF-betaR2, and suppresses phosphorylation of Smad3. Rosiglitazone also inhibits formation of the Smad3/Smad4 complex. Furthermore, Rosiglitazone affects the expression of Smad3/Smad4 associated regulators of gene expression, including p21 and c-Myc. These results suggest that rosiglitazone suppresses growth and cell cycle of human glioma cells by blocking the TGF-beta mediated pathway.
Collapse
|
66
|
Giaginis C, Politi E, Alexandrou P, Sfiniadakis J, Kouraklis G, Theocharis S. Expression of peroxisome proliferator activated receptor-gamma (PPAR-γ) in human non-small cell lung carcinoma: correlation with clinicopathological parameters, proliferation and apoptosis related molecules and patients' survival. Pathol Oncol Res 2012; 18:875-83. [PMID: 22426809 DOI: 10.1007/s12253-012-9517-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 03/06/2012] [Indexed: 01/02/2023]
Abstract
Peroxisome proliferator-activated receptor-γ (PPAR-γ) has currently been considered as molecular target for the treatment of human metabolic disorders. PPAR-γ has also been implicated in the pathogenesis and progression of several types of cancer, being associated with cell differentiation, growth and apoptosis. The present study aimed to evaluate the clinical significance of PPAR-γ expression in non-small cell lung carcinoma (NSCLC). PPAR-γ protein expression was assessed immunohistochemically in tumoral samples of 67 NSCLC patients and was statistically analyzed in relation to clinicopathological parameters, proliferation and apoptosis related molecules and patients' survival. Positive PPAR-γ expression was prominent in 30 (45 %) out of 67 NSCLC cases. PPAR-γ positivity was more frequently observed in squamous cell lung carcinoma cases compared to lung adenocarcinoma ones (p = 0.048). PPAR-γ positivity was significantly associated with bcl-2 positivity (p = 0.016) and borderline with c-myc positivity (p = 0.052), whereas non associations with grade of differentiation, TNM stage, Ki-67, p53, bax proteins' expression and patients' survival were noted. In the subgroup of squamous cell lung carcinoma cases, PPAR-γ positivity was significantly associated with tumor size (p = 0.038), while in lung adenocarcinoma ones with histopathological grade of differentiation (p = 0.026). The present study supported evidence for possible participation of PPAR-γ in the biological mechanisms underlying the carcinogenic evolution of the lung. Although the survival prediction using PPAR-γ expression as a marker seems uncertain, the observed correlation with apoptosis related proteins reinforces the potential utility of PPAR-γ ligands as cell cycle modulators in future therapeutic approaches in lung cancer.
Collapse
Affiliation(s)
- Costantinos Giaginis
- Department of Forensic Medicine and Toxicology, Medical School, University of Athens, 75 Mikras Asias Street, Athens, 11527, Greece.
| | | | | | | | | | | |
Collapse
|
67
|
Youssef J, Badr M. Peroxisome proliferator-activated receptors and cancer: challenges and opportunities. Br J Pharmacol 2012; 164:68-82. [PMID: 21449912 DOI: 10.1111/j.1476-5381.2011.01383.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs), members of the nuclear hormone receptor superfamily, function as transcription factors and modulators of gene expression. These actions allow PPARs to regulate a variety of biological processes and to play a significant role in several diseases and conditions. The current literature describes frequently opposing and paradoxical roles for the three PPAR isotypes, PPARα, PPARβ/δ and PPARγ, in cancer. While some studies have implicated PPARs in the promotion and development of cancer, others, in contrast, have presented evidence for a protective role for these receptors against cancer. In some tissues, the expression level of these receptors and/or their activation correlates with a positive outcome against cancer, while, in other tissue types, their expression and activation have the opposite effect. These disparate findings raise the possibility of (i) PPAR receptor-independent effects, including effects on receptors other than PPARs by the utilized ligands; (ii) cancer stage-specific effect; and/or (iii) differences in essential ligand-related pharmacokinetic considerations. In this review, we highlight the latest available studies on the role of the various PPAR isotypes in cancer in several major organs and present challenges as well as promising opportunities in the field.
Collapse
Affiliation(s)
- Jihan Youssef
- University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | | |
Collapse
|
68
|
Wang P, Zhu F, Konstantopoulos K. Interleukin-6 synthesis in human chondrocytes is regulated via the antagonistic actions of prostaglandin (PG)E2 and 15-deoxy-Δ(12,14)-PGJ2. PLoS One 2011; 6:e27630. [PMID: 22096605 PMCID: PMC3214064 DOI: 10.1371/journal.pone.0027630] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 10/20/2011] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Elevated levels of interleukin-6 (IL-6), prostaglandin (PG)E(2), PGD(2) and its dehydration end product 15-deoxy-Δ(12,14)-PGJ(2) (15d-PGJ(2)) have been detected in joint synovial fluids from patients with rheumatoid arthritis (RA). PGE(2) directly stimulates IL-6 production in human articular chondrocytes. However, the effects of PGD(2) and 15d-PGJ(2) in the absence or presence of PGE(2) on IL-6 synthesis in human chondrocytes have yet to be determined. It is believed that dysregulated overproduction of IL-6 is responsible for the systemic inflammatory manifestations and abnormal laboratory findings in RA patients. METHODOLOGY/PRINCIPAL FINDINGS Using the T/C-28a2 chondrocyte cell line as a model system, we report that exogenous PGE(2) and PGD(2)/15d-PGJ(2) exert antagonistic effects on IL-6 synthesis in human T/C-28a2 chondrocytes. Using a synthesis of sophisticated molecular biology techniques, we determined that PGE(2) stimulates Toll-like receptor 4 (TLR4) synthesis, which is in turn responsible for the activation of the ERK1/2, PI3K/Akt and PKA/CREB pathways that phosphorylate the NF-κB p65 subunit leading to NF-κB activation. Binding of the activated NF-κB p65 subunit to IL-6 promoter induces IL-6 synthesis in human T/C28a2 chondrocytes. PGD(2) or 15d-PGJ(2) concurrently downregulates TLR4 and upregulates caveolin-1, which in turn inhibit the PGE(2)-dependent ERK1/2, PI3-K and PKA activation, and ultimately with NF-κB-dependent IL-6 synthesis in chondrocytes. CONCLUSIONS/SIGNIFICANCE We have delineated the signaling cascade by which PGE(2) and PGD(2)/15d-PGJ(2) exert opposing effects on IL-6 synthesis in human chondrocytes. Elucidation of the molecular pathway of IL-6 synthesis and secretion by chondrocytes will provide insights for developing strategies to reduce inflammation and pain in RA patients.
Collapse
Affiliation(s)
- Pu Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Fei Zhu
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Johns Hopkins Physical Sciences in Oncology Center and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
69
|
Tanaka T, Hosokawa M, Yasui Y, Ishigamori R, Miyashita K. Cancer chemopreventive ability of conjugated linolenic acids. Int J Mol Sci 2011; 12:7495-509. [PMID: 22174613 PMCID: PMC3233419 DOI: 10.3390/ijms12117495] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 10/12/2011] [Accepted: 10/25/2011] [Indexed: 12/17/2022] Open
Abstract
Conjugated fatty acids (CFA) have received increased interest because of their beneficial effects on human health, including preventing cancer development. Conjugated linoleic acids (CLA) are such CFA, and have been reviewed extensively for their multiple biological activities. In contrast to other types of CFAs including CLA that are found at low concentrations (less than 1%) in natural products, conjugated linolenic acids (CLN) are the only CFAs that occur in higher quantities in natural products. Some plant seeds contain a considerably high concentration of CLN (30 to 70 wt% lipid). Our research group has screened CLN from different plant seed oils to determine their cancer chemopreventive ability. This review describes the physiological functions of CLN isomers that occur in certain plant seeds. CLN are able to induce apoptosis through decrease of Bcl-2 protein in certain human cancer cell lines, increase expression of peroxisome proliferator-activated receptor (PPAR)-γ, and up-regulate gene expression of p53. Findings in our preclinical animal studies have indicated that feeding with CLN resulted in inhibition of colorectal tumorigenesis through modulation of apoptosis and expression of PPARγ and p53. In this review, we summarize chemopreventive efficacy of CLN against cancer development, especially colorectal cancer.
Collapse
Affiliation(s)
- Takuji Tanaka
- The Tohkai Cytopathology Institute: Cancer Research and Prevention (TCI-CaRP), 5-1-2 Minami-uzura, Gifu 500-8285, Japan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-58-273-4399; Fax: +81-58-273-4392
| | - Masashi Hosokawa
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan; E-Mail:
| | - Yumiko Yasui
- School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan; E-Mail:
| | - Rikako Ishigamori
- Division of Cancer Development System, Carcinogenesis Research Group, National Cancer Research Institute, Chuo-ku, Tokyo 104-0045, Japan; E-Mail:
| | - Kazuo Miyashita
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan; E-Mail:
| |
Collapse
|
70
|
Garzón B, Oeste CL, Díez-Dacal B, Pérez-Sala D. Proteomic studies on protein modification by cyclopentenone prostaglandins: Expanding our view on electrophile actions. J Proteomics 2011; 74:2243-63. [DOI: 10.1016/j.jprot.2011.03.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/04/2011] [Accepted: 03/24/2011] [Indexed: 01/11/2023]
|
71
|
Induction of apoptosis in non-small cell lung carcinoma A549 cells by PGD2metabolite, 15d-PGJ2. Cell Biol Int 2011. [DOI: 10.1042/cbi20100707] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
72
|
PPARgamma: The Portrait of a Target Ally to Cancer Chemopreventive Agents. PPAR Res 2011; 2008:436489. [PMID: 18779870 PMCID: PMC2528242 DOI: 10.1155/2008/436489] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 05/22/2008] [Accepted: 07/16/2008] [Indexed: 12/13/2022] Open
Abstract
Peroxisome proliferator-activated receptor-gamma (PPARγ), one of three ligand-activated transcription factors named PPAR, has been identified as a molecular target for cancer chemopreventive agents. PPARγ was initially understood as a regulator of adipocyte differentiation and glucose homeostasis while later on, it became evident that it is also involved in cell differentiation, apoptosis, and angiogenesis, biological processes which are deregulated in cancer. It is now established that PPARγ ligands can induce cell differentiation and yield early antineoplastic effects in several tumor types. Moreover, several bioactive natural products with cancer protecting potential are shown to operate through activation of PPARγ. Overall, PPARγ appears to be a prevalent target ally to cancer chemopreventive agents and therefore pursuing research in this area is of great relevance.
Collapse
|
73
|
Abstract
Peroxisome proliferators-activated receptors (PPARs) that are members of the nuclear receptor superfamily have three different isoforms: PPARalpha, PPARdelta, and PPARgamma. PPARs are ligand-activated transcription factors, and they are implicated in tumor progression, differentiation, and apoptosis. Activation of PPAR isoforms lead to both anticarcinogenesis and anti-inflammatory effect. It has so far identified many PPAR ligands including chemical composition and natural occurring. PPAR ligands are reported to activate PPAR signaling and exert cancer prevention and treatment in vitro and/or in vivo studies. Although the effects depend on the isoforms and the types of ligands, biological modulatory activities of PPARs in carcinogenesis and disease progression are attracted for control or combat cancer development. This short review summarizes currently available data on the role of PPAR ligands in carcinogenesis.
Collapse
|
74
|
Peroxisome Proliferator-Activated Receptor-gamma Is a Potent Target for Prevention and Treatment in Human Prostate and Testicular Cancer. PPAR Res 2011; 2008:249849. [PMID: 18317513 PMCID: PMC2248699 DOI: 10.1155/2008/249849] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 08/13/2007] [Accepted: 10/06/2007] [Indexed: 12/02/2022] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPAR)-γ is a ligand-activated transcriptional factor belonging to steroid receptor superfamily. PPAR-γ plays a role in both adipocyte differentiation and tumorigenesis. Up to date, PPAR-γ is expressed in various cancer tissues, and PPAR-γ ligand induces growth arrest of these cancer cells. In this study, we examined the expression of PPAR-γ in prostate cancer (PC) and testicular cancer (TC) by RT-PCR and immunohistochemistry, and we also examined the effect of PPAR-γ ligand in these cells by MTT assay, hoechest staining, and flow cytometry. PPAR-γ expression was significantly more extensive and intense in malignant tissues than in normal tissues. PPAR-γ ligand induced the reduction of malignant cell viability through apoptosis. These results demonstrated that the generated PPAR-γ in PC and TC cells might play an important role in the tumorigenesis. PPAR-γ may become a new target in the treatment of PC and TC.
Collapse
|
75
|
The Critical Role of PPARgamma in Human Malignant Melanoma. PPAR Res 2011; 2008:503797. [PMID: 18483619 PMCID: PMC2377344 DOI: 10.1155/2008/503797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 04/21/2008] [Indexed: 11/18/2022] Open
Abstract
The past 30 years have only seen slight improvement in melanoma therapy. Despite a wide variety of therapeutic options, current survival for patients with metastatic disease is only 6-8 months. Part of the reason for this treatment failure is the broad chemoresistance of melanoma, which is due to an altered survival capacity and an inactivation of apoptotic pathways. Several targetable pathways, responsible for this survival/apoptosis resistance in melanoma, have been described and current research has focused on mechanism inactivating these pathways. As PPARgamma was shown to be constitutively active in several tumour entities and PPARgamma agonists extent strong anticancer effects, the role of PPARgamma as a possible target for specific anticancer strategy was investigated in numerous studies. However, only a few studies have focused on the effects of PPARgamma agonists in melanoma, showing conflicting results. The use of PPARgamma agonists in melanoma therapy has to be carefully weighted against considerable, undesirable side effects, as their mode of action is not fully understood and even pro-proliferative effects have been described. In the current review, we discuss the role of PPARs, in particular PPARgamma in melanoma and their potential role as a molecular target for melanoma therapy.
Collapse
|
76
|
PPARgamma and Apoptosis in Cancer. PPAR Res 2011; 2008:704165. [PMID: 18615184 PMCID: PMC2442903 DOI: 10.1155/2008/704165] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 04/21/2008] [Accepted: 06/11/2008] [Indexed: 12/22/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand binding transcription factors which function in many physiological roles including lipid metabolism, cell growth, differentiation, and apoptosis. PPARs and their ligands have been shown to play a role in cancer. In particular, PPARγ ligands including endogenous prostaglandins and the synthetic thiazolidinediones (TZDs) can induce apoptosis of cancer cells with antitumor activity. Thus, PPARγ ligands have a potential in both chemoprevention and therapy of several types of cancer either as single agents or in combination with other antitumor agents. Accordingly, the involvement of PPARγ and its ligands in regulation of apoptosis of cancer cells have been extensively studied. Depending on cell types or ligands, induction of apoptosis in cancer cells by PPARγ ligands can be either PPARγ-dependent or -independent. Through increasing our understanding of the mechanisms of PPARγ ligand-induced apoptosis, we can develop better strategies which may include combining other antitumor agents for PPARγ-targeted cancer chemoprevention and therapy. This review will highlight recent research advances on PPARγ and apoptosis in cancer.
Collapse
|
77
|
Matsuyama M, Yoshimura R. The target of arachidonic acid pathway is a new anticancer strategy for human prostate cancer. Biologics 2011; 2:725-32. [PMID: 19707453 PMCID: PMC2727910 DOI: 10.2147/btt.s3151] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recent epidemiological studies and animal experiments have demonstrated that nonsteroidal anti-inflammatory drugs (NSAIDs) reduce the incidence of colorectal carcinoma. Cyclooxygenase (COX) is the principal target of NSAIDs. COX is the first oxidase in the process of prostaglandin production from arachidonic acid. COX enzyme may be involved in the initiation and/or the promotion of carcinogenesis due to NSAIDs inhibition of COX. Lipoxygenase (LOX) is also an initial enzyme in the pathway for producing leukotrienes from arachidonic acid. Similar to COX, LOX enzyme may also be involved in the initiation and/or promotion of carcinogenesis. Peroxisome proliferator activator-receptor (PPAR)-γ is a ligand-activated transcriptional factor belonging to the steroid receptor superfamily. PPAR-γ plays a role in both adipocyte differentiation and carcinogenesis. PPAR-γ is one target for cell growth modulation of NSAIDs. In this review, we report the expression of COX-2, LOX and PPAR-γ in human prostate cancer tissues as well as the effects of COX-2 and LOX inhibitors and PPAR-γ ligand.
Collapse
Affiliation(s)
- Masahide Matsuyama
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | | |
Collapse
|
78
|
PPAR-gamma Thiazolidinedione Agonists and Immunotherapy in the Treatment of Brain Tumors. PPAR Res 2011; 2008:547470. [PMID: 18509487 PMCID: PMC2396217 DOI: 10.1155/2008/547470] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 04/19/2008] [Indexed: 01/28/2023] Open
Abstract
Thiazolidinediones (TZDs) are selective agonists of the peroxisome proliferator-activated receptor (PPAR) gamma, a transcription factor belonging to the superfamily of nuclear hormone receptors. Although activation of PPARγ by TZDs has been best characterized by its ability to regulate expression of genes associated with lipid metabolism, PPARγ agonists have other physiological effects including modulating pro- and anti-inflammatory gene expression and inducing apoptosis in several cell types including glioma cells and cell lines. Immunotherapeutic approaches to reducing brain tumors are focused on means to reduce the immunosuppressive responses of tumors which dampen the ability of cytotoxic T-lymphocytes to kill tumors. Initial studies from our lab show that combination of an immunotherapeutic strategy with TZD treatment provides synergistic benefit in animals with implanted tumors. The potential of this combined approach for treatment of brain tumors is reviewed in this report.
Collapse
|
79
|
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that belong to the nuclear hormone receptor superfamily. PPARalpha is mainly expressed in the liver, where it activates fatty acid catabolism. PPARalpha activators have been used to treat dyslipidemia, causing a reduction in plasma triglyceride and elevation of high-density lipoprotein cholesterol. PPARdelta is expressed ubiquitously and is implicated in fatty acid oxidation and keratinocyte differentiation. PPARdelta activators have been proposed for the treatment of metabolic disease. PPARgamma2 is expressed exclusively in adipose tissue and plays a pivotal role in adipocyte differentiation. PPARgamma is involved in glucose metabolism through the improvement of insulin sensitivity and represents a potential therapeutic target of type 2 diabetes. Thus PPARs are molecular targets for the development of drugs treating metabolic syndrome. However, PPARs also play a role in the regulation of cancer cell growth. Here, we review the function of PPARs in tumor growth.
Collapse
|
80
|
Bloch O, Sughrue ME, Mills SA, Parsa AT. Signaling pathways in cranial chondrosarcoma: potential molecular targets for directed chemotherapy. J Clin Neurosci 2011; 18:881-5. [DOI: 10.1016/j.jocn.2010.09.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 09/08/2010] [Accepted: 09/10/2010] [Indexed: 12/31/2022]
|
81
|
Freudlsperger C, Dahl A, Hoffmann J, Reinert S, Schumacher U. Mistletoe lectin-I augments antiproliferative effects of the PPARgamma agonist rosiglitazone on human malignant melanoma cells. Phytother Res 2011; 24:1354-8. [PMID: 20812278 DOI: 10.1002/ptr.3122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
As malignant melanoma cells are highly resistant to conventional chemotherapy, survival rates after tumor spread remain poor and hence there is an urgent need for new therapeutic options. For both mistletoe lectin-I (ML-I) and the thiazolidinediones as synthetic ligands of the peroxisome proliferator-activated receptor gamma (PPARgamma) an antiproliferative effect on malignant melanoma cells has previously been shown. Hence, the aim of this study was to investigate whether the combination of ML-I and the PPARgamma ligand rosiglitazone is more efficacious in the treatment of malignant melanoma cells than either agent alone. Proliferation of three human melanoma cell lines treated with ML-I, rosiglitazone and the combination of both was measured in a broad concentration range (0.0001-100 microg/mL) using the XTT cell proliferation assay. Combined application tremendously increased the antiproliferative effect on all three melanoma cell lines compared with single agent treatment. In comparison with the single use of rosiglitazone, the combination with ML-I significantly increased the inhibition of cell growth by 51-79% and in comparison with the single use of ML-I by 9-32%, respectively. In conclusion, this study shows that the combination of ML-I with rosiglitazone significantly augments their antiproliferative effect on malignant melanoma cells in comparison with their single agent application, which might be a promising tool for further therapeutic studies.
Collapse
Affiliation(s)
- Christian Freudlsperger
- Institute of Anatomy II, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | | | | | | | | |
Collapse
|
82
|
Zheng ZH, Yang Y, Lu XH, Zhang H, Shui XX, Liu C, He XB, Jiang Q, Zhao BH, Si SY. Mycophenolic acid induces adipocyte-like differentiation and reversal of malignancy of breast cancer cells partly through PPARγ. Eur J Pharmacol 2011; 658:1-8. [PMID: 21349264 DOI: 10.1016/j.ejphar.2011.01.068] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 11/27/2010] [Accepted: 01/27/2011] [Indexed: 12/15/2022]
Abstract
Mycophenolic acid (MPA) has been known for decades to be an anticancer and immunosuppressive agent and has significant anticancer properties, but its underlying molecular mechanisms are poorly characterized. Peroxisome proliferator-activated receptor gamma (PPARγ) has a central role in adipocyte differentiation, and MPA has been shown to be a potent PPARγ agonist. Whether PPARγ activation has a putative role in the anticancer efficacy of MPA via induction of adipocyte-like differentiation has not been elucidated. In the present study, MPA was demonstrated to dose-dependently activate PPARγ transcription in the GAL4-hPPARγ (LBD) chimeric receptor assay and PPRE-luc reporter gene assay with an EC(50) of 5.2-9.3 μM. Treatment of the breast cancer cell lines MDA-MB-231 and MCF-7 with MPA resulted in differentiation of adipose tissue that was characterized by accumulation of intracellular lipids, enlargement of cell volume, and permanent withdrawal from the cell cycle at the G1/G0 stage. At a molecular level, the expression of three adipocyte differentiation markers (PPARγ, adipsin D, and aP2) was remarkably induced in differentiated breast cancer cells. However, RNA interference experiments showed that PPARγ-knockdown cannot completely reverse the differentiated state of MDA-MB-231 cells after MPA treatment. These data suggest that the effects of MPA on adipocyte-like terminal differentiation of breast cancer cells are (at least in part) due to PPARγ activation, which is a novel anticancer mechanism of MPA.
Collapse
Affiliation(s)
- Zhi-Hui Zheng
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Yang CM, Lu IH, Chen HY, Hu ML. Lycopene inhibits the proliferation of androgen-dependent human prostate tumor cells through activation of PPARγ-LXRα-ABCA1 pathway. J Nutr Biochem 2011; 23:8-17. [PMID: 21334870 DOI: 10.1016/j.jnutbio.2010.10.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 09/24/2010] [Accepted: 10/11/2010] [Indexed: 11/29/2022]
Abstract
The activation of nuclear receptors, peroxisome proliferator-activated receptor gamma (PPARγ) and liver X receptor alpha (LXRα), has been shown to inhibit the growth of prostate cancer cells. This study examined whether the anti-proliferative effect of lycopene on androgen-dependent human prostate cancer (LNCaP) cells involves the up-regulation of the expression of PPARγ and LXRα. As expected, lycopene treatment (2.5-10 μM) significantly inhibited the proliferation of LNCaP cells during incubation for 96 h. Lycopene significantly increased the protein and mRNA expression of PPARγ and LXRα at 24 and 48 h, while the increased in the expression of ATP-binding cassette transporter 1 (ABCA1) was only evident 96 h. In addition, lycopene significantly decreased cellular total cholesterol levels and increased apoA1 protein expression at 96 h. Incubation of LNCaP cells with lycopene (10 μM) in the presence (20 μM) of a specific antagonist of PPARγ (GW9662) and LXRα (GGPP) restored the proliferation of LNCaP cells to the control levels and significantly suppressed protein expression of PPARγ and LXRα as well as increased cellular total cholesterol levels. LXRα knockdown by siRNA against LXRα significantly enhanced the proliferation of LNCaP cells, whereas si-LXRα knockdown followed by incubation with lycopene (10 μM) restored the proliferation to the control level. The present study is the first to demonstrate that the anti-proliferative effect of lycopene on LNCaP cells involves the activation of the PPARγ-LXRα-ABCA1 pathway, leading to reduced cellular total cholesterol levels.
Collapse
Affiliation(s)
- Chih-Min Yang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan 402, ROC
| | | | | | | |
Collapse
|
84
|
Maggiora M, Oraldi M, Muzio G, Canuto RA. Involvement of PPARα and PPARγ in apoptosis and proliferation of human hepatocarcinoma HepG2 cells. Cell Biochem Funct 2011; 28:571-7. [PMID: 20862655 DOI: 10.1002/cbf.1691] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) mediate the effects of various ligands, known as peroxisome proliferators, a heterogeneous class of compounds including industrial chemicals, pharmaceuticals, and biomolecules such as fatty acids and eicosanoids. Among peroxisome proliferators, fibrate derivatives are considered specific ligands for PPARα, whereas eicosanoids, such as PGJ2, for PPARγ. The study aimed to clarify the relation between PPARs and apoptosis or proliferation on the same type of cells, using clofibrate as specific ligand of PPARα and PGJ2 as specific ligand of PPARγ. The cells used were human hepatocarcinoma HepG2 cells. The results showed that PPARα protein content increased in HepG2 cells treated with clofibrate, causing apoptosis in a time- and concentration-dependent way, as evidenced by the citofluorimetric assay and determination of BAD, myc and protein phosphatase 2A protein content. It also emerged that PPARγ increased in the same cells when treated with a specific ligand of this PPAR; in this case the increase of PPARγ did not cause an increase of apoptosis, but a time- and concentration-dependent inhibition of cell proliferation, evidenced by decreased cell numbers and increased number of cells in the G0/G1 phase of the cycle. It may be concluded that PPARα is chiefly related to apoptosis and PPARγ to cell proliferation.
Collapse
Affiliation(s)
- Marina Maggiora
- Dipartimento di Medicina ed Oncologia Sperimentale, Università di Torino, Corso Raffaello, Turin, Italy
| | | | | | | |
Collapse
|
85
|
Nakamura M, Yamaguchi S, Motoyoshi K, Negishi M, Saito-Taki T, Matsumoto K, Hayashi I, Majima M, Kitasato H. Anti-tumor effects of prostaglandin D2 and its metabolites, 15-deoxy-Δ12, 14-PGJ2, by peroxisome proliferator-activated receptor (PPAR) γ-dependent and -independent pathways. Inflamm Regen 2011. [DOI: 10.2492/inflammregen.31.189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
86
|
Li X, Li X, Tang H, Nan F. Design and Synthesis of Biotinylated Troglitazone as an Active Affinity Probe. CHINESE J CHEM 2010. [DOI: 10.1002/cjoc.201090370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
87
|
Okumura T. Mechanisms by which thiazolidinediones induce anti-cancer effects in cancers in digestive organs. J Gastroenterol 2010; 45:1097-102. [PMID: 20824291 DOI: 10.1007/s00535-010-0310-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 08/02/2010] [Indexed: 02/04/2023]
Abstract
Increasing evidence suggests that thiazolidinediones (TZDs) could have a therapeutic potential for patients with cancers. Here, the evidence on the mechanisms by which TZDs could contribute to different steps of cancer biology in the digestive system is summarized. According to studies, TZDs induce anti-cancer actions through 3 main pathways: (1) cell growth arrest, (2) induction of apoptosis, and (3) inhibition of cell invasion. Cell growth arrest is induced by an increased level of p27(Kip1). p27(Kip1) accumulation results from the inhibition of the ubiquitin-proteasome system and/or inhibition of MEK-ERK signaling. TZDs induce apoptosis through increased levels of apoptotic molecules, such as p53 and PTEN and/or decreased level of anti-apoptotic molecules, such as Bcl-2 and survivin. Inhibition of MEK-ERK signaling-mediated up-regulation of E-cadherin and claudin-4, and/or decreased expression of matrix metalloproteinases (MMPs) such as MMP-2 and MMP-9, play a role in the TZD-induced inhibition of cancer cell invasion. Thus, TZDs are capable of inducing anti-tumor action in a variety of ways in gastrointestinal cancers.
Collapse
Affiliation(s)
- Toshikatsu Okumura
- Department of General Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan.
| |
Collapse
|
88
|
Bazargani A, Khoramrooz SS, Kamali-Sarvestani E, Taghavi SA, Saberifiroozi M. Association between peroxisome proliferator-activated receptor-γ gene polymorphism (Pro12Ala) and Helicobacter pylori infection in gastric carcinogenesis. Scand J Gastroenterol 2010; 45:1162-7. [PMID: 20568969 DOI: 10.3109/00365521.2010.499959] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Helicobacter pylori infection is accompanied by inflammatory processes leading to peptic ulcer and gastric cancer in the minority of infected individuals. The interaction between H. pylori virulence factors, host defense mechanisms and environmental factors determine the outcome of clinical manifestations. One of the host factors involved in the processes of inflammation and carcinogenesis is the peroxisome proliferator-activated receptor-γ (PPAR-γ) molecule. The present case-control study aimed to determine polymorphism of PPAR-γ gene and its association with H. pylori infection and gastrointestinal diseases (peptic ulcer and non-cardia gastric cancer) in Iranian patients. MATERIALS AND METHODS One hundred and fifty-five patients with upper gastrointestinal diseases (76 peptic ulcer and 79 non-cardia gastric cancer) and 152 matched controls were genotyped for PPAR-γ gene polymorphism (Pro12Ala) by the PCR-RFLP method. Infection with H. pylori was confirmed by histology, the rapid urease test (RUT) and ELISA assay (IgG anti-H. pylori). RESULTS The frequency of PPAR-γ G (Ala 12) allele was significantly higher in H. pylori positive patients with non-cardia gastric cancer than in controls (22.8% vs. 3.9%, p = 0.027; OR = 3.28; 95% CI = 1.21-8.89), But there was no significant difference without infection (p = 0.7). Moreover, the PPAR-γ polymorphism was not associated with peptic ulcer in the presence or absence of H. pylori infection. CONCLUSION Our results indicated PPAR-γ G allele may be an important contributor to non-cardia gastric cancer in Iranian H. pylori infected patients.
Collapse
Affiliation(s)
- Abdollah Bazargani
- Department of Bacteriology and Virology, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | | | | | | |
Collapse
|
89
|
Zhu F, Wang P, Kontrogianni-Konstantopoulos A, Konstantopoulos K. Prostaglandin (PG)D(2) and 15-deoxy-Delta(12,14)-PGJ(2), but not PGE(2), mediate shear-induced chondrocyte apoptosis via protein kinase A-dependent regulation of polo-like kinases. Cell Death Differ 2010; 17:1325-34. [PMID: 20150912 PMCID: PMC2888831 DOI: 10.1038/cdd.2010.13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Excessive mechanical loading of cartilage producing hydrostatic stress, tensile strain and fluid flow leads to chondrocyte apoptosis and osteoarthritis. High fluid flow induces cyclooxygenase-2 (COX-2) expression in sheared chondrocytes, which suppresses their antioxidant capacity and contributes to apoptosis. The pivotal role of COX-2 in shear-induced chondrocyte apoptosis and the conflicting literature data on the roles of prostaglandin (PG)E(2), PGD(2) and its metabolite 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)) in chondrocyte apoptosis prompted us to analyze which COX-2-derived PG is involved in this process. We show that exogenously added PGD(2) and 15d-PGJ(2), but not PGE(2), diminish the viability of human T/C-28a2 chondrocytes under static conditions. In agreement with these observations, knockdown of L-PGD synthase (L-PGDS) abolishes shear-induced chondrocyte apoptosis. Using cDNA microarrays in conjunction with clustering algorithms, we propose a novel signaling pathway by which high fluid shear mediates COX-2/L-PGDS-dependent chondrocyte apoptosis, which is validated by molecular interventions. We show that L-PGDS controls the downregulation of protein kinase A (PKA), which in turn regulates Polo-like kinase1 (Plk1) and Plk3. Plks target p53, which controls the transcription of p53 effectors (TP53INPs, FAS and Bax) involved in chondrocyte apoptosis. Reconstructing the signaling network regulating chondrocyte apoptosis may provide insights to optimize conditions for culturing artificial cartilage in bioreactors and for developing therapeutic strategies for arthritic disorders.
Collapse
Affiliation(s)
| | | | | | - Konstantinos Konstantopoulos
- To whom correspondence should be addressed: Konstantinos Konstantopoulos, Ph.D., Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, Tel: (410) 516-6290, Fax: (410) 516-5510,
| |
Collapse
|
90
|
Prostacyclin inhibits non-small cell lung cancer growth by a frizzled 9-dependent pathway that is blocked by secreted frizzled-related protein 1. Neoplasia 2010; 12:244-53. [PMID: 20234818 DOI: 10.1593/neo.91690] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 01/04/2010] [Accepted: 01/05/2010] [Indexed: 12/14/2022] Open
Abstract
The goal of this study was to assess the ability of iloprost, an orally active prostacyclin analog, to inhibit transformed growth of human non-small cell lung cancer (NSCLC) and to define the mechanism of iloprost's tumor suppressive effects. In a panel of NSCLC cell lines, the ability of iloprost to inhibit transformed cell growth was not correlated with the expression of the cell surface receptor for prostacyclin, but instead was correlated with the presence of Frizzled 9 (Fzd 9) and the activation of peroxisome proliferator-activated receptor-gamma (PPARgamma). Silencing of Fzd 9 blocked PPARgamma activation by iloprost, and expression of Fzd 9 in cells lacking the protein resulted in iloprost's activation of PPARgamma and inhibition of transformed growth. Interestingly, soluble Frizzled-related protein-1, a well-known inhibitor of Wnt/Fzd signaling, also blocked the effects of iloprost and Fzd 9. Moreover, mice treated with iloprost had reduced lung tumors and increased Fzd 9 expression. These studies define a novel paradigm, linking the eicosanoid pathway and Wnt signaling. In addition, these data also suggest that prostacyclin analogs may represent a new class of therapeutic agents in the treatment of NSCLC where the restoration of noncanonical Wnt signaling maybe important for the inhibition of transformed cell growth.
Collapse
|
91
|
Tennis MA, Van Scoyk MM, Freeman SV, Vandervest KM, Nemenoff RA, Winn RA. Sprouty-4 inhibits transformed cell growth, migration and invasion, and epithelial-mesenchymal transition, and is regulated by Wnt7A through PPARgamma in non-small cell lung cancer. Mol Cancer Res 2010; 8:833-43. [PMID: 20501643 DOI: 10.1158/1541-7786.mcr-09-0400] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sprouty proteins are potent receptor tyrosine kinase inhibitors that antagonize growth factor signaling and are involved in lung development. However, little is known about the regulation or targets of Sprouty-4 (Spry4) in lung cancer. Our study aimed to determine the role of Spry4 in non-small cell lung cancer (NSCLC). We found that Spry4 mRNA expression was decreased in NSCLC cell lines and in dysplastic lung cell lines compared with a nontransformed cell line, suggesting that Spry4 has tumor-suppressing activity. When Spry4 was stably transfected into H157 and H2122 NSCLC cell lines, decreased migration and invasion were observed. Matrix metalloproteinase-9 activity was decreased, and the expression of matrix metalloproteinase inhibitors TIMP1 and CD82 were increased. Stable expression of Spry4 led to reduced cell growth and reduced anchorage-independent growth in NSCLC cell lines, along with upregulation of tumor suppressors p53 and p21. Changes in epithelial and mesenchymal markers indicated that Spry4 expression induces a reversal of the epithelial to mesenchymal transition characteristic of tumor cells. Treatment of a nontransformed lung epithelial cell line with short hairpin RNA to Spry4 led to the decreased expression of epithelial markers and increased cell growth, supporting the concept of Spry4 acting as a tumor suppressor. We showed that the activity of the Spry4 promoter is increased by Wnt7A/Fzd9 signaling through peroxisome proliferator-activated receptor gamma. These data present previously undescribed targets of Spry4 and suggest that Spry4 is a downstream target of Wnt7A/Fzd 9 signaling. Spry4 may have efficacy in the treatment of NSCLC.
Collapse
Affiliation(s)
- Meredith A Tennis
- University of Colorado at Denver and Health Sciences Center, 12700 East 19th Avenue, Box C272, RC2 9th Floor, Aurora, CO 80045, USA.
| | | | | | | | | | | |
Collapse
|
92
|
Matsuyama M, Funao K, Kuratsukuri K, Tanaka T, Kawahito Y, Sano H, Chargui J, Touraine JL, Yoshimura N, Yoshimura R. Telmisartan inhibits human urological cancer cell growth through early apoptosis. Exp Ther Med 2010; 1:301-306. [PMID: 22993542 DOI: 10.3892/etm_00000046] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 01/14/2010] [Indexed: 11/06/2022] Open
Abstract
Angiotensin II receptor blockers (ARBs) are widely used as hypertensive therapeutic agents. In addition, studies have provided evidence that ARBs have the potential to inhibit the growth of several types of cancer cells. It was reported that telmisartan (a type of ARB) has peroxisome proliferator-activated receptor (PPAR)-γ activation activity. We previously reported that the PPAR-γ ligand induces growth arrest in human urological cancer cells through apoptosis. In this study, we evaluated the effects of telmisartan and other ARBs on cell proliferation in renal cell carcinoma (RCC), bladder cancer (BC), prostate cancer (PC) and testicular cancer (TC) cell lines. The inhibitory effects of telmisartan and other ARBs (candesartan, valsartan, irbesartan and losartan) on the growth of the RCC, BC, PC and TC cell lines was investigated using an MTT assay. Flow cytometry and Hoechst staining were used to determine whether the ARBs induced apoptosis. Telmisartan caused marked growth inhibition in the urological cancer cells in a dose- and time-dependent manner. Urological cancer cells treated with 100 μM telmisartan underwent early apoptosis and DNA fragmentation. However, the other ARBs had no effect on cell proliferation in any of the urological cancer cell lines. Telmisartan may mediate potent anti-proliferative effects in urological cancer cells through PPAR-γ. Thus, telmisartan is a potent target for the prevention and treatment of human urological cancer.
Collapse
Affiliation(s)
- Masahide Matsuyama
- Department of Transplantation and Clinical Immunology, Claude Bernard University of Lyon and Lyon Hospitals, Lyon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Pozzi A, Popescu V, Yang S, Mei S, Shi M, Puolitaival SM, Caprioli RM, Capdevila JH. The anti-tumorigenic properties of peroxisomal proliferator-activated receptor alpha are arachidonic acid epoxygenase-mediated. J Biol Chem 2010; 285:12840-50. [PMID: 20178979 DOI: 10.1074/jbc.m109.081554] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prevalence and mortality make cancer a health challenge in need of effective and better tolerated therapeutic approaches, with tumor angiogenesis identified as a promising target for drug development. The epoxygenase products, the epoxyeicosatrienoic acids, are pro-angiogenic, and down-regulation of their biosynthesis by peroxisomal proliferator-activated receptor alpha (PPARalpha) ligands reduces tumor angiogenesis and growth. Endothelial cells lacking a Cyp2c44 epoxygenase, a PPARalpha target, show reduced proliferative and tubulogenic activities that are reversed by the enzyme's metabolites. In a mouse xenograft model of tumorigenesis, disruption of the host Cyp2c44 gene causes marked reductions in tumor volume, mass, and vascularization. The relevance of these studies to human cancer is indicated by the demonstration that: (a) activation of human PPARalpha down-regulates endothelial cell CYP2C9 epoxygenase expression and blunts proliferation and tubulogenesis, (b) in a PPARalpha-humanized mouse model, activation of the receptor inhibits tumor angiogenesis and growth, and (c) the CYP2C9 epoxygenase is expressed in the vasculature of human tumors. The identification of anti-angiogenic/anti-tumorigenic properties of PPARalpha points to a role for the receptor and its epoxygenase regulatory target in the pathophysiology of cancer, and for its ligands as candidates for the development of a new generation of safer and better tolerated anti-cancer drugs.
Collapse
Affiliation(s)
- Ambra Pozzi
- Department of Medicine, Vanderbilt University Medical School, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Pérez-Lorenzo R, Markell LM, Hogan KA, Yuspa SH, Glick AB. Transforming growth factor beta1 enhances tumor promotion in mouse skin carcinogenesis. Carcinogenesis 2010; 31:1116-23. [PMID: 20172950 DOI: 10.1093/carcin/bgq041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transforming growth factor beta1 (TGFbeta1) expression is elevated by tumor promoters in the mouse skin, but its role in tumor promotion has not been well defined. To investigate this, we have compared TGFbeta1+/+ and +/- mice in a two-stage skin chemical carcinogenesis protocol. Surprisingly, TGFbeta1+/- mice had fewer number and incidence of benign papillomas, reduced epidermal and tumor cell proliferation and reduced epidermal TGFbeta1 and nuclear p-Smad2 localization in response to the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA) compared with TGFbeta1+/+ mice. Maximal TPA activation of protein kinase C (PKCalpha) as measured by activity assays and activation of target genes and induction of cornified envelopes correlated with TGFbeta1 gene dosage in keratinocytes and addition of exogenous TGFbeta1 restored the cornification defect in TGFbeta1+/- keratinocytes. Similarly, inhibition of ALK5-suppressed TPA-mediated PKCalpha activation suggesting that physiological levels of TGFbeta1 are required for maximal activation of PKC-dependent mitogenic responses. Paradoxically, the TPA-induced inflammatory response was greater in TGFbeta1+/- skin, but TGFbeta1+/+ papillomas had more tumor infiltrating myeloperoxidase-positive cells and pro-inflammatory gene expression was elevated in v-ras(Ha)-transduced TGFbeta1+/+ but not TGFbeta1+/- keratinocytes. Thus, ras activation switches TGFbeta1 to a pro-inflammatory cytokine. Despite this differential proliferative and inflammatory response to TPA and enhanced papilloma formation in the TGFbeta1+/+ mice, the frequency of malignant conversion was reduced compared with TGFbeta1+/- mice. Therefore, TGFbeta1 promotes benign tumors by modifying tumor promoter-induced cell proliferation and inflammation but retains a suppressive function for malignant conversion.
Collapse
Affiliation(s)
- Rolando Pérez-Lorenzo
- Department of Veterinary and Biomedical Sciences, The Center for Molecular Toxicology and Carcinogenesis, Pennsylvania State University, 201 Life Sciences Building, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
95
|
Cellai I, Petrangolini G, Tortoreto M, Pratesi G, Luciani P, Deledda C, Benvenuti S, Ricordati C, Gelmini S, Ceni E, Galli A, Balzi M, Faraoni P, Serio M, Peri A. In vivo effects of rosiglitazone in a human neuroblastoma xenograft. Br J Cancer 2010; 102:685-92. [PMID: 20068562 PMCID: PMC2837558 DOI: 10.1038/sj.bjc.6605506] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Neuroblastoma (NB) is the most common extra-cranial solid tumour in infants. Unfortunately, most children present with advanced disease and have a poor prognosis. There is in vitro evidence that the peroxisome proliferator-activated receptor gamma (PPARgamma) might be a target for pharmacological intervention in NB. We have previously demonstrated that the PPARgamma agonist rosiglitazone (RGZ) exerts strong anti-tumoural effects in the human NB cell line, SK-N-AS. The aim of this study was to evaluate whether RGZ maintains its anti-tumoural effects against SK-N-AS NB cells in vivo. METHODS AND RESULTS For this purpose, tumour cells were subcutaneously implanted in nude mice, and RGZ (150 mg kg(-1)) was administered by gavage daily for 4 weeks. At the end of treatment, a significant tumour weight inhibition (70%) was observed in RGZ-treated mice compared with control mice. The inhibition of tumour growth was supported by a strong anti-angiogenic activity, as assessed by CD-31 immunostaining in tumour samples. The number of apoptotic cells, as determined by cleaved caspase-3 immunostaining, seemed lower in RGZ-treated animals at the end of the treatment period than in control mice, likely because of the large tumour size observed in the latter group. CONCLUSIONS To our knowledge, this is the first demonstration that RGZ effectively inhibits tumour growth in a human NB xenograft and our results suggest that PPARgamma agonists may have a role in anti-tumoural strategies against NB.
Collapse
Affiliation(s)
- I Cellai
- Department of Clinical Physiopathology, Center for Research, University of Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Lyon CM, Klinge DM, Do KC, Grimes MJ, Thomas CL, Damiani LA, March TH, Stidley CA, Belinsky SA. Rosiglitazone prevents the progression of preinvasive lung cancer in a murine model. Carcinogenesis 2010; 30:2095-9. [PMID: 19861651 DOI: 10.1093/carcin/bgp260] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
There is a critical need to identify efficacious chemopreventive agents for lung cancer that can be taken chronically with no side effects and whose mechanisms of action do not involve genotoxicity that could drive, rather than impede, cancer progression. We evaluated the ability of a chemopreventive cocktail that included selenium (antioxidant), rosiglitazone (peroxisome proliferator-activated receptor gamma agonist), sodium phenylbutyrate or valproic acid (histone deacetylase inhibitors) and hydralazine (cytosine-demethylating agent) to prevent the progression of lung cancer in A/J mice treated with NNK. Agents were administered alone or in various combinations. Effects of the chemopreventive agents were quantified based on the proportion of hyperplasias and adenomas within the mouse lung. Significant effects on tumor progression were seen in all treatment groups that included rosiglitazone as reflected by a 47-57% increase in number of hyperplasias and a 10-30% decrease in adenomas. Cell proliferation was also reduced in these treatment groups by approximately 40%. Interestingly, while treatment with rosiglitazone alone did not significantly affect lesion size, striking effects were seen in the combination therapy group that included sodium phenylbutyrate, with the volume of hyperplasias and adenomas decreasing by 40 and 77%, respectively. These studies demonstrate for the first time that chronic in vivo administration of rosiglitazone, used in the management of diabetes mellitus, can significantly block the progression of premalignant lung cancer in the A/J mouse model.
Collapse
Affiliation(s)
- Christopher M Lyon
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Kwon EY, Park C, Kwon JC, Kim SH, Park SH, Choi SM, Lee DG, Yoo JH, Choi JH. Effects of Peroxisome Proliferator-Activated Receptor-γ on the Production of Tumor Necrosis Factor-α in Stimulated Human Monocoyte. Infect Chemother 2010. [DOI: 10.3947/ic.2010.42.5.291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Eun-Young Kwon
- Catholic Research Institutes of Medical Science, College of Medicine, Catholic University of Korea, Seoul, Korea
| | - Chulmin Park
- Catholic Research Institutes of Medical Science, College of Medicine, Catholic University of Korea, Seoul, Korea
| | - Jae-Cheol Kwon
- Department of Internal Medicine, Division of Infectious Diseases, College of Medicine, Catholic University of Korea, Seoul, Korea
| | - Si-Hyun Kim
- Department of Internal Medicine, Division of Infectious Diseases, College of Medicine, Catholic University of Korea, Seoul, Korea
| | - Sun Hee Park
- Department of Internal Medicine, Division of Infectious Diseases, College of Medicine, Catholic University of Korea, Seoul, Korea
| | - Su-Mi Choi
- Department of Internal Medicine, Division of Infectious Diseases, College of Medicine, Catholic University of Korea, Seoul, Korea
| | - Dong-Gun Lee
- Department of Internal Medicine, Division of Infectious Diseases, College of Medicine, Catholic University of Korea, Seoul, Korea
| | - Jin-Hong Yoo
- Department of Internal Medicine, Division of Infectious Diseases, College of Medicine, Catholic University of Korea, Seoul, Korea
| | - Jung-Hyun Choi
- Department of Internal Medicine, Division of Infectious Diseases, College of Medicine, Catholic University of Korea, Seoul, Korea
| |
Collapse
|
98
|
Matsuyama M, Yoshimura R. Study of arachidonic Acid pathway in human bladder tumor. SUBSTANCE ABUSE-RESEARCH AND TREATMENT 2009; 3:99-107. [PMID: 24357935 PMCID: PMC3864913 DOI: 10.4137/sart.s2151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent epidemiological studies and animal experiments have demonstrated that nonsteroidal anti-inflammatory drugs (NSAIDs) reduce the incidence of colorectal carcinoma. Cyclooxygenase (COX) is the principal target of NSAIDs. COX is the first oxidase in the process of prostaglandin production from arachidonic acid. COX enzyme may be involved in the initiation and/or the promotion of tumorigenesis due to NSAIDs inhibition of COX. Lipoxygenase (LOX) is also an initial enzyme in the pathway for producing leukotrienes from arachidonic acid. Similar to COX, LOX enzyme may also be involved in the initiation and/or promotion of tumorigenesis. Peroxisome proliferator activator-receptor (PPAR)-γ is a ligand-activated transcriptional factor belonging to the steroid receptor superfamily. PPAR-γ plays a role in both adipocyte differentiation and tumorigenesis. PPAR-γ is one target for cell growth modulation of NSAIDs. In this review, we report the expression of COX-2, LOX and PPAR-γ in human bladder tumor tissues as well as the effects of COX-2 and LOX inhibitors and PPAR-γ ligand.
Collapse
Affiliation(s)
- Masahide Matsuyama
- Department of Urology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Rikio Yoshimura
- Department of Urology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| |
Collapse
|
99
|
15-Deoxi-Δ12,14-prostaglandin J2 is a tubulin-binding agent that destabilizes microtubules and induces mitotic arrest. Biochem Pharmacol 2009; 78:1330-9. [DOI: 10.1016/j.bcp.2009.06.100] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 06/18/2009] [Accepted: 06/24/2009] [Indexed: 11/17/2022]
|
100
|
Kang JH, Cho HJ, Lee IS, Kim M, Lee IK, Chang YC. Comparative proteome analysis of TGF-β1-induced fibrosis processes in normal rat kidney interstitial fibroblast cells in response to ascofuranone. Proteomics 2009; 9:4445-56. [DOI: 10.1002/pmic.200800941] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|