51
|
Jaffe LA, Giusti AF, Carroll DJ, Foltz KR. Ca2+ signalling during fertilization of echinoderm eggs. Semin Cell Dev Biol 2001; 12:45-51. [PMID: 11162746 DOI: 10.1006/scdb.2000.0216] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Ca2+ rise at fertilization of echinoderm eggs is initiated by a process requiring the sequential activation of a Src family kinase, phospholipase C gamma, and the inositol trisphosphate receptor/channel in the endoplasmic reticulum. The consequences of the Ca2+ rise include exocytosis of cortical granules, which establishes a block to polyspermy, and inactivation of MAP kinase, which functions in linking the Ca2+ rise to the reinitiation of the cell cycle.
Collapse
Affiliation(s)
- L A Jaffe
- Department of Physiology, University of Connecticut Health Center, Farmington, CT 06032,
| | | | | | | |
Collapse
|
52
|
Tachibana K, Tanaka D, Isobe T, Kishimoto T. c-Mos forces the mitotic cell cycle to undergo meiosis II to produce haploid gametes. Proc Natl Acad Sci U S A 2000; 97:14301-6. [PMID: 11121036 PMCID: PMC18913 DOI: 10.1073/pnas.97.26.14301] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The meiotic cycle reduces ploidy through two consecutive M phases, meiosis I and meiosis II, without an intervening S phase. To maintain ploidy through successive generations, meiosis must be followed by mitosis after the recovery of diploidy by fertilization. However, the coordination from meiotic to mitotic cycle is still unclear. Mos, the c-mos protooncogene product, is a key regulator of meiosis in vertebrates. In contrast to the previous observation that Mos functions only in vertebrate oocytes that arrest at meiotic metaphase II, here we isolate the first invertebrate mos from starfish and show that Mos functions also in starfish oocytes that arrest after the completion of meiosis II but not at metaphase II. In the absence of Mos, meiosis I is followed directly by repeated embryonic mitotic cycles, and its reinstatement restores meiosis II and subsequent cell cycle arrest. These observations imply that after meiosis I, oocytes have a competence to progress through the embryonic mitotic cycle, but that Mos diverts the cell cycle to execute meiosis II and remains to restrain the return to the mitotic cycle. We propose that a role of Mos that is conserved in invertebrate and vertebrate oocytes is not to support metaphase II arrest but to prevent the meiotic/mitotic conversion after meiosis I until fertilization, directing meiosis II to ensure the reduction of ploidy.
Collapse
Affiliation(s)
- K Tachibana
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Japan
| | | | | | | |
Collapse
|
53
|
Lee SJ, Stapleton G, Greene JH, Hille MB. Protein kinase C-related kinase 2 phosphorylates the protein synthesis initiation factor eIF4E in starfish oocytes. Dev Biol 2000; 228:166-80. [PMID: 11112322 DOI: 10.1006/dbio.2000.9943] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphorylation of eIF4E is required for protein synthesis during starfish oocyte maturation. The activity of protein kinase C-related kinase 2 (PRK2) increases prior to the phosphorylation of eIF4E (G. Stapleton et al., 1998, Dev. Biol. 193, 34-46). We investigate here whether eIF4E is activated by PRK2. A 3.5-kb eIF4E clone isolated from starfish cDNA is 57% identical to human eIF4E and contains the putative phosphorylation site serine-209. The serine-209 environment (SKTGS(209)MAKSRF) is similar to the consensus sequence of the phosphorylation site of protein kinase C and related kinases. A starfish eIF4E fusion protein (GST-4E) was phosphorylated in vitro by PRK2 in the presence of 1,2-diolyl-sn-glycerol 3-phosphate. In contrast, replacing the GST-4E serine-209 with an alanine significantly reduced this phosphorylation. Analysis by two-dimensional phosphopeptide mapping reveals a major phosphopeptide in trypsin-digested GST-4E, but not in its serine-209 mutant. Importantly, this major phosphopeptide in GST-4E corresponds to a major phosphopeptide of eIF4E isolated from (32)P-labeled oocytes. Thus, PRK2 may regulate translation initiation during oocyte maturation by phosphorylating the serine-209 residue of eIF4E in starfish. We also demonstrate that high levels of cAMP inhibit the activation of PRK2, eIF4E, and the eIF4E binding protein during starfish oocyte maturation, while PI3 kinase activates these proteins.
Collapse
Affiliation(s)
- S J Lee
- Department of Zoology and Center for Developmental Biology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
54
|
Morrison DL, Yee A, Paddon HB, Vilimek D, Aebersold R, Pelech SL. Regulation of the meiosis-inhibited protein kinase, a p38(MAPK) isoform, during meiosis and following fertilization of seastar oocytes. J Biol Chem 2000; 275:34236-44. [PMID: 10906138 DOI: 10.1074/jbc.m004656200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A p38(MAPK) homolog Mipk (meiosis-inhibited protein kinase) was cloned from seastar oocytes. This 40-kDa protein shares approximately 65% amino acid identity with mammalian p38-alpha isoforms. Mipk was one of the major tyrosine-phosphorylated proteins in immature oocytes arrested at the G(2)/M transition of meiosis I. The tyrosine phosphorylation of Mipk was increased in response to anisomycin, heat, and osmotic shock of oocytes. During 1-methyladenine-induced oocyte maturation, Mipk underwent tyrosine dephosphorylation and remained dephosphorylated in mature oocytes and during the early mitotic cell divisions until approximately 12 h after fertilization. At the time of differentiation and acquisition of G phases in the developing embryos, Mipk was rephosphorylated on tyrosine. In oocytes that were microinjected with Mipk antisense oligonucleotides and subsequently were allowed to mature and become fertilized, differentiation was blocked. Because MipK antisense oligonucleotides and a dominant-negative (K62R)Mipk when microinjected into immature oocytes failed to induce germinal vesicle breakdown, inhibition of Mipk function was not sufficient by itself to cause oocyte maturation. These findings point to a putative role for Mipk in cell cycle control as a G-phase-promoting factor.
Collapse
Affiliation(s)
- D L Morrison
- Department of Medicine, Koerner Pavilion, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | |
Collapse
|
55
|
Yamashita M, Mita K, Yoshida N, Kondo T. Molecular mechanisms of the initiation of oocyte maturation: general and species-specific aspects. PROGRESS IN CELL CYCLE RESEARCH 2000; 4:115-29. [PMID: 10740820 DOI: 10.1007/978-1-4615-4253-7_11] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Stimulated by maturation-inducing hormone secreted from follicle cells surrounding the oocytes, fully-grown oocytes mature and become fertilisable. During maturation, immature oocytes resume meiosis arrested at the first prophase and proceed to the first or second metaphase at which they are naturally inseminated. Paying special attention to general and species-specific aspects, we summarise the mechanisms regulating the initial phase of oocyte maturation, from the reception of hormonal signals on the oocyte surface to activation of the maturation-promoting factor in the cytoplasm, in amphibians, fishes, mammals and marine invertebrates.
Collapse
Affiliation(s)
- M Yamashita
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
56
|
Abstract
We reported previously that inhibition of MAP kinase during meiosis in Urechis caupo eggs caused premature sperm aster formation and we reviewed indirect evidence that the suppression of sperm asters by MAPK during meiosis might be a universal mechanism (M. C. Gould and J. L. Stephano, 1999, Dev. Biol. 216, 348-358). We tested this proposition with oyster (Crassostrea gigas) and starfish (Asterina miniata) eggs, utilizing the MEK inhibitors U0126 and PD98059. Centrosomes, asters, and meiotic spindles were visualized by normal epifluorescence and confocal microscopy following indirect immunocytochemical staining for anti-beta-tubulin. When MAPK activation was inhibited, sperm asters in both species developed prematurely and tended to move toward the egg centrosomes, sometimes even fusing with the egg spindle or centrosomes. Meiotic spindles and polar body formation were also abnormal when MAPK was inhibited.
Collapse
Affiliation(s)
- J L Stephano
- Instituto de Biología Celular y Molecular, Universidad Autónoma de Baja California, Ensenada, Baja California, 22800, Mexico
| | | |
Collapse
|
57
|
Giusti AF, Xu W, Hinkle B, Terasaki M, Jaffe LA. Evidence that fertilization activates starfish eggs by sequential activation of a Src-like kinase and phospholipase cgamma. J Biol Chem 2000; 275:16788-94. [PMID: 10747984 DOI: 10.1074/jbc.m001091200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent evidence has indicated a requirement for a Src family kinase in initiating Ca(2+) release at fertilization in starfish eggs (Giusti, A. F., Carroll, D. J., Abassi, Y. A., Terasaki, M., Foltz, K. R., and Jaffe, L. A. (1999) J. Biol. Chem. 274, 29318-29322). We now show that injection of Src protein into starfish eggs initiates Ca(2+) release and DNA synthesis, as occur at fertilization. These responses depend on the phosphorylation state of the Src protein; only the kinase active form is effective. Like Ca(2+) release at fertilization, the Ca(2+) release in response to Src protein injection is inhibited by prior injection of the SH2 domains of phospholipase Cgamma. These findings support the conclusion that in starfish, sperm-egg interaction causes egg activation by sequential activation of a Src-like kinase and phospholipase Cgamma. Injection of the SH2 domain of Src, which inhibits Ca(2+) release at fertilization, does not inhibit Ca(2+) release caused by Src protein injection. This indicates that the requirement for a Src SH2 domain interaction is upstream of Src activation in the pathway leading to Ca(2+) release at fertilization.
Collapse
Affiliation(s)
- A F Giusti
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543, the Department of Physiology, University of Connecticut Health Center, Farmington, Connecticut 06032, USA
| | | | | | | | | |
Collapse
|
58
|
Chiba K. Meiosis Reinitiation in Starfish Oocyte. Zoolog Sci 2000. [DOI: 10.2108/0289-0003(2000)17[413:mriso]2.0.co;2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
59
|
Carroll DJ, Albay DT, Hoang KM, O'Neill FJ, Kumano M, Foltz KR. The relationship between calcium, MAP kinase, and DNA synthesis in the sea urchin egg at fertilization. Dev Biol 2000; 217:179-91. [PMID: 10625545 DOI: 10.1006/dbio.1999.9526] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fertilization releases the brake on the cell cycle and the egg completes meiosis and enters into S phase of the mitotic cell cycle. The MAP kinase pathway has been implicated in this process, but the precise role of MAP kinase in meiosis and the first mitotic cell cycle remains unknown and may differ according to species. Unlike the eggs of most animals, sea urchin eggs have completed meiosis prior to fertilization and are arrested at the pronuclear stage. Using both phosphorylation-state-specific antibodies and a MAP kinase activity assay, we observe that MAP kinase is phosphorylated and active in unfertilized sea urchin eggs and then dephosphorylated and inactivated by 15 min postinsemination. Further, Ca(2+) was both sufficient and necessary for this MAP kinase inactivation. Treatment of eggs with the Ca(2+) ionophore A23187 caused MAP kinase inactivation and triggered DNA synthesis. When the rise in intracellular Ca(2+) was inhibited by injection of a chelator, BAPTA or EGTA, the activity of MAP kinase remained high. Finally, inhibition of the MAP kinase signaling pathway by the specific MEK inhibitor PD98059 triggered DNA synthesis in unfertilized eggs. Thus, whenever MAP kinase activity is retained, DNA synthesis is inhibited while inactivation of MAP kinase correlates with initiation of DNA synthesis.
Collapse
Affiliation(s)
- D J Carroll
- Department of Molecular, Cellular and Developmental Biology and The Marine Science Institute, University of California at Santa Barbara, Santa Barbara, California, 93106-9610, USA
| | | | | | | | | | | |
Collapse
|
60
|
Pesando D, Pesci-Bardon C, Huitorel P, Girard JP. Caulerpenyne blocks MBP kinase activation controlling mitosis in sea urchin eggs. Eur J Cell Biol 1999; 78:903-10. [PMID: 10669109 DOI: 10.1016/s0171-9335(99)80092-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In a previous study, we demonstrated that caulerpenyne (Cyn), a natural sesquiterpene having an antiproliferative potency, blocked the mitotic cycle of sea urchin embryos at metaphase and inhibited the phosphorylation of several proteins, but did not affect histone H1 kinase activation (Pesando et al, 1998, Eur. J. Cell Biol. 77, 19-26). Here, we show that concentrations of Cyn that blocked the first division of the sea urchin Paracentrotus lividus embryos in a metaphase-like stage (45 microM) also inhibited the stimulation of mitogen-activated protein kinase (MAPK) activity in vivo as measured in treated egg extracts using myelin basic protein (MBP) as a substrate (MBPK). However, Cyn had no effect on MBP phosphorylation when added in vitro to an untreated egg extract taken at the time of metaphase, suggesting that Cyn acts on an upstream activation process. PD 98059 (40 microM), a previously characterized specific synthetic inhibitor of MAPK/extracellular signal-regulated kinase-1 (MEK1), also blocked sea urchin eggs at metaphase in a way very similar to Cyn. Both molecules induced similar inhibitory effects on MBP kinase activation in vivo, but had no direct effect on MBP kinase activity in vitro, whereas they did not affect H1 kinase activation neither in vivo nor in vitro. As a comparison, butyrolactone 1 (100 microM), a known inhibitor of H1 kinase activity, did inhibit H1 kinase of sea urchin eggs in vivo and in vitro, and blocked the sea urchin embryo mitotic cycle much before metaphase. Immunoblots of mitotic extracts, treated with anti-active MAP-kinase antibody, showed that both Cyn and PD 98059 reduced the phosphorylation of p42 MAP kinase (Erk2) in vivo. Our overall results suggest that Cyn blocks the sea urchin embryo mitotic cycle at metaphase by inhibiting an upstream phosphorylation event in the MBPK activation pathway. They also show that H1 kinase and MBPK activation can be dissociated from each other in this model system.
Collapse
Affiliation(s)
- D Pesando
- Laboratoire de Physiologie et Toxicologie Environnementales, Université de Nice-Sophia Antipolis, Faculté des Sciences, Nice, France.
| | | | | | | |
Collapse
|
61
|
Abstract
Although MAP kinase is an important regulatory enzyme in many somatic cells, almost nothing is known about its functions during meiosis, except in frog and mouse oocytes. We investigated MAPK activation and function in oocytes of the marine worm Urechis caupo that are fertilized at meiotic prophase. Activity was first detected at 4-6 min after fertilization in immunoblots with anti-active MAPK, prior to germinal vesicle breakdown (GVBD). MAPK activation did not require new protein synthesis and was dependent on the increases in both intracellular pH and intracellular Ca(2+) that normally occur during activation. When MAPK activation was inhibited with PD98059 or U0126, GVBD still occurred, but meiosis was abnormal and there was a dramatic premature enlargement of sperm asters, which normally do not appear until second polar body formation. Failure of polar body formation and premature sperm aster enlargement also occurred when MAPK activation was inhibited by an entirely different treatment which involved lowering the pH of external seawater to interrupt the normal cytoplasmic pH increase. Thus, in Urechis, active MAPK appears to be required for (1) normal meiotic divisions and (2) suppressing the paternal centrosome until after the egg completes meiosis, a general phenomenon whose mechanism has been unknown.
Collapse
Affiliation(s)
- M C Gould
- Facultad de Ciencias, Universidad Autónoma de Baja California, Ensenada, B.C., 22800, Mexico
| | | |
Collapse
|
62
|
Abstract
Although maturation or M-phase-promoting factor (MPF) was originally identified as a cytoplasmic activity responsible for induction of maturation or meiosis reinitiation in oocytes, MPF is now thought to be the universal trigger of G2/M-phase transition in all eukaryotic cells, and its activity is ascribed to cyclin B. Cdc2 kinase. Here, the activation process of cyclin B. Cdc2 at meiosis reinitiation in starfish oocytes is compared with that at G2/M-phase transition in mitotic somatic cells. Based on this comparison, the role of cyclin B. Cdc2 in the original cytoplasmic MPF activity is reexamined.
Collapse
Affiliation(s)
- T Kishimoto
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta 4259, Yokohama, Midoriku, 226-8501, Japan.
| |
Collapse
|
63
|
Babar P, Adamson C, Walker GA, Walker DW, Lithgow GJ. P13-kinase inhibition induces dauer formation, thermotolerance and longevity in C. elegans. Neurobiol Aging 1999; 20:513-9. [PMID: 10638524 DOI: 10.1016/s0197-4580(99)00094-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The effects of 2-(4-Morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002), an inhibitor of mammalian phosphatidylinositol 3-OH kinase, was tested on an insulin signaling-like pathway in the nematode Caenorhabditis elegans. Populations of C. elegans were treated with LY294002 at different stages of the life cycle, and its effects on development, thermotolerance and longevity were assessed. At concentrations of 160 microM and above, LY294002 significantly induced both dauer formation and thermotolerance. Treatment of adult worms also resulted in a small, but significant, increase in life span. The results presented are consistent with the view that a neuroendocrine signaling pathway functions in adult worms to determine stress resistance and longevity.
Collapse
Affiliation(s)
- P Babar
- The School of Biological Sciences, The University of Manchester, UK
| | | | | | | | | |
Collapse
|
64
|
Farruggio DC, Townsley FM, Ruderman JV. Cdc20 associates with the kinase aurora2/Aik. Proc Natl Acad Sci U S A 1999; 96:7306-11. [PMID: 10377410 PMCID: PMC22081 DOI: 10.1073/pnas.96.13.7306] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cdc20/fizzy family proteins are involved in activation of the anaphase-promoting complex/cyclosome, which catalyzes the ubiquitin-dependent proteolysis of cell cycle regulatory proteins such as anaphase inhibitors and mitotic cyclins, leading to chromosome segregation and exit from mitosis. Previous work has shown that human Cdc20 (hCdc20/p55CDC) associates with one or more kinases. We report here that Cdc20-associated myelin basic protein kinase activity peaks sharply in early M phase (embryonic cells) or in G2 phase (somatic cells). In HeLa cells, Cdc20 is associated with the kinase aurora2/Aik. Aurora2/Aik is a member of the aurora/Ipl1 family of kinases that, like Cdc20, previously has been shown to be localized at mitotic spindle poles and is involved in regulating chromosome segregation and maintaining genomic stability. The demonstration that Cdc20 is associated with aurora2/Aik suggests that some function of Cdc20 is carried out or regulated through its association with aurora2/Aik.
Collapse
Affiliation(s)
- D C Farruggio
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
65
|
Katsu Y, Minshall N, Nagahama Y, Standart N. Ca2+ is required for phosphorylation of clam p82/CPEB in vitro: implications for dual and independent roles of MAP and Cdc2 kinases. Dev Biol 1999; 209:186-99. [PMID: 10208752 DOI: 10.1006/dbio.1999.9247] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During early development gene expression is controlled principally at the translational level. Oocytes of the surf clam Spisula solidissima contain large stockpiles of maternal mRNAs which are translationally dormant or masked until meiotic maturation. Fertilisation of the oocyte leads to rapid polysomal recruitment of the abundant cyclin and ribonucleotide reductase mRNAs at about the time they undergo cytoplasmic polyadenylation. Clam p82, a 3' UTR RNA-binding protein, and a member of the CPEB (cytoplasmic polyadenylation element binding protein) family, functions as a translational masking factor in oocytes and as a polyadenylation factor in fertilised eggs. In meiotically maturing clam oocytes, p82/CPEB is rapidly phosphorylated on multiple residues to a 92-kDa apparent size, prior to its degradation during the first cell cleavage. Here we examine the protein kinase(s) that phosphorylates clam p82/CPEB using a clam oocyte activation cell-free system that responds to elevated pH, mirroring the pH rise that accompanies fertilisation. We show that p82/CPEB phosphorylation requires Ca2+ (<100 microM) in addition to raised pH. Examination of the calcium dependency combined with the use of specific inhibitors implicates the combined and independent actions of cdc2 and MAP kinases in p82/CPEB phosphorylation. Calcium is necessary for both the activation and the maintenance of MAP kinase, whose activity is transient in vitro, as in vivo. While cdc2 kinase plays a role in the maintenance of MAP kinase activity, it is not required for the activation of MAP kinase. We propose a model of clam p82/CPEB phosphorylation in which MAP kinase initially phosphorylates clam p82/CPEB, at a minor subset of sites that does not alter its migration, and cdc2 kinase is necessary for the second wave of phosphorylation that results in the large mobility size shift of clam p82/CPEB. The possible roles of phosphorylation for the function and regulation of p82/CPEB are discussed.
Collapse
Affiliation(s)
- Y Katsu
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, England
| | | | | | | |
Collapse
|
66
|
Nakano T, Kontani K, Kurosu H, Katada T, Hoshi M, Chiba K. G-protein betagamma subunit-dependent phosphorylation of 62-kDa protein in the early signaling pathway of starfish oocyte maturation induced by 1-methyladenine. Dev Biol 1999; 209:200-9. [PMID: 10208753 DOI: 10.1006/dbio.1999.9248] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In starfish oocytes, maturation is induced by a hormone, 1-methyladenine (1-MA), that binds to the receptors exposed to the outer surface of the plasma membrane. The signal of 1-MA stimulates the heterotrimeric G protein, resulting in dissociation of the betagamma subunit of G protein (Gbetagamma) from a pertussis toxin-sensitive Gi-type alpha subunit. To investigate the targets for Gbetagamma, we analyzed 1-MA- or Gbetagamma-dependent phosphorylation using in vivo and in vitro systems. A 62-kDa protein was phosphorylated immediately after 1-MA treatment in intact oocytes. In the cell-free preparations, the 62-kDa protein was also phosphorylated on serine residue(s) immediately after addition of 1-MA or Gbetagamma. The Gbetagamma-dependent phosphorylation of the 62-kDa protein was inhibited by wortmannin or LY294002, which are mechanistically different inhibitors of phosphatidylinositol 3-kinase (PI3K). LY294002 also inhibited Gbetagamma- as well as 1-MA-induced maturation of oocytes. Taken together, these results indicate that the 62-kDa protein functions downstream of Gbetagamma and PI3K in the early signaling pathway of 1-MA-induced starfish oocyte maturation. The phosphorylation of the 62-kDa protein may be required for the activation of maturation-promoting factor.
Collapse
Affiliation(s)
- T Nakano
- Department of Biology, Ochanomizu University, 2-1-1 Ohtsuka, Tokyo, 112-8610, Japan
| | | | | | | | | | | |
Collapse
|
67
|
Carroll DJ, Albay DT, Terasaki M, Jaffe LA, Foltz KR. Identification of PLCgamma-dependent and -independent events during fertilization of sea urchin eggs. Dev Biol 1999; 206:232-47. [PMID: 9986735 DOI: 10.1006/dbio.1998.9145] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
At fertilization, sea urchin eggs undergo a series of activation events, including a Ca2+ action potential, Ca2+ release from the endoplasmic reticulum, an increase in intracellular pH, sperm pronuclear formation, MAP kinase dephosphorylation, and DNA synthesis. To examine which of these events might be initiated by activation of phospholipase Cgamma (PLCgamma), which produces the second messengers inositol trisphosphate (IP3) and diacylglycerol, we used recombinant SH2 domains of PLCgamma as specific inhibitors. Sea urchin eggs were co-injected with a GST fusion protein composed of the two tandem SH2 domains of bovine PLCgamma and (1) Ca2+ green dextran to monitor intracellular free Ca2+, (2) BCECF dextran to monitor intracellular pH, (3) Oregon Green dUTP to monitor DNA synthesis, or (4) fluorescein 70-kDa dextran to monitor nuclear envelope formation. Microinjection of the tandem SH2 domains of PLCgamma produced a concentration-dependent inhibition of Ca2+ release and also inhibited cortical granule exocytosis, cytoplasmic alkalinization, MAP kinase dephosphorylation, DNA synthesis, and cleavage after fertilization. However, the Ca2+ action potential, sperm entry, and sperm pronuclear formation were not prevented by injection of the PLCgammaSH2 domain protein. Microinjection of a control protein, the tandem SH2 domains of the phosphatase SHP2, had no effect on Ca2+ release, cortical granule exocytosis, DNA synthesis, or cleavage. Specificity of the inhibitory action of the PLCgammaSH2 domains was further indicated by the finding that microinjection of PLCgammaSH2 domains that had been point mutated at a critical arginine did not inhibit Ca release at fertilization. Additionally, Ca2+ release in response to microinjection of IP3, cholera toxin, cADP ribose, or cGMP was not inhibited by the PLCgammaSH2 fusion protein. These results indicate that PLCgamma plays a key role in several fertilization events in sea urchin eggs, including Ca2+ release and DNA synthesis, but that the action potential, sperm entry, and male pronuclear formation can occur in the absence of PLCgamma activation or Ca2+ increase.
Collapse
Affiliation(s)
- D J Carroll
- Department of Molecular, Cellular and Developmental Biology and the Marine Science Institute, University of California at Santa Barbara, 93106-9610, USA
| | | | | | | | | |
Collapse
|