51
|
Ammam F, Tremblay PL, Lizak DM, Zhang T. Effect of tungstate on acetate and ethanol production by the electrosynthetic bacterium Sporomusa ovata. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:163. [PMID: 27493685 PMCID: PMC4973070 DOI: 10.1186/s13068-016-0576-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/27/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Microbial electrosynthesis (MES) and gas fermentation are bioenergy technologies in which a microbial catalyst reduces CO2 into organic carbon molecules with electrons from the cathode of a bioelectrochemical system or from gases such as H2. The acetogen Sporomusa ovata has the capacity of reducing CO2 into commodity chemicals by both gas fermentation and MES. Acetate is often the only product generated by S. ovata during autotrophic growth. RESULTS In this study, trace elements in S. ovata growth medium were optimized to improve MES and gas fermentation productivity. Augmenting tungstate concentration resulted in a 2.9-fold increase in ethanol production by S. ovata during H2:CO2-dependent growth. It also promoted electrosynthesis of ethanol in a S. ovata-driven MES reactor and increased acetate production 4.4-fold compared to unmodified medium. Furthermore, fatty acids propionate and butyrate were successfully converted to their corresponding alcohols 1-propanol and 1-butanol by S. ovata during gas fermentation. Increasing tungstate concentration enhanced conversion efficiency for both propionate and butyrate. Gene expression analysis suggested that tungsten-containing aldehyde ferredoxin oxidoreductases (AORs) and a tungsten-containing formate dehydrogenase (FDH) were involved in the improved biosynthesis of acetate, ethanol, 1-propanol, and 1-butanol. AORs and FDH contribute to the fatty acids re-assimilation pathway and the Wood-Ljungdahl pathway, respectively. CONCLUSIONS This study presented here shows that optimization of microbial catalyst growth medium can improve productivity and lead to the biosynthesis of different products by gas fermentation and MES. It also provides insights on the metabolism of biofuels production in acetogens and demonstrates that S. ovata has an important untapped metabolic potential for the production of other chemicals than acetate via CO2-converting bioprocesses including MES.
Collapse
Affiliation(s)
- Fariza Ammam
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970 Hørsholm, Denmark
| | - Pier-Luc Tremblay
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970 Hørsholm, Denmark
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
| | - Dawid M. Lizak
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970 Hørsholm, Denmark
| | - Tian Zhang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970 Hørsholm, Denmark
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
52
|
Maddock DJ, Patrick WM, Gerth ML. Substitutions at the cofactor phosphate-binding site of a clostridial alcohol dehydrogenase lead to unexpected changes in substrate specificity. Protein Eng Des Sel 2015; 28:251-8. [PMID: 26034298 PMCID: PMC4498498 DOI: 10.1093/protein/gzv028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/05/2015] [Indexed: 12/22/2022] Open
Abstract
Changing the cofactor specificity of an enzyme from nicotinamide adenine dinucleotide 2′-phosphate (NADPH) to the more abundant NADH is a common strategy for increasing overall enzyme efficiency in microbial metabolic engineering. The aim of this study was to switch the cofactor specificity of the primary–secondary alcohol dehydrogenase from Clostridium autoethanogenum, a bacterium with considerable promise for the bio-manufacturing of fuels and other petrochemicals, from strictly NADPH-dependent to NADH-dependent. We used insights from a homology model to build a site-saturation library focussed on residue S199, the position deemed most likely to disrupt binding of the 2′-phosphate of NADPH. Although the CaADH(S199X) library did not yield any NADH-dependent enzymes, it did reveal that substitutions at the cofactor phosphate-binding site can cause unanticipated changes in the substrate specificity of the enzyme. Using consensus-guided site-directed mutagenesis, we were able to create an enzyme that was stringently NADH-dependent, albeit with a concomitant reduction in activity. This study highlights the role that distal residues play in substrate specificity and the complexity of enzyme–cofactor interactions.
Collapse
Affiliation(s)
- Danielle J Maddock
- Department of Biochemistry, University of Otago, Dunedin 9010, New Zealand
| | - Wayne M Patrick
- Department of Biochemistry, University of Otago, Dunedin 9010, New Zealand
| | - Monica L Gerth
- Department of Biochemistry, University of Otago, Dunedin 9010, New Zealand
| |
Collapse
|
53
|
Dhoke GV, Davari MD, Schwaneberg U, Bocola M. QM/MM Calculations Revealing the Resting and Catalytic States in Zinc-Dependent Medium-Chain Dehydrogenases/Reductases. ACS Catal 2015. [DOI: 10.1021/cs501524k] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gaurao V. Dhoke
- RWTH Aachen University, Chair of Biotechnology, Worringer Weg 3, D-52074 Aachen, Germany
| | - Mehdi D. Davari
- RWTH Aachen University, Chair of Biotechnology, Worringer Weg 3, D-52074 Aachen, Germany
| | - Ulrich Schwaneberg
- RWTH Aachen University, Chair of Biotechnology, Worringer Weg 3, D-52074 Aachen, Germany
| | - Marco Bocola
- RWTH Aachen University, Chair of Biotechnology, Worringer Weg 3, D-52074 Aachen, Germany
| |
Collapse
|
54
|
Characterization of a (2R,3R)-2,3-Butanediol Dehydrogenase from Rhodococcus erythropolis WZ010. Molecules 2015; 20:7156-73. [PMID: 25903366 PMCID: PMC6272300 DOI: 10.3390/molecules20047156] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/13/2015] [Accepted: 04/14/2015] [Indexed: 11/17/2022] Open
Abstract
The gene encoding a (2R,3R)-2,3-butanediol dehydrogenase from Rhodococcus erythropolis WZ010 (ReBDH) was over-expressed in Escherichia coli and the resulting recombinant ReBDH was successfully purified by Ni-affinity chromatography. The purified ReBDH in the native form was found to exist as a monomer with a calculated subunit size of 37180, belonging to the family of the zinc-containing alcohol dehydrogenases. The enzyme was NAD(H)-specific and its optimal activity for acetoin reduction was observed at pH 6.5 and 55 °C. The optimal pH and temperature for 2,3-butanediol oxidation were pH 10 and 45 °C, respectively. The enzyme activity was inhibited by ethylenediaminetetraacetic acid (EDTA) or metal ions Al3+, Zn2+, Fe2+, Cu2+ and Ag+, while the addition of 10% (v/v) dimethyl sulfoxide (DMSO) in the reaction mixture increased the activity by 161.2%. Kinetic parameters of the enzyme showed lower Km values and higher catalytic efficiency for diacetyl and NADH in comparison to those for (2R,3R)-2,3-butanediol and NAD+. The activity of acetoin reduction was 7.7 times higher than that of (2R,3R)-2,3-butanediol oxidation when ReBDH was assayed at pH 7.0, suggesting that ReBDH-catalyzed reaction in vivo might favor (2R,3R)-2,3-butanediol formation rather than (2R,3R)-2,3-butanediol oxidation. The enzyme displayed absolute stereospecificity in the reduction of diacetyl to (2R,3R)-2,3-butanediol via (R)-acetoin, demonstrating its potential application on the synthesis of (R)-chiral alcohols.
Collapse
|
55
|
Nealon CM, Musa MM, Patel JM, Phillips RS. Controlling Substrate Specificity and Stereospecificity of Alcohol Dehydrogenases. ACS Catal 2015. [DOI: 10.1021/cs501457v] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christopher M. Nealon
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Musa M. Musa
- Department
of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Kingdom of Saudi Arabia
| | - Jay M. Patel
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Robert S. Phillips
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
- Department
of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
56
|
Man H, Gargiulo S, Frank A, Hollmann F, Grogan G. Structure of the NADH-dependent thermostable alcohol dehydrogenase TADH from Thermus sp. ATN1 provides a platform for engineering specificity and improved compatibility with inorganic cofactor-regeneration catalysts. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
57
|
Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary-secondary alcohol dehydrogenase. Appl Environ Microbiol 2014; 80:3394-403. [PMID: 24657865 DOI: 10.1128/aem.00301-14] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acetogenic bacteria use CO and/or CO2 plus H2 as their sole carbon and energy sources. Fermentation processes with these organisms hold promise for producing chemicals and biofuels from abundant waste gas feedstocks while simultaneously reducing industrial greenhouse gas emissions. The acetogen Clostridium autoethanogenum is known to synthesize the pyruvate-derived metabolites lactate and 2,3-butanediol during gas fermentation. Industrially, 2,3-butanediol is valuable for chemical production. Here we identify and characterize the C. autoethanogenum enzymes for lactate and 2,3-butanediol biosynthesis. The putative C. autoethanogenum lactate dehydrogenase was active when expressed in Escherichia coli. The 2,3-butanediol pathway was reconstituted in E. coli by cloning and expressing the candidate genes for acetolactate synthase, acetolactate decarboxylase, and 2,3-butanediol dehydrogenase. Under anaerobic conditions, the resulting E. coli strain produced 1.1 ± 0.2 mM 2R,3R-butanediol (23 μM h(-1) optical density unit(-1)), which is comparable to the level produced by C. autoethanogenum during growth on CO-containing waste gases. In addition to the 2,3-butanediol dehydrogenase, we identified a strictly NADPH-dependent primary-secondary alcohol dehydrogenase (CaADH) that could reduce acetoin to 2,3-butanediol. Detailed kinetic analysis revealed that CaADH accepts a range of 2-, 3-, and 4-carbon substrates, including the nonphysiological ketones acetone and butanone. The high activity of CaADH toward acetone led us to predict, and confirm experimentally, that C. autoethanogenum can act as a whole-cell biocatalyst for converting exogenous acetone to isopropanol. Together, our results functionally validate the 2,3-butanediol pathway from C. autoethanogenum, identify CaADH as a target for further engineering, and demonstrate the potential of C. autoethanogenum as a platform for sustainable chemical production.
Collapse
|
58
|
Molecular characterization of an NADPH-dependent acetoin reductase/2,3-butanediol dehydrogenase from Clostridium beijerinckii NCIMB 8052. Appl Environ Microbiol 2014; 80:2011-20. [PMID: 24441158 DOI: 10.1128/aem.04007-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acetoin reductase is an important enzyme for the fermentative production of 2,3-butanediol, a chemical compound with a very broad industrial use. Here, we report on the discovery and characterization of an acetoin reductase from Clostridium beijerinckii NCIMB 8052. An in silico screen of the C. beijerinckii genome revealed eight potential acetoin reductases. One of them (CBEI_1464) showed substantial acetoin reductase activity after expression in Escherichia coli. The purified enzyme (C. beijerinckii acetoin reductase [Cb-ACR]) was found to exist predominantly as a homodimer. In addition to acetoin (or 2,3-butanediol), other secondary alcohols and corresponding ketones were converted as well, provided that another electronegative group was attached to the adjacent C-3 carbon. Optimal activity was at pH 6.5 (reduction) and 9.5 (oxidation) and around 68°C. Cb-ACR accepts both NADH and NADPH as electron donors; however, unlike closely related enzymes, NADPH is preferred (Km, 32 μM). Cb-ACR was compared to characterized close homologs, all belonging to the "threonine dehydrogenase and related Zn-dependent dehydrogenases" (COG1063). Metal analysis confirmed the presence of 2 Zn(2+) atoms. To gain insight into the substrate and cofactor specificity, a structural model was constructed. The catalytic zinc atom is likely coordinated by Cys37, His70, and Glu71, while the structural zinc site is probably composed of Cys100, Cys103, Cys106, and Cys114. Residues determining NADP specificity were predicted as well. The physiological role of Cb-ACR in C. beijerinckii is discussed.
Collapse
|
59
|
Maj A, Dziewit L, Czarnecki J, Wlodarczyk M, Baj J, Skrzypczyk G, Giersz D, Bartosik D. Plasmids of carotenoid-producing Paracoccus spp. (Alphaproteobacteria) - structure, diversity and evolution. PLoS One 2013; 8:e80258. [PMID: 24260361 PMCID: PMC3832669 DOI: 10.1371/journal.pone.0080258] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/11/2013] [Indexed: 11/25/2022] Open
Abstract
Plasmids are components of many bacterial genomes. They enable the spread of a large pool of genetic information via lateral gene transfer. Many bacterial strains contain mega-sized replicons and these are particularly common in Alphaproteobacteria. Considerably less is known about smaller alphaproteobacterial plasmids. We analyzed the genomes of 14 such plasmids residing in 4 multireplicon carotenoid-producing strains of the genus Paracoccus (Alphaproteobacteria): P. aestuarii DSM 19484, P. haeundaensis LG P-21903, P. marcusii DSM 11574 and P. marcusii OS22. Comparative analyses revealed mosaic structures of the plasmids and recombinational shuffling of diverse genetic modules involved in (i) plasmid replication, (ii) stabilization (including toxin-antitoxin systems of the relBE/parDE, tad-ata, higBA, mazEF and toxBA families) and (iii) mobilization for conjugal transfer (encoding relaxases of the MobQ, MobP or MobV families). A common feature of the majority of the plasmids is the presence of AT-rich sequence islets (located downstream of exc1-like genes) containing genes, whose homologs are conserved in the chromosomes of many bacteria (encoding e.g. RelA/SpoT, SMC-like proteins and a retron-type reverse transcriptase). The results of this study have provided insight into the diversity and plasticity of plasmids of Paracoccus spp., and of the entire Alphaproteobacteria. Some of the identified plasmids contain replication systems not described previously in this class of bacteria. The composition of the plasmid genomes revealed frequent transfer of chromosomal genes into plasmids, which significantly enriches the pool of mobile DNA that can participate in lateral transfer. Many strains of Paracoccus spp. have great biotechnological potential, and the plasmid vectors constructed in this study will facilitate genetic studies of these bacteria.
Collapse
Affiliation(s)
- Anna Maj
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Eram MS, Ma K. Decarboxylation of pyruvate to acetaldehyde for ethanol production by hyperthermophiles. Biomolecules 2013; 3:578-96. [PMID: 24970182 PMCID: PMC4030962 DOI: 10.3390/biom3030578] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/02/2013] [Accepted: 08/15/2013] [Indexed: 11/16/2022] Open
Abstract
Pyruvate decarboxylase (PDC encoded by pdc) is a thiamine pyrophosphate (TPP)-containing enzyme responsible for the conversion of pyruvate to acetaldehyde in many mesophilic organisms. However, no pdc/PDC homolog has yet been found in fully sequenced genomes and proteomes of hyper/thermophiles. The only PDC activity reported in hyperthermophiles was a bifunctional, TPP- and CoA-dependent pyruvate ferredoxin oxidoreductase (POR)/PDC enzyme from the hyperthermophilic archaeon Pyrococcus furiosus. Another enzyme known to be involved in catalysis of acetaldehyde production from pyruvate is CoA-acetylating acetaldehyde dehydrogenase (AcDH encoded by mhpF and adhE). Pyruvate is oxidized into acetyl-CoA by either POR or pyruvate formate lyase (PFL), and AcDH catalyzes the reduction of acetyl-CoA to acetaldehyde in mesophilic organisms. AcDH is present in some mesophilic (such as clostridia) and thermophilic bacteria (e.g., Geobacillus and Thermoanaerobacter). However, no AcDH gene or protein homologs could be found in the released genomes and proteomes of hyperthermophiles. Moreover, no such activity was detectable from the cell-free extracts of different hyperthermophiles under different assay conditions. In conclusion, no commonly-known PDCs was found in hyperthermophiles. Instead of the commonly-known PDC, it appears that at least one multifunctional enzyme is responsible for catalyzing the non-oxidative decarboxylation of pyruvate to acetaldehyde in hyperthermophiles.
Collapse
Affiliation(s)
- Mohammad S Eram
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| | - Kesen Ma
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
61
|
Physicochemical characterization of a thermostable alcohol dehydrogenase from Pyrobaculum aerophilum. PLoS One 2013; 8:e63828. [PMID: 23755111 PMCID: PMC3673990 DOI: 10.1371/journal.pone.0063828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 03/27/2013] [Indexed: 11/25/2022] Open
Abstract
In this work we characterize an alcohol dehydrogenase (ADH) from the hyperthermophilic archaeon Pyrobaculum aerophilum (PyAeADHII). We have previously found that PyAeADHII has no activity when standard ADH substrates are used but is active when α-tetralone is used as substrate. Here, to gain insights into enzyme function, we screened several chemical libraries for enzymatic modulators using an assay employing α-tetralone. The results indicate that PyAeADHII activity in the presence of α-tetralone was inhibited by compounds such as flunarizine. We also examined metal coordination of the enzyme in solution by performing metal substitution of the enzyme-bound zinc (Zn2+) with cobalt. The solution-based absorption spectra for cobalt substituted PyAeADHII supports substitution at the structural Zn2+ site. To gain structural insight, we obtained the crystal structure of both wild-type and cobalt-substituted PyAeADHII at 1.75 Å and 2.20 Å resolution, respectively. The X-ray data confirmed one metal ion per monomer present only at the structural site with otherwise close conservation to other ADH enzymes. We next determined the co-crystal structure of the NADPH-bound form of the enzyme at 2.35 Å resolution to help define the active site region of the enzyme and this data shows close structural conservation with horse ADH, despite the lack of a catalytic Zn2+ ion in PyAeADHII. Modeling of α-tetralone into the NADPH bound structure suggests an arginine as a possible catalytic residue. The data presented here can yield a better understanding of alcohol dehydrogenases lacking the catalytic zinc as well as the structural features inherent to thermostable enzymes.
Collapse
|
62
|
Çelik A, Aktaş F. A new NADH-dependent, zinc containing alcohol dehydrogenase from Bacillus thuringiensis serovar israelensis involved in oxidations of short to medium chain primary alcohols. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
63
|
Agudo R, Roiban GD, Reetz MT. Induced Axial Chirality in Biocatalytic Asymmetric Ketone Reduction. J Am Chem Soc 2012; 135:1665-8. [DOI: 10.1021/ja3092517] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rubén Agudo
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein
Str., 35032 Marburg, Germany
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1,
45470 Mülheim an der Ruhr, Germany
| | - Gheorghe-Doru Roiban
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein
Str., 35032 Marburg, Germany
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1,
45470 Mülheim an der Ruhr, Germany
| | - Manfred T. Reetz
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein
Str., 35032 Marburg, Germany
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1,
45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
64
|
Collas F, Kuit W, Clément B, Marchal R, López-Contreras AM, Monot F. Simultaneous production of isopropanol, butanol, ethanol and 2,3-butanediol by Clostridium acetobutylicum ATCC 824 engineered strains. AMB Express 2012; 2:45. [PMID: 22909015 PMCID: PMC3583297 DOI: 10.1186/2191-0855-2-45] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/06/2012] [Indexed: 01/19/2023] Open
Abstract
Isopropanol represents a widely-used commercial alcohol which is currently produced from petroleum. In nature, isopropanol is excreted by some strains of Clostridium beijerinckii, simultaneously with butanol and ethanol during the isopropanol butanol ethanol (IBE) fermentation. In order to increase isopropanol production, the gene encoding the secondary-alcohol dehydrogenase enzyme from C. beijerinckii NRRL B593 (adh) which catalyzes the reduction of acetone to isopropanol, was cloned into the acetone, butanol and ethanol (ABE)-producing strain C. acetobutylicum ATCC 824. The transformants showed high capacity for conversion of acetone into isopropanol (> 95%). To increase isopropanol production levels in ATCC 824, polycistronic transcription units containing, in addition to the adh gene, homologous genes of the acetoacetate decarboxylase (adc), and/or the acetoacetyl-CoA:acetate/butyrate:CoA transferase subunits A and B (ctfA and ctfB) were constructed and introduced into the wild-type strain. Combined overexpression of the ctfA and ctfB genes resulted in enhanced solvent production. In non-pH-controlled batch cultures, the total solvents excreted by the transformant overexpressing the adh, ctfA, ctfB and adc genes were 24.4 g/L IBE (including 8.8 g/L isopropanol), while the control strain harbouring an empty plasmid produced only 20.2 g/L ABE (including 7.6 g/L acetone). The overexpression of the adc gene had limited effect on IBE production. Interestingly, all transformants with the adh gene converted acetoin (a minor fermentation product) into 2,3-butanediol, highlighting the wide metabolic versatility of solvent-producing Clostridia.
Collapse
|
65
|
Pennacchio A, Sannino V, Sorrentino G, Rossi M, Raia CA, Esposito L. Biochemical and structural characterization of recombinant short-chain NAD(H)-dependent dehydrogenase/reductase from Sulfolobus acidocaldarius highly enantioselective on diaryl diketone benzil. Appl Microbiol Biotechnol 2012; 97:3949-64. [DOI: 10.1007/s00253-012-4273-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 10/28/2022]
|
66
|
Sutak R, Hrdy I, Dolezal P, Cabala R, Sedinová M, Lewin J, Harant K, Müller M, Tachezy J. Secondary alcohol dehydrogenase catalyzes the reduction of exogenous acetone to 2-propanol in Trichomonas vaginalis. FEBS J 2012; 279:2768-80. [PMID: 22686835 DOI: 10.1111/j.1742-4658.2012.08661.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Secondary alcohols such as 2-propanol are readily produced by various anaerobic bacteria that possess secondary alcohol dehydrogenase (S-ADH), although production of 2-propanol is rare in eukaryotes. Specific bacterial-type S-ADH has been identified in a few unicellular eukaryotes, but its function is not known and the production of secondary alcohols has not been studied. We purified and characterized S-ADH from the human pathogen Trichomonas vaginalis. The kinetic properties and thermostability of T. vaginalis S-ADH were comparable with bacterial orthologues. The substantial activity of S-ADH in the parasite's cytosol was surprising, because only low amounts of ethanol and trace amounts of secondary alcohols were detected as metabolic end products. However, S-ADH provided the parasite with a high capacity to scavenge and reduce external acetone to 2-propanol. To maintain redox balance, the demand for reducing power to metabolize external acetone was compensated for by decreased cytosolic reduction of pyruvate to lactate and by hydrogenosomal metabolism of pyruvate. We speculate that hydrogen might be utilized to maintain cytosolic reducing power. The high activity of Tv-S-ADH together with the ability of T. vaginalis to modulate the metabolic fluxes indicate efficacious metabolic responsiveness that could be advantageous for rapid adaptation of the parasite to changes in the host environment.
Collapse
Affiliation(s)
- Robert Sutak
- Department of Parasitology, Faculty of Science, Charles University in Prague, Vinicna 7, Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Geraniol and geranial dehydrogenases induced in anaerobic monoterpene degradation by Castellaniella defragrans. Appl Environ Microbiol 2012; 78:2128-36. [PMID: 22286981 DOI: 10.1128/aem.07226-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Castellaniella defragrans is a Betaproteobacterium capable of coupling the oxidation of monoterpenes with denitrification. Geraniol dehydrogenase (GeDH) activity was induced during growth with limonene in comparison to growth with acetate. The N-terminal sequence of the purified enzyme directed the cloning of the corresponding open reading frame (ORF), the first bacterial gene for a GeDH (geoA, for geraniol oxidation pathway). The C. defragrans geraniol dehydrogenase is a homodimeric enzyme that affiliates with the zinc-containing benzyl alcohol dehydrogenases in the superfamily of medium-chain-length dehydrogenases/reductases (MDR). The purified enzyme most efficiently catalyzes the oxidation of perillyl alcohol (k(cat)/K(m) = 2.02 × 10(6) M(-1) s(-1)), followed by geraniol (k(cat)/K(m) = 1.57 × 10(6) M(-1) s(-1)). Apparent K(m) values of <10 μM are consistent with an in vivo toxicity of geraniol above 5 μM. In the genetic vicinity of geoA is a putative aldehyde dehydrogenase that was named geoB and identified as a highly abundant protein during growth with phellandrene. Extracts of Escherichia coli expressing geoB demonstrated in vitro a geranial dehydrogenase (GaDH) activity. GaDH activity was independent of coenzyme A. The irreversible formation of geranic acid allows for a metabolic flux from β-myrcene via linalool, geraniol, and geranial to geranic acid.
Collapse
|
68
|
Saxena J, Tanner RS. Optimization of a corn steep medium for production of ethanol from synthesis gas fermentation by Clostridium ragsdalei. World J Microbiol Biotechnol 2011; 28:1553-61. [DOI: 10.1007/s11274-011-0959-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 11/17/2011] [Indexed: 11/29/2022]
|
69
|
Kang C, Hayes R, Sanchez EJ, Webb BN, Li Q, Hooper T, Nissen MS, Xun L. Furfural reduction mechanism of a zinc-dependent alcohol dehydrogenase from Cupriavidus necator JMP134. Mol Microbiol 2011; 83:85-95. [PMID: 22081946 DOI: 10.1111/j.1365-2958.2011.07914.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
FurX is a tetrameric Zn-dependent alcohol dehydrogenase (ADH) from Cupriavidus necator JMP134. The enzyme rapidly reduces furfural with NADH as the reducing power. For the first time among characterized ADHs, the high-resolution structures of all reaction steps were obtained in a time-resolved manner, thereby illustrating the complete catalytic events of NADH-dependent reduction of furfural and the dynamic Zn(2+) coordination among Glu66, water, substrate and product. In the fully closed conformation of the NADH complex, the catalytic turnover proved faster than observed for the partially closed conformation due to an effective proton transfer network. The domain motion triggered by NAD(H) association/dissociation appeared to facilitate dynamic interchanges in Zn(2+) coordination with substrate and product molecules, ultimately increasing the enzymatic turnover rate. NAD(+) dissociation appeared to be a slow process, involving multiple steps in concert with a domain opening and reconfiguration of Glu66. This agrees with the report that the cofactor is not dissociated from FurX during ethanol-dependent reduction of furfural, in which ethanol reduces NAD(+) to NADH that is subsequently used for furfural reduction.
Collapse
Affiliation(s)
- ChulHee Kang
- School of Molecular Biosciences Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Lawson PA, Allen TD, Caldwell ME, Tanner RS. Anaerobes: a piece in the puzzle for alternative biofuels. Anaerobe 2011; 17:206-10. [PMID: 21699990 DOI: 10.1016/j.anaerobe.2011.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 05/24/2011] [Indexed: 11/15/2022]
Abstract
Although much newsprint is devoted to the subject of reducing the United States and other major developed countries dependence on their respective foreign energy sources; the most challenging issues for society is to provide long-term, sustainable energy sources to accommodate the global population as a whole. The projected population of planet Earth for the year 2050 is estimated to be in excess of 9 billion. With hydrocarbon-based energy becoming limiting it is unlikely that one type of energy will alone replace our dependence on this source. So-called "green" technologies that include solar, wind and wave powers are now being explored to reduce on traditional hydrocarbon-based fuel sources. The diverse and functional properties of microbes, and in particular anaerobes, are now being utilized in the production of biofuels and may provide one piece of the jigsaw for future energy requirements. Here we present some results of a screening program to identify and characterize a number of carbon monoxide oxidizing, ethanol-producing acetogenic anaerobes phylogenetically located within the Clostridiales.
Collapse
Affiliation(s)
- Paul A Lawson
- Department of Botany and Microbiology, University of Oklahoma, Norman, 73019, USA.
| | | | | | | |
Collapse
|
71
|
Characterization of a zinc-containing alcohol dehydrogenase with stereoselectivity from the hyperthermophilic archaeon Thermococcus guaymasensis. J Bacteriol 2011; 193:3009-19. [PMID: 21515780 DOI: 10.1128/jb.01433-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An alcohol dehydrogenase (ADH) from hyperthermophilic archaeon Thermococcus guaymasensis was purified to homogeneity and was found to be a homotetramer with a subunit size of 40 ± 1 kDa. The gene encoding the enzyme was cloned and sequenced; this gene had 1,095 bp, corresponding to 365 amino acids, and showed high sequence homology to zinc-containing ADHs and l-threonine dehydrogenases with binding motifs of catalytic zinc and NADP(+). Metal analyses revealed that this NADP(+)-dependent enzyme contained 0.9 ± 0.03 g-atoms of zinc per subunit. It was a primary-secondary ADH and exhibited a substrate preference for secondary alcohols and corresponding ketones. Particularly, the enzyme with unusual stereoselectivity catalyzed an anti-Prelog reduction of racemic (R/S)-acetoin to (2R,3R)-2,3-butanediol and meso-2,3-butanediol. The optimal pH values for the oxidation and formation of alcohols were 10.5 and 7.5, respectively. Besides being hyperthermostable, the enzyme activity increased as the temperature was elevated up to 95°C. The enzyme was active in the presence of methanol up to 40% (vol/vol) in the assay mixture. The reduction of ketones underwent high efficiency by coupling with excess isopropanol to regenerate NADPH. The kinetic parameters of the enzyme showed that the apparent K(m) values and catalytic efficiency for NADPH were 40 times lower and 5 times higher than those for NADP(+), respectively. The physiological roles of the enzyme were proposed to be in the formation of alcohols such as ethanol or acetoin concomitant to the NADPH oxidation.
Collapse
|
72
|
Musa MM, Phillips RS. Recent advances in alcohol dehydrogenase-catalyzed asymmetric production of hydrophobic alcohols. Catal Sci Technol 2011. [DOI: 10.1039/c1cy00160d] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
73
|
Saxena J, Tanner RS. Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen, Clostridium ragsdalei. J Ind Microbiol Biotechnol 2010; 38:513-21. [PMID: 20694853 DOI: 10.1007/s10295-010-0794-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 07/21/2010] [Indexed: 10/19/2022]
Abstract
The effect of trace metal ions (Co²+, Cu²+, Fe²+, Mn²+, Mo⁶+, Ni²+, Zn²+, SeO₄⁻ and WO₄⁻) on growth and ethanol production by an ethanologenic acetogen, Clostridium ragsdalei was investigated in CO:CO₂-grown cells. A standard acetogen medium (ATCC medium no. 1754) was manipulated by varying the concentrations of trace metals in the media. Increasing the individual concentrations of Ni²+, Zn²+, SeO₄⁻ and WO₄⁻ from 0.84, 6.96, 1.06, and 0.68 μM in the standard trace metals solution to 8.4, 34.8, 5.3, and 6.8 μM, respectively, increased ethanol production from 35.73 mM under standard metals concentration to 176.5, 187.8, 54.4, and 72.3 mM, respectively. Nickel was necessary for growth of C. ragsdalei. Growth rate (μ) of C. ragsdalei improved from 0.34 to 0.49 (day⁻¹), and carbon monoxide dehydrogenase (CODH) and hydrogenase (H₂ase)-specific activities improved from 38.45 and 0.35 to 48.5 and 1.66 U/mg protein, respectively, at optimum concentration of Ni²+. At optimum concentrations of WO₄⁻ and SeO₄⁻, formate dehydrogenase (FDH) activity improved from 32.3 to 42.6 and 45.4 U/mg protein, respectively. Ethanol production and the activity of FDH reduced from 35 mM and 32.3 U/mg protein to 1.14 mM and 8.79 U/mg protein, respectively, upon elimination of WO₄⁻ from the medium. Although increased concentration of Zn²+ enhanced growth and ethanol production, the activities of CODH, FDH, H₂ase and alcohol dehydrogenase (ADH) were not affected by varying the Zn²+ concentration. Omitting Fe²+ from the medium decreased ethanol production from 35.7 to 6.30 mM and decreased activities of CODH, FDH, H₂ase and ADH from 38.5, 32.3, 0.35, and 0.68 U/mg protein to 9.07, 7.01, 0.10, and 0.24 U/mg protein, respectively. Ethanol production improved from 35 to 54 mM when Cu²+ was removed from the medium. The optimization of trace metals concentration in the fermentation medium improved enzyme activities (CODH, FDH, and H₂ase), growth and ethanol production by C. ragsdalei.
Collapse
Affiliation(s)
- Jyotisna Saxena
- Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA.
| | | |
Collapse
|
74
|
Protsko C, Vieille C, Laivenieks M, Prasad L, Sanders DAR, Delbaere LTJ. Crystallization and preliminary X-ray diffraction analysis of the Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase I86A mutant. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:831-3. [PMID: 20606285 DOI: 10.1107/s1744309110018981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 05/20/2010] [Indexed: 11/10/2022]
Abstract
The Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase I86A mutant is stereospecific for (R)-alcohols instead of (S)-alcohols. Pyramidal crystals grown in the presence of (R)-phenylethanol via the hanging-drop vapour-diffusion method diffracted to 3.2 A resolution at the Canadian Light Source. The crystal belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 80.23, b = 124.90, c = 164.80 A. The structure was solved by molecular replacement using the structure of T. brockii SADH (PDB entry 1ykf).
Collapse
Affiliation(s)
- Carla Protsko
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | | | | | |
Collapse
|
75
|
Kim B, Sullivan RP, Zhao H. Cloning, characterization, and engineering of fungal L-arabinitol dehydrogenases. Appl Microbiol Biotechnol 2010; 87:1407-14. [DOI: 10.1007/s00253-010-2593-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Revised: 03/26/2010] [Accepted: 03/29/2010] [Indexed: 11/24/2022]
|
76
|
Tiwari MK, Moon HJ, Jeya M, Lee JK. Cloning and characterization of a thermostable xylitol dehydrogenase from Rhizobium etli CFN42. Appl Microbiol Biotechnol 2010; 87:571-81. [PMID: 20177886 DOI: 10.1007/s00253-010-2478-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 01/26/2010] [Accepted: 01/27/2010] [Indexed: 11/29/2022]
Abstract
An NAD(+)-dependent xylitol dehydrogenase from Rhizobium etli CFN42 (ReXDH) was cloned and overexpressed in Escherichia coli. The DNA sequence analysis revealed an open reading frame of 1,044 bp, capable of encoding a polypeptide of 347 amino acid residues with a calculated molecular mass of 35,858 Da. The ReXDH protein was purified as an active soluble form using GST affinity chromatography. The molecular mass of the purified enzyme was estimated to be approximately 34 kDa by sodium dodecyl sulfate-polyacrylamide gel and approximately 135 kDa with gel filtration chromatography, suggesting that the enzyme is a homotetramer. Among various polyols, xylitol was the preferred substrate of ReXDH with a K (m) = 17.9 mM and k(cat) /K (m) = 0.5 mM(-1) s(-1) for xylitol. The enzyme had an optimal pH and temperature of 9.5 and 70 degrees C, respectively. Heat inactivation studies revealed a half life of the ReXDH at 40 degrees C of 120 min and a half denaturation temperature (T (1/2)) of 53.1 degrees C. ReXDH showed the highest optimum temperature and thermal stability among the known XDHs. Homology modeling and sequence analysis of ReXDH shed light on the factors contributing to the high thermostability of ReXDH. Although XDHs have been characterized from several other sources, ReXDH is distinguished from other XDHs by its high thermostability.
Collapse
Affiliation(s)
- Manish Kumar Tiwari
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 143-701, Korea
| | | | | | | |
Collapse
|
77
|
Biochemical characterization of a recombinant short-chain NAD(H)-dependent dehydrogenase/reductase from Sulfolobus acidocaldarius. Extremophiles 2010; 14:193-204. [PMID: 20049620 DOI: 10.1007/s00792-009-0298-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 12/16/2009] [Indexed: 10/20/2022]
Abstract
The gene encoding a novel alcohol dehydrogenase that belongs to the short-chain dehydrogenases/reductases (SDRs) superfamily was identified in the aerobic thermoacidophilic crenarchaeon Sulfolobus acidocaldarius strain DSM 639. The saadh gene was heterologously overexpressed in Escherichia coli, and the protein (SaADH) was purified to homogeneity and characterized. SaADH is a tetrameric enzyme consisting of identical 28,978-Da subunits, each composed of 264 amino acids. The enzyme has remarkable thermophilicity and thermal stability, displaying activity at temperatures up to 75 degrees C and a 30-min half-inactivation temperature of ~90 degrees C, and shows good tolerance to common organic solvents. SaADH has a strict requirement for NAD(H) as the coenzyme, and displays a preference for the reduction of alicyclic, bicyclic and aromatic ketones and alpha-keto esters, but is poorly active on aliphatic, cyclic and aromatic alcohols, and shows no activity on aldehydes. The enzyme catalyses the reduction of alpha-methyl and alpha-ethyl benzoylformate, and methyl o-chlorobenzoylformate with 100% conversion to methyl (S)-mandelate [17% enantiomeric excess (ee)], ethyl (R)-mandelate (50% ee), and methyl (R)-o-chloromandelate (72% ee), respectively, with an efficient in situ NADH-recycling system which involves glucose and a thermophilic glucose dehydrogenase. This study provides further evidence supporting the critical role of the D37 residue in discriminating NAD(H) from NAD(P)H in members of the SDR superfamily.
Collapse
|
78
|
Karabec M, Łyskowski A, Tauber KC, Steinkellner G, Kroutil W, Grogan G, Gruber K. Structural insights into substrate specificity and solvent tolerance in alcohol dehydrogenase ADH-‘A’ from Rhodococcus ruber DSM 44541. Chem Commun (Camb) 2010; 46:6314-6. [DOI: 10.1039/c0cc00929f] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
79
|
Weckbecker A, Gröger H, Hummel W. Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 120:195-242. [PMID: 20182929 DOI: 10.1007/10_2009_55] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dehydrogenases which depend on nicotinamide coenzymes are of increasing interest for the preparation of chiral compounds, either by reduction of a prochiral precursor or by oxidative resolution of their racemate. The regeneration of oxidized and reduced nicotinamide cofactors is a very crucial step because the use of these cofactors in stoichiometric amounts is too expensive for application. There are several possibilities to regenerate nicotinamide cofactors: established methods such as formate/formate dehydrogenase (FDH) for the regeneration of NADH, recently developed electrochemical methods based on new mediator structures, or the application of gene cloning methods for the construction of "designed" cells by heterologous expression of appropriate genes.A very promising approach is enzymatic cofactor regeneration. Only a few enzymes are suitable for the regeneration of oxidized nicotinamide cofactors. Glutamate dehydrogenase can be used for the oxidation of NADH as well as NADPH while L: -lactate dehydrogenase is able to oxidize NADH only. The reduction of NAD(+) is carried out by formate and FDH. Glucose-6-phosphate dehydrogenase and glucose dehydrogenase are able to reduce both NAD(+) and NADP(+). Alcohol dehydrogenases (ADHs) are either NAD(+)- or NADP(+)-specific. ADH from horse liver, for example, reduces NAD(+) while ADHs from Lactobacillus strains catalyze the reduction of NADP(+). These enzymes can be applied by their inclusion in whole cell biotransformations with an NAD(P)(+)-dependent primary reaction to achieve in situ the regeneration of the consumed cofactor.Another efficient method for the regeneration of nicotinamide cofactors is the electrochemical approach. Cofactors can be regenerated directly, for example at a carbon anode, or indirectly involving mediators such as redox catalysts based on transition-metal complexes.An increasing number of examples in technical scale applications are known where nicotinamide dependent enzymes were used together with cofactor regenerating enzymes.
Collapse
Affiliation(s)
- Andrea Weckbecker
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University of Düsseldorf, Research Centre Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | | | | |
Collapse
|
80
|
Musa M, Lott N, Laivenieks M, Watanabe L, Vieille C, Phillips R. A Single Point Mutation Reverses the Enantiopreference ofThermoanaerobacter ethanolicusSecondary Alcohol Dehydrogenase. ChemCatChem 2009. [DOI: 10.1002/cctc.200900033] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
81
|
Alteration of coenzyme specificity in halophilic NAD(P)+ glucose dehydrogenase by site-directed mutagenesis. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2008.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
82
|
Structure and function of the l-threonine dehydrogenase (TkTDH) from the hyperthermophilic archaeon Thermococcus kodakaraensis. J Struct Biol 2009; 168:294-304. [PMID: 19616102 DOI: 10.1016/j.jsb.2009.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 05/21/2009] [Accepted: 07/12/2009] [Indexed: 11/22/2022]
Abstract
The X-ray structure of the holo-form of l-threonine dehydrogenase (TDH) from Thermococcus kodakaraensis (TkTDH) has been determined at 2.4A resolution. TDH catalyses the NAD(+)-dependent oxidation of l-threonine to 2-amino-3-ketobutyrate, and is one of the first enzymes in this family to be solved by X-ray crystallography. The enzyme is a homo-tetramer, each monomer consisting of 350 amino acids that form two domains; a catalytic domain and a nicotinamide co-factor (NAD(+))-binding domain, which contains an alpha/beta Rossmann fold motif. An extended twelve-stranded beta-sheet is formed by the association of pairs of monomers in the tetramer. TkTDH shows strong overall structural similarity to TDHs from thermophiles and alcohol dehydrogenases (ADH) from lower life forms, despite low sequence homology, exhibiting the same overall fold of the monomer and assembly of the tetramer. The structure reveals the binding site of the essential co-factor NAD(+) which is present in all subunits. Docking studies suggest a mode of interaction of TDH with 2-amino-3-ketobutyrate CoA ligase, the subsequent enzyme in the pathway for conversion of threonine to glycine. TDH is known to form a stable functional complex with 2-amino-3-ketobutyrate ligase, most probably to shield an unstable intermediate.
Collapse
|
83
|
Weckbecker A, Hummel W. Cloning, expression, and characterization of an (R)-specific alcohol dehydrogenase fromLactobacillus kefir. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420600893827] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
84
|
Plapp BV. Conformational changes and catalysis by alcohol dehydrogenase. Arch Biochem Biophys 2009; 493:3-12. [PMID: 19583966 DOI: 10.1016/j.abb.2009.07.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/01/2009] [Accepted: 07/02/2009] [Indexed: 10/20/2022]
Abstract
As shown by X-ray crystallography, horse liver alcohol dehydrogenase undergoes a global conformational change upon binding of NAD(+) or NADH, involving a rotation of the catalytic domain relative to the coenzyme binding domain and the closing up of the active site to produce a catalytically efficient enzyme. The conformational change requires a complete coenzyme and is affected by various chemical or mutational substitutions that can increase the catalytic turnover by altering the kinetics of the isomerization and rate of dissociation of coenzymes. The binding of NAD(+) is kinetically limited by a unimolecular isomerization (corresponding to the conformational change) that is controlled by deprotonation of the catalytic zinc-water to produce a negatively-charged zinc-hydroxide, which can attract the positively-charged nicotinamide ring. The deprotonation is facilitated by His-51 acting through a hydrogen-bonded network to relay the proton to solvent. Binding of NADH also involves a conformational change, but the rate is very fast. After the enzyme binds NAD(+) and closes up, the substrate displaces the hydroxide bound to the catalytic zinc; this exchange may involve a double displacement reaction where the carboxylate group of a glutamate residue first displaces the hydroxide (inverting the tetrahedral coordination of the zinc), and then the exogenous ligand displaces the glutamate. The resulting enzyme-NAD(+)-alcoholate complex is poised for hydrogen transfer, and small conformational fluctuations may bring the reactants together so that the hydride ion is transferred by quantum mechanical tunneling. In the process, the nicotinamide ring may become puckered, as seen in structures of complexes of the enzyme with NADH. The conformational changes of alcohol dehydrogenase demonstrate the importance of protein dynamics in catalysis.
Collapse
Affiliation(s)
- Bryce V Plapp
- Department of Biochemistry, The University of Iowa, Iowa City, IA 52242-1109, USA.
| |
Collapse
|
85
|
Active site dynamics in the zinc-dependent medium chain alcohol dehydrogenase superfamily. Proc Natl Acad Sci U S A 2009; 106:779-84. [PMID: 19131516 DOI: 10.1073/pnas.0807529106] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite being the subject of intensive investigations, many aspects of the mechanism of the zinc-dependent medium chain alcohol dehydrogenase (MDR) superfamily remain contentious. We have determined the high-resolution structures of a series of binary and ternary complexes of glucose dehydrogenase, an MDR enzyme from Haloferax mediterranei. In stark contrast to the textbook MDR mechanism in which the zinc ion is proposed to remain stationary and attached to a common set of protein ligands, analysis of these structures reveals that in each complex, there are dramatic differences in the nature of the zinc ligation. These changes arise as a direct consequence of linked movements of the zinc ion, a zinc-bound bound water molecule, and the substrate during progression through the reaction. These results provide evidence for the molecular basis of proton traffic during catalysis, a structural explanation for pentacoordinate zinc ion intermediates, a unifying view for the observed patterns of metal ligation in the MDR family, and highlight the importance of dynamic fluctuations at the metal center in changing the electrostatic potential in the active site, thereby influencing the proton traffic and hydride transfer events.
Collapse
|
86
|
Kwiecień RA, Ayadi F, Nemmaoui Y, Silvestre V, Zhang BL, Robins RJ. Probing stereoselectivity and pro-chirality of hydride transfer during short-chain alcohol dehydrogenase activity: a combined quantitative 2H NMR and computational approach. Arch Biochem Biophys 2008; 482:42-51. [PMID: 19061855 DOI: 10.1016/j.abb.2008.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 11/04/2008] [Accepted: 11/08/2008] [Indexed: 10/21/2022]
Abstract
Different members of the alcohol oxidoreductase family can transfer the hydride of NAD(P)H to either the re- or the si-face of the substrate. The enantioselectivity of transfer is very variable, even for a range of substrates reduced by the same enzyme. Exploiting quantitative isotopic (2)H NMR to measure the transfer of (2)H from NAD(P)(2)H to ethanol, a range of enantiomeric excess between 0.38 and 0.98, depending on the origin of the enzyme and the nature of the cofactor, has been determined. Critically, in no case was only (R)-[1-(2)H]ethanol or (S)-[1-(2)H]ethanol obtained. By calculating the relative energies of the active site models for hydride transfer to the re- or si-face of short-chain aldehydes by alcohol dehydrogenase from Saccharomyces cerevisiae and Lactobacillus brevis, it is shown that the differences in the energy of the systems when the substrate is positioned with the alkyl group in one or the other pocket of the active site could play a role in determining stereoselectivity. These experiments help to provide insight into structural features that influence the potential catalytic flexibility of different alcohol dehydrogenase activities.
Collapse
Affiliation(s)
- Renata A Kwiecień
- Unit for Interdisciplinary Chemistry: Synthesis, Analysis, Modeling, UMR CNRS6230, CNRS, University of Nantes, 2 rue de la Houssinière, Nantes, France
| | | | | | | | | | | |
Collapse
|
87
|
Purification and characterization of a novel recombinant highly enantioselective short-chain NAD(H)-dependent alcohol dehydrogenase from Thermus thermophilus. Appl Environ Microbiol 2008; 74:3949-58. [PMID: 18456852 DOI: 10.1128/aem.00217-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene encoding a novel alcohol dehydrogenase (ADH) that belongs to the short-chain dehydrogenase/reductase (SDR) superfamily was identified in the extremely thermophilic, halotolerant gram-negative eubacterium Thermus thermophilus HB27. The T. thermophilus ADH gene (adh(Tt)) was heterologously overexpressed in Escherichia coli, and the protein (ADH(Tt)) was purified to homogeneity and characterized. ADH(Tt) is a tetrameric enzyme consisting of identical 26,961-Da subunits composed of 256 amino acids. The enzyme has remarkable thermophilicity and thermal stability, displaying activity at temperatures up to approximately 73 degrees C and a 30-min half-inactivation temperature of approximately 90 degrees C, as well as good tolerance to common organic solvents. ADH(Tt) has a strict requirement for NAD(H) as the coenzyme, a preference for reduction of aromatic ketones and alpha-keto esters, and poor activity on aromatic alcohols and aldehydes. This thermophilic enzyme catalyzes the following reactions with Prelog specificity: the reduction of acetophenone, 2,2,2-trifluoroacetophenone, alpha-tetralone, and alpha-methyl and alpha-ethyl benzoylformates to (S)-(-)-1-phenylethanol (>99% enantiomeric excess [ee]), (R)-alpha-(trifluoromethyl)benzyl alcohol (93% ee), (S)-alpha-tetralol (>99% ee), methyl (R)-(-)-mandelate (92% ee), and ethyl (R)-(-)-mandelate (95% ee), respectively, by way of an efficient in situ NADH-recycling system involving 2-propanol and a second thermophilic ADH. This study further supports the critical role of the D37 residue in discriminating NAD(H) from NADP(H) in members of the SDR superfamily.
Collapse
|
88
|
Kumasaka T, Yamamoto M, Furuichi M, Nakasako M, Teh AH, Kimura M, Yamaguchi I, Ueki T. Crystal structures of blasticidin S deaminase (BSD): implications for dynamic properties of catalytic zinc. J Biol Chem 2007; 282:37103-11. [PMID: 17959604 DOI: 10.1074/jbc.m704476200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The set of blasticidin S (BS) and blasticidin S deaminase (BSD) is a widely used selectable marker for gene transfer experiments. BSD is a member of the cytidine deaminase (CDA) family; it is a zinc-dependent enzyme with three cysteines and one water molecule as zinc ligands. The crystal structures of BSD were determined in six states (i.e. native, substrate-bound, product-bound, cacodylate-bound, substrate-bound E56Q mutant, and R90K mutant). In the structures, the zinc position and coordination structures vary. The substrate-bound structure shows a large positional and geometrical shift of zinc with a double-headed electron density of the substrate that seems to be assigned to the amino and hydroxyl groups of the substrate and product, respectively. In this intermediate-like structure, the steric hindrance of the hydroxyl group pushes the zinc into the triangular plane consisting of three cysteines with a positional shift of approximately 0.6 A, and the fifth ligand water approaches the opposite direction of the substrate with a shift of 0.4 A. Accordingly, the zinc coordination is changed from tetrahedral to trigonal bipyramidal, and its coordination distance is extended between zinc and its intermediate. The shift of zinc and the recruited water is also observed in the structure of the inactivated E56Q mutant. This novel observation is different in two-cysteine cytidine deaminase Escherichia coli CDA and might be essential for the reaction mechanism in BSD, since it is useful for the easy release of the product by charge compensation and for the structural change of the substrate.
Collapse
Affiliation(s)
- Takashi Kumasaka
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Cloning, characterization, and mutational analysis of a highly active and stable l-arabinitol 4-dehydrogenase from Neurospora crassa. Appl Microbiol Biotechnol 2007; 77:845-52. [DOI: 10.1007/s00253-007-1225-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 09/23/2007] [Accepted: 09/24/2007] [Indexed: 11/25/2022]
|
90
|
Brouns SJJ, Turnbull AP, Willemen HLDM, Akerboom J, van der Oost J. Crystal structure and biochemical properties of the D-arabinose dehydrogenase from Sulfolobus solfataricus. J Mol Biol 2007; 371:1249-60. [PMID: 17610898 DOI: 10.1016/j.jmb.2007.05.097] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 05/01/2007] [Accepted: 05/30/2007] [Indexed: 11/19/2022]
Abstract
Sulfolobus solfataricus metabolizes the five-carbon sugar d-arabinose to 2-oxoglutarate by an inducible pathway consisting of dehydrogenases and dehydratases. Here we report the crystal structure and biochemical properties of the first enzyme of this pathway: the d-arabinose dehydrogenase. The AraDH structure was solved to a resolution of 1.80 A by single-wavelength anomalous diffraction and phased using the two endogenous zinc ions per subunit. The structure revealed a catalytic and cofactor binding domain, typically present in mesophilic and thermophilic alcohol dehydrogenases. Cofactor modeling showed the presence of a phosphate binding pocket sequence motif (SRS-X2-H), which is likely to be responsible for the enzyme's preference for NADP+. The homo-tetrameric enzyme is specific for d-arabinose, l-fucose, l-galactose and d-ribose, which could be explained by the hydrogen bonding patterns of the C3 and C4 hydroxyl groups observed in substrate docking simulations. The enzyme optimally converts sugars at pH 8.2 and 91 degrees C, and displays a half-life of 42 and 26 min at 85 and 90 degrees C, respectively, indicating that the enzyme is thermostable at physiological operating temperatures of 80 degrees C. The structure represents the first crystal structure of an NADP+-dependent member of the medium-chain dehydrogenase/reductase (MDR) superfamily from Archaea.
Collapse
Affiliation(s)
- Stan J J Brouns
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Hesselink van Suchtelenweg 4, 6703 CT Wageningen, Netherlands.
| | | | | | | | | |
Collapse
|
91
|
Ziegelmann-Fjeld KI, Musa MM, Phillips RS, Zeikus JG, Vieille C. A
Thermoanaerobacter ethanolicus
secondary alcohol dehydrogenase mutant derivative highly active and stereoselective on phenylacetone and benzylacetone. Protein Eng Des Sel 2007; 20:47-55. [PMID: 17283007 DOI: 10.1093/protein/gzl052] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus 39E (TeSADH) is highly thermostable and solvent-stable, and it is active on a broad range of substrates. These properties make TeSADH an excellent template to engineer an industrial catalyst for chiral chemical synthesis. (S)-1-Phenyl-2-propanol was our target product because it is a precursor to major pharmaceuticals containing secondary alcohol groups. TeSADH has no detectable activity on this alcohol, but it is highly active on 2-butanol. The structural model we used to plan our mutagenesis strategy was based on the substrate's orientation in a horse liver alcohol dehydrogenase*p-bromobenzyl alcohol*NAD(+) ternary complex (PDB entry 1HLD). The W110A TeSADH mutant now uses (S)-1-phenyl-2-propanol, (S)-4-phenyl-2-butanol and the corresponding ketones as substrates. W110A TeSADH's kinetic parameters on these substrates are in the same range as those of TeSADH on 2-butanol, making W110A TeSADH an excellent catalyst. In particular, W110A TeSADH is twice as efficient on benzylacetone as TeSADH is on 2-butanol, and it produces (S)-4-phenyl-2-butanol from benzylacetone with an enantiomeric excess above 99%. W110A TeSADH is optimally active at 87.5 degrees C and remains highly thermostable. W110A TeSADH is active on aryl derivatives of phenylacetone and benzylacetone, making this enzyme a potentially useful catalyst for the chiral synthesis of aryl derivatives of alcohols. As a control in our engineering approach, we used the TbSADH*(S)-2-butanol binary complex (PDB entry 1BXZ) as the template to model a mutation that would make TeSADH active on (S)-1-phenyl-2-propanol. Mutant Y267G TeSADH did not have the substrate specificity predicted in this modeling study. Our results suggest that (S)-2-butanol's orientation in the TbSADH*(S)-2-butanol binary complex does not reflect its orientation in the ternary enzyme-substrate-cofactor complex.
Collapse
Affiliation(s)
- Karla I Ziegelmann-Fjeld
- Department of Biochemistry and Molecular Biology, Michigan State University, 410 Biochemistry Building, East Lansing, MI 48824-1319, USA
| | | | | | | | | |
Collapse
|
92
|
Ishikawa K, Higashi N, Nakamura T, Matsuura T, Nakagawa A. The first crystal structure of L-threonine dehydrogenase. J Mol Biol 2006; 366:857-67. [PMID: 17188300 DOI: 10.1016/j.jmb.2006.11.060] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 11/10/2006] [Accepted: 11/17/2006] [Indexed: 11/24/2022]
Abstract
L-threonine dehydrogenase (TDH) is an enzyme that catalyzes the oxidation of L-threonine to 2-amino-3-ketobutyrate. We solved the first crystal structure of a medium chain L-threonine dehydrogenase from a hyperthermophilic archaeon, Pyrococcus horikoshii (PhTDH), by the single wavelength anomalous diffraction method using a selenomethionine-substituted enzyme. This recombinant PhTDH is a homo-tetramer in solution. Three monomers of PhTDHs were located in the crystallographic asymmetric unit, however, the crystal structure exhibits a homo-tetramer structure with crystallographic and non-crystallographic 222 symmetry in the cell. Despite the low level of sequence identity to a medium-chain NAD(H)-dependent alcohol dehydrogenase (ADH) and the different substrate specificity, the overall folds of the PhTDH monomer and tetramer are similar to those of the other ADH. Each subunit is composed of two domains: a nicotinamide cofactor (NAD(H))-binding domain and a catalytic domain. The NAD(H)-binding domain contains the alpha/beta Rossmann fold motif, characteristic of the NAD(H)-binding protein. One molecule of PhTDH contains one zinc ion playing a structural role. This metal ion exhibits coordination with four cysteine ligands and some of the ligands are conserved throughout the structural zinc-containing ADHs and TDHs. However, the catalytic zinc ion that is coordinated at the bottom of the cleft in the case of ADH was not observed in the crystal of PhTDH. There is a significant difference in the orientation of the catalytic domain relative to the coenzyme-binding domain that results in a larger interdomain cleft.
Collapse
Affiliation(s)
- Kazuhiko Ishikawa
- National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, Japan.
| | | | | | | | | |
Collapse
|
93
|
Goihberg E, Dym O, Tel-Or S, Levin I, Peretz M, Burstein Y. A single proline substitution is critical for the thermostabilization of Clostridium beijerinckii alcohol dehydrogenase. Proteins 2006; 66:196-204. [PMID: 17063493 DOI: 10.1002/prot.21170] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Analysis of the three-dimensional structures of three closely related mesophilic, thermophilic, and hyperthermophilic alcohol dehydrogenases (ADHs) from the respective microorganisms Clostridium beijerinckii (CbADH), Entamoeba histolytica (EhADH1), and Thermoanaerobacter brockii (TbADH) suggested that a unique, strategically located proline residue (Pro100) might be crucial for maintaining the thermal stability of EhADH1. To determine whether proline substitution at this position in TbADH and CbADH would affect thermal stability, we used site-directed mutagenesis to replace the complementary residues in both enzymes with proline. The results showed that replacing Gln100 with proline significantly enhanced the thermal stability of the mesophilic ADH: DeltaT(1/2) (60 min) = + 8 degrees C (temperature of 50% inactivation after incubation for 60 min), DeltaT(1/2) (CD) = +11.5 degrees C (temperature at which 50% of the original CD signal at 218 nm is lost upon heating between 30 degrees and 98 degrees C). A His100 --> Pro substitution in the thermophilic TbADH had no effect on its thermostability. An analysis of the three-dimensional structure of the crystallized thermostable mutant Q100P-CbADH suggested that the proline residue at position 100 stabilized the enzyme by reinforcing hydrophobic interactions and by reducing the flexibility of a loop at this strategic region.
Collapse
Affiliation(s)
- Edi Goihberg
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
94
|
Abstract
In this report, we demonstrate that phylogenetic motifs, sequence regions conserving the overall familial phylogeny, represent a promising approach to protein functional site prediction. Across our structurally and functionally heterogeneous data set, phylogenetic motifs consistently correspond to functional sites defined by both surface loops and active site clefts. Additionally, the partially buried prosthetic group regions of cytochrome P450 and succinate dehydrogenase are identified as phylogenetic motifs. In nearly all instances, phylogenetic motifs are structurally clustered, despite little overall sequence proximity, around key functional site features. Based on calculated false-positive expectations and standard motif identification methods, we show that phylogenetic motifs are generally conserved in sequence. This result implies that they can be considered motifs in the traditional sense as well. However, there are instances where phylogenetic motifs are not (overall) well conserved in sequence. This point is enticing, because it implies that phylogenetic motifs are able to identify key sequence regions that traditional motif-based approaches would not. Further, phylogenetic motif results are also shown to be consistent with evolutionary trace results, and bootstrapping is used to demonstrate tree significance.
Collapse
Affiliation(s)
- David La
- Department of Biological Sciences, California State Polytechnic University, Pomona, California 91768, USA
| | | | | |
Collapse
|
95
|
Youn B, Camacho R, Moinuddin SGA, Lee C, Davin LB, Lewis NG, Kang C. Crystal structures and catalytic mechanism of the Arabidopsis cinnamyl alcohol dehydrogenases AtCAD5 and AtCAD4. Org Biomol Chem 2006; 4:1687-97. [PMID: 16633561 DOI: 10.1039/b601672c] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cinnamyl alcohol dehydrogenase (CAD) multigene family in planta encodes proteins catalyzing the reductions of various phenylpropenyl aldehyde derivatives in a substrate versatile manner, and whose metabolic products are the precursors of structural lignins, health-related lignans, and various other metabolites. In Arabidopsis thaliana, the two isoforms, AtCAD5 and AtCAD4, are the catalytically most active being viewed as mainly involved in the formation of guaiacyl/syringyl lignins. In this study, we determined the crystal structures of AtCAD5 in the apo-form and as a binary complex with NADP+, respectively, and modeled that of AtCAD4. Both AtCAD5 and AtCAD4 are dimers with two zinc ions per subunit and belong to the Zn-dependent medium chain dehydrogenase/reductase (MDR) superfamily, on the basis of their overall 2-domain structures and distribution of secondary structural elements. The catalytic Zn2+ ions in both enzymes are tetrahedrally coordinated, but differ from those in horse liver alcohol dehydrogenase since the carboxyl side-chain of Glu70 is ligated to Zn2+ instead of water. Using AtCAD5, site-directed mutagenesis of Glu70 to alanine resulted in loss of catalytic activity, thereby indicating that perturbation of the Zn2+ coordination was sufficient to abolish catalytic activity. The substrate-binding pockets of both AtCAD5 and AtCAD4 were also examined, and found to be significantly different and smaller compared to that of a putative aspen sinapyl alcohol dehydrogenase (SAD) and a putative yeast CAD. While the physiological roles of the aspen SAD and the yeast CAD are uncertain, they nevertheless have a high similarity in the overall 3D structures to AtCAD5 and 4. With the bona fide CAD's from various species, nine out of the twelve residues which constitute the proposed substrate-binding pocket were, however, conserved. This is provisionally considered as indicative of a characteristic fingerprint for the CAD family.
Collapse
Affiliation(s)
- Buhyun Youn
- School of Molecular Biosciences, Washington State University, Pullman, 99164-4660, USA
| | | | | | | | | | | | | |
Collapse
|
96
|
Lai W, Berry SM, Bebout DC, Butcher RJ. Investigation of Group 12 Metal Complexes with a Tridentate SNS Ligand by X-ray Crystallography and1H NMR Spectroscopy. Inorg Chem 2006; 45:571-81. [PMID: 16411692 DOI: 10.1021/ic051091+] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two series of zinc triad complexes containing the ligand 2,6-bis(methylthiomethyl)pyridine (L1) were synthesized and characterized by X-ray crystallography and solution-state 1H NMR spectroscopy. The distorted meridional octahedral M(L1)2(ClO4)2 series includes the first structurally characterized Zn(II) and Cd(II) complexes with N2(SR2)4 coordination spheres. Coordination of HgCl2 and ZnCl2 with 1 equiv of ligand afforded mononuclear, five-coordinate species Hg(L1)Cl2 and Zn(L1)Cl2, respectively, with distorted square-pyramidal and trigonal-bipyramidal geometries. With CdCl2, the dimeric [Cd(L1)Cl(mu-Cl)]2 complex was obtained. The distorted octahedral coordination geometry of each Cd(II) center in this complex is formed by one tridentate ligand, two bridging chloride ions, and one terminal chloride ion. NMR spectra indicate that the intermolecular ligand-exchange rate of [M(L1)2](2+) decreased in the order Cd(II) > Zn(II) > Hg(II). Slow intermolecular ligand-exchange conditions on the chemical-shift time scale were found for 1:2 metal-to-ligand complexes of L(1) with Hg(II) and Zn(II) but not Cd(II). Slow intermolecular ligand-exchange conditions in acetonitrile-d(3) solutions permitting detection of (3-5)J(199Hg1H) were found for 1:1 and 1:2 Hg(ClO4)2/L1 complexes, but not for the related Cd(ClO4)2) complexes. The magnitudes of J(199Hg1H) for equivalent protons were smaller in [Hg(L1)2](2+) than in [Hg(L1)(NCCH3)x](2+). The relative intermolecular ligand-exchange rates of the zinc triad complexes investigated here suggest that the toxicity of Hg(II) is accentuated by the relative difficulty of displacing it from the coordination sites encountered.
Collapse
Affiliation(s)
- Wei Lai
- Department of Chemistry, The College of William and Mary, Williamsburg, VA 23187-8795, USA
| | | | | | | |
Collapse
|
97
|
Kovaleva EG, Plapp BV. Deprotonation of the horse liver alcohol dehydrogenase-NAD+ complex controls formation of the ternary complexes. Biochemistry 2005; 44:12797-808. [PMID: 16171395 DOI: 10.1021/bi050865v] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Binding of NAD+ to wild-type horse liver alcohol dehydrogenase is strongly pH-dependent and is limited by a unimolecular step, which may be related to a conformational change of the enzyme-NAD+ complex. Deprotonation during binding of NAD+ and inhibitors that trap the enzyme-NAD+ complex was examined by transient kinetics with pH indicators, and formation of complexes was monitored by absorbance and protein fluorescence. Reactions with pyrazole and trifluoroethanol had biphasic proton release, whereas reaction with caprate showed proton release followed by proton uptake. Proton release (200-550 s(-1)) is a common step that precedes binding of all inhibitors. At all pH values studied, the rate constants for proton release or uptake matched those for formation of ternary complexes, and the most significant quenching of protein fluorescence (or perturbation of adenine absorbance at 280 nm) was observed for enzyme species involved in deprotonation steps. Kinetic simulations of the combined transient data for the multiple signals indicate that all inhibitors bind faster and tighter to the unprotonated enzyme-NAD+ complex, which has a pK of about 7.3. The results suggest that rate-limiting deprotonation of the enzyme-NAD+ complex is coupled to the conformational change and controls the formation of ternary complexes.
Collapse
Affiliation(s)
- Elena G Kovaleva
- Department of Biochemistry, The University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
98
|
Ida K, Moriguchi T, Suzuki H. Crystal structure of heterotetrameric sarcosine oxidase from Corynebacterium sp. U-96. Biochem Biophys Res Commun 2005; 333:359-66. [PMID: 15946648 DOI: 10.1016/j.bbrc.2005.05.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Accepted: 05/19/2005] [Indexed: 11/23/2022]
Abstract
Sarcosine oxidase from Corynebacterium sp. U-96 is a heterotetrameric enzyme. Here we report the crystal structures of the enzyme in complex with dimethylglycine and folinic acid. The alpha subunit is composed of two domains, contains NAD(+), and binds folinic acid. The beta subunit contains dimethylglycine, FAD, and FMN, and these flavins are approximately 10A apart. The gamma subunit is in contact with two domains of alpha subunit and has possibly a folate-binding structure. The delta subunit contains a single atom of zinc and has a Cys(3)His zinc finger structure. Based on the structures determined and on the previous works, the structure-function relationship on the heterotetrameric sarcosine oxidase is discussed.
Collapse
Affiliation(s)
- Koh Ida
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555, Japan.
| | | | | |
Collapse
|
99
|
Petschacher B, Leitgeb S, Kavanagh K, Wilson D, Nidetzky B. The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography. Biochem J 2005; 385:75-83. [PMID: 15320875 PMCID: PMC1134675 DOI: 10.1042/bj20040363] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CtXR (xylose reductase from the yeast Candida tenuis; AKR2B5) can utilize NADPH or NADH as co-substrate for the reduction of D-xylose into xylitol, NADPH being preferred approx. 33-fold. X-ray structures of CtXR bound to NADP+ and NAD+ have revealed two different protein conformations capable of accommodating the presence or absence of the coenzyme 2'-phosphate group. Here we have used site-directed mutagenesis to replace interactions specific to the enzyme-NADP+ complex with the aim of engineering the co-substrate-dependent conformational switch towards improved NADH selectivity. Purified single-site mutants K274R (Lys274-->Arg), K274M, K274G, S275A, N276D, R280H and the double mutant K274R-N276D were characterized by steady-state kinetic analysis of enzymic D-xylose reductions with NADH and NADPH at 25 degrees C (pH 7.0). The results reveal between 2- and 193-fold increases in NADH versus NADPH selectivity in the mutants, compared with the wild-type, with only modest alterations of the original NADH-linked xylose specificity and catalytic-centre activity. Catalytic reaction profile analysis demonstrated that all mutations produced parallel effects of similar magnitude on ground-state binding of coenzyme and transition state stabilization. The crystal structure of the double mutant showing the best improvement of coenzyme selectivity versus wild-type and exhibiting a 5-fold preference for NADH over NADPH was determined in a binary complex with NAD+ at 2.2 A resolution.
Collapse
Affiliation(s)
- Barbara Petschacher
- *Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/I, A-8010 Graz, Austria
| | - Stefan Leitgeb
- *Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/I, A-8010 Graz, Austria
- †Section of Molecular and Cellular Biology, University of California, Davis, CA 95616, U.S.A
| | - Kathryn L. Kavanagh
- †Section of Molecular and Cellular Biology, University of California, Davis, CA 95616, U.S.A
| | - David K. Wilson
- †Section of Molecular and Cellular Biology, University of California, Davis, CA 95616, U.S.A
| | - Bernd Nidetzky
- *Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/I, A-8010 Graz, Austria
- To whom correspondence should be addressed (email )
| |
Collapse
|
100
|
Papanikolau Y, Tsigos I, Papadovasilaki M, Bouriotis V, Petratos K. Crystallization and preliminary X-ray diffraction studies of an alcohol dehydrogenase from the Antarctic psychrophile Moraxella sp. TAE123. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:246-8. [PMID: 16511007 PMCID: PMC1952263 DOI: 10.1107/s1744309105002253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Accepted: 01/20/2005] [Indexed: 11/10/2022]
Abstract
An NAD(+)-dependent psychrophilic alcohol dehydrogenase (ADH) from the Antarctic psychrophile Moraxella sp. TAE123 has been purified to homogeneity. The enzyme consists of four identical subunits, each containing two Zn ions. Protein crystals suitable for X-ray diffraction were obtained under optimized salting-out crystallization conditions using ammonium sulfate as a precipitating agent. The crystals are hexagonal bipyramids and belong to space group P3(1)21 or P3(2)21, with unit-cell parameters a = 136.4, c = 210.7 A. They contain one protein homotetramer in the asymmetric unit. Diffraction data were collected to 2.2 A under cryogenic conditions using synchrotron radiation.
Collapse
Affiliation(s)
- Yannis Papanikolau
- Institute of Molecular Biology and Biotechnology (IMBB)–FORTH, PO Box 1527, 71110 Heraklion, Greece
| | - Iason Tsigos
- General Chemical State Laboratory, Department of Heraklion, Epimenidou 13, Heraklion, Greece
| | - Maria Papadovasilaki
- Institute of Molecular Biology and Biotechnology (IMBB)–FORTH, PO Box 1527, 71110 Heraklion, Greece
| | - Vassilis Bouriotis
- Institute of Molecular Biology and Biotechnology (IMBB)–FORTH, PO Box 1527, 71110 Heraklion, Greece
- Biology Department, University of Crete, PO Box 2208, 71409 Heraklion, Greece
| | - Kyriacos Petratos
- Institute of Molecular Biology and Biotechnology (IMBB)–FORTH, PO Box 1527, 71110 Heraklion, Greece
| |
Collapse
|