51
|
Lu S, Zhang R, Wang X, Sun P, Lv W, Liu Q, Jia N. Effect of PEO molecular weight on the miscibility and dynamics in epoxy/PEO blends. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2015; 38:118. [PMID: 26577817 DOI: 10.1140/epje/i2015-15118-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 10/23/2015] [Indexed: 06/05/2023]
Abstract
In this work, the effect of poly(ethylene oxide) (PEO) molecular weight in blends of epoxy (ER) and PEO on the miscibility, inter-chain weak interactions and local dynamics were systematically investigated by multi-frequency temperature modulation DSC and solid-state NMR techniques. We found that the molecular weight (M(w)) of PEO was a crucial factor in controlling the miscibility, chain dynamics and hydrogen bonding interactions between PEO and ER. A critical PEO molecular weight (M(crit)) around 4.5k was found. PEO was well miscible with ER when the molecular weight was below M(crit), where the chain motion of PEO was restricted due to strong inter-chain hydrogen bonding interactions. However, for the blends with high molecular weight PEO (M(w) > M(crit)), the miscibility between PEO and ER was poor, and most of PEO chains were considerably mobile. Finally, polarization inversion spin exchange at magic angle (PISEMA) solid-state NMR experiment further revealed the different mobility of the PEO in ER/PEO blends with different molecular weight of PEO at molecular level. Based on the DSC and NMR results, a tentative model was proposed to illustrate the miscibility in ER/PEO blends.
Collapse
Affiliation(s)
- Shoudong Lu
- Patent Examination Cooperation Center of the Patent Office, SIPO, Beijing, P. R. China
| | - Rongchun Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education; College of Chemistry and School of Physics, Nankai University, 300071, Tianjin, P. R. China
| | - Xiaoliang Wang
- Key Laboratory of High Performance Polymer Materials and Technology, Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, 210093, Nanjing, P. R. China.
| | - Pingchuan Sun
- Key Laboratory of Functional Polymer Materials, Ministry of Education; College of Chemistry and School of Physics, Nankai University, 300071, Tianjin, P. R. China.
| | - Weifeng Lv
- Research Institute of Petroleum Exploration & Development, PetroChina, 100083, Beijing, P. R. China
| | - Qingjie Liu
- Research Institute of Petroleum Exploration & Development, PetroChina, 100083, Beijing, P. R. China
| | - Ninghong Jia
- Research Institute of Petroleum Exploration & Development, PetroChina, 100083, Beijing, P. R. China
| |
Collapse
|
52
|
Nanotube array method for studying lipid-induced conformational changes of a membrane protein by solid-state NMR. Biophys J 2015; 108:5-9. [PMID: 25564843 DOI: 10.1016/j.bpj.2014.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/28/2014] [Accepted: 11/03/2014] [Indexed: 11/21/2022] Open
Abstract
Anodic aluminum oxide substrates with macroscopically aligned homogeneous nanopores of 80 nm in diameter enable two-dimensional, solid-state nuclear magnetic resonance studies of lipid-induced conformational changes of uniformly (15)N-labeled Pf1 coat protein in native-like bilayers. The Pf1 helix tilt angles in bilayers composed of two different lipids are not entirely governed by the membrane thickness but could be rationalized by hydrophobic interactions of lysines at the bilayer interface. The anodic aluminum oxide alignment method is applicable to a broader repertoire of lipids versus bicelle bilayer mimetics currently employed in solid-state nuclear magnetic resonance of oriented samples, thus allowing for elucidation of the role played by lipids in shaping membrane proteins.
Collapse
|
53
|
Hansen SK, Bertelsen K, Paaske B, Nielsen NC, Vosegaard T. Solid-state NMR methods for oriented membrane proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 88-89:48-85. [PMID: 26282196 DOI: 10.1016/j.pnmrs.2015.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
Oriented-sample solid-state NMR represents one of few experimental methods capable of characterising the membrane-bound conformation of proteins in the cell membrane. Since the technique was developed 25 years ago, the technique has been applied to study the structure of helix bundle membrane proteins and antimicrobial peptides, characterise protein-lipid interactions, and derive information on dynamics of the membrane anchoring of membrane proteins. We will review the major developments in various aspects of oriented-sample solid-state NMR, including sample-preparation methods, pulse sequences, theory required to interpret the experiments, perspectives for and guidelines to new experiments, and a number of representative applications.
Collapse
Affiliation(s)
- Sara K Hansen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Kresten Bertelsen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Berit Paaske
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Niels Chr Nielsen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Thomas Vosegaard
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
54
|
Brown LS, Ladizhansky V. Membrane proteins in their native habitat as seen by solid-state NMR spectroscopy. Protein Sci 2015; 24:1333-46. [PMID: 25973959 DOI: 10.1002/pro.2700] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 12/21/2022]
Abstract
Membrane proteins play many critical roles in cells, mediating flow of material and information across cell membranes. They have evolved to perform these functions in the environment of a cell membrane, whose physicochemical properties are often different from those of common cell membrane mimetics used for structure determination. As a result, membrane proteins are difficult to study by traditional methods of structural biology, and they are significantly underrepresented in the protein structure databank. Solid-state Nuclear Magnetic Resonance (SSNMR) has long been considered as an attractive alternative because it allows for studies of membrane proteins in both native-like membranes composed of synthetic lipids and in cell membranes. Over the past decade, SSNMR has been rapidly developing into a major structural method, and a growing number of membrane protein structures obtained by this technique highlights its potential. Here we discuss membrane protein sample requirements, review recent progress in SSNMR methodologies, and describe recent advances in characterizing membrane proteins in the environment of a cellular membrane.
Collapse
Affiliation(s)
- Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Vladimir Ladizhansky
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
55
|
Gopinath T, Mote KR, Veglia G. Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples. JOURNAL OF BIOMOLECULAR NMR 2015; 62:53-61. [PMID: 25749871 PMCID: PMC4981477 DOI: 10.1007/s10858-015-9916-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/03/2015] [Indexed: 05/20/2023]
Abstract
We present a new method called DAISY (Dual Acquisition orIented ssNMR spectroScopY) for the simultaneous acquisition of 2D and 3D oriented solid-state NMR experiments for membrane proteins reconstituted in mechanically or magnetically aligned lipid bilayers. DAISY utilizes dual acquisition of sine and cosine dipolar or chemical shift coherences and long living (15)N longitudinal polarization to obtain two multi-dimensional spectra, simultaneously. In these new experiments, the first acquisition gives the polarization inversion spin exchange at the magic angle (PISEMA) or heteronuclear correlation (HETCOR) spectra, the second acquisition gives PISEMA-mixing or HETCOR-mixing spectra, where the mixing element enables inter-residue correlations through (15)N-(15)N homonuclear polarization transfer. The analysis of the two 2D spectra (first and second acquisitions) enables one to distinguish (15)N-(15)N inter-residue correlations for sequential assignment of membrane proteins. DAISY can be implemented in 3D experiments that include the polarization inversion spin exchange at magic angle via I spin coherence (PISEMAI) sequence, as we show for the simultaneous acquisition of 3D PISEMAI-HETCOR and 3D PISEMAI-HETCOR-mixing experiments.
Collapse
Affiliation(s)
| | | | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
- Department of Chemistry and University of Minnesota, Minneapolis, MN 55455
- Corresponding Author. Gianluigi Veglia, 6-155 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, Phone: (612) 625-0758, Fax: (612) 625-2163,
| |
Collapse
|
56
|
Opella SJ. Solid-state NMR and membrane proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 253:129-37. [PMID: 25681966 PMCID: PMC4372479 DOI: 10.1016/j.jmr.2014.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/17/2014] [Accepted: 11/30/2014] [Indexed: 05/15/2023]
Abstract
The native environment for a membrane protein is a phospholipid bilayer. Because the protein is immobilized on NMR timescales by the interactions within a bilayer membrane, solid-state NMR methods are essential to obtain high-resolution spectra. Approaches have been developed for both unoriented and oriented samples, however, they all rest on the foundation of the most fundamental aspects of solid-state NMR, and the chemical shift and homo- and hetero-nuclear dipole-dipole interactions. Solid-state NMR has advanced sufficiently to enable the structures of membrane proteins to be determined under near-native conditions in phospholipid bilayers.
Collapse
Affiliation(s)
- Stanley J Opella
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
57
|
Ravera E, Schubeis T, Martelli T, Fragai M, Parigi G, Luchinat C. NMR of sedimented, fibrillized, silica-entrapped and microcrystalline (metallo)proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 253:60-70. [PMID: 25797005 DOI: 10.1016/j.jmr.2014.12.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/06/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
Resolution and sensitivity in solid state NMR (SSNMR) can rival the results achieved by solution NMR, and even outperform them in the case of large systems. However, several factors affect the spectral quality in SSNMR samples, and not all systems turn out to be equally amenable for this methodology. In this review we attempt at analyzing the causes of this variable behavior and at providing hints to increase the chances of experimental success.
Collapse
Affiliation(s)
- Enrico Ravera
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Tobias Schubeis
- Giotto Biotech, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Tommaso Martelli
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Marco Fragai
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy; Giotto Biotech, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
58
|
Structure of CrgA, a cell division structural and regulatory protein from Mycobacterium tuberculosis, in lipid bilayers. Proc Natl Acad Sci U S A 2014; 112:E119-26. [PMID: 25548160 DOI: 10.1073/pnas.1415908112] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The 93-residue transmembrane protein CrgA in Mycobacterium tuberculosis is a central component of the divisome, a large macromolecular machine responsible for cell division. Through interactions with multiple other components including FtsZ, FtsQ, FtsI (PBPB), PBPA, and CwsA, CrgA facilitates the recruitment of the proteins essential for peptidoglycan synthesis to the divisome and stabilizes the divisome. CrgA is predicted to have two transmembrane helices. Here, the structure of CrgA was determined in a liquid-crystalline lipid bilayer environment by solid-state NMR spectroscopy. Oriented-sample data yielded orientational restraints, whereas magic-angle spinning data yielded interhelical distance restraints. These data define a complete structure for the transmembrane domain and provide rich information on the conformational ensembles of the partially disordered N-terminal region and interhelical loop. The structure of the transmembrane domain was refined using restrained molecular dynamics simulations in an all-atom representation of the same lipid bilayer environment as in the NMR samples. The two transmembrane helices form a left-handed packing arrangement with a crossing angle of 24° at the conserved Gly39 residue. This helix pair exposes other conserved glycine and alanine residues to the fatty acyl environment, which are potential sites for binding CrgA's partners such as CwsA and FtsQ. This approach combining oriented-sample and magic-angle spinning NMR spectroscopy in native-like lipid bilayers with restrained molecular dynamics simulations represents a powerful tool for structural characterization of not only isolated membrane proteins, but their complexes, such as those that form macromolecular machines.
Collapse
|
59
|
Murray DT, Li C, Gao FP, Qin H, Cross TA. Membrane protein structural validation by oriented sample solid-state NMR: diacylglycerol kinase. Biophys J 2014; 106:1559-69. [PMID: 24739155 DOI: 10.1016/j.bpj.2014.02.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/29/2014] [Accepted: 02/12/2014] [Indexed: 12/28/2022] Open
Abstract
The validation of protein structures through functional assays has been the norm for many years. Functional assays perform this validation for water-soluble proteins very well, but they need to be performed in the same environment as that used for the structural analysis. This is difficult for membrane proteins that are often structurally characterized in detergent environments, although functional assays for these proteins are most frequently performed in lipid bilayers. Because the structure of membrane proteins is known to be sensitive to the membrane mimetic environment, such functional assays are appropriate for validating the protein construct, but not the membrane protein structure. Here, we compare oriented sample solid-state NMR spectral data of diacylglycerol kinase previously published with predictions of such data from recent structures of this protein. A solution NMR structure of diacylglycerol kinase has been obtained in detergent micelles and three crystal structures have been obtained in a monoolein cubic phase. All of the structures are trimeric with each monomer having three transmembrane and one amphipathic helices. However, the solution NMR structure shows typical perturbations induced by a micelle environment that is reflected in the predicted solid-state NMR resonances from the structural coordinates. The crystal structures show few such perturbations, especially for the wild-type structure and especially for the monomers that do not have significant crystal contacts. For these monomers the predicted and observed data are nearly identical. The thermostabilized constructs do show more perturbations, especially the A41C mutation that introduces a hydrophilic residue into what would be the middle of the lipid bilayer inducing additional hydrogen bonding between trimers. These results demonstrate a general technique for validating membrane protein structures with minimal data obtained from membrane proteins in liquid crystalline lipid bilayers by oriented sample solid-state NMR.
Collapse
Affiliation(s)
- Dylan T Murray
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida; Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida
| | - Conggang Li
- State Key Laboratory of Magnetic Resonance and Molecular and Atomic Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, PR China
| | - F Philip Gao
- Del Shankel Structural Biology Center, University of Kansas, Lawrence, Kansas
| | - Huajun Qin
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida
| | - Timothy A Cross
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida; Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida.
| |
Collapse
|
60
|
Vostrikov VV, Soller KJ, Ha KN, Gopinath T, Veglia G. Effects of naturally occurring arginine 14 deletion on phospholamban conformational dynamics and membrane interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:315-22. [PMID: 25251363 DOI: 10.1016/j.bbamem.2014.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/12/2014] [Accepted: 09/13/2014] [Indexed: 01/10/2023]
Abstract
Phospholamban (PLN) is a single-pass membrane protein that regulates the sarco(endo)plasmic reticulum Ca²⁺-ATPase (SERCA). Phosphorylation of PLN at Ser16 reverses its inhibitory function under β-adrenergic stimulation, augmenting Ca²⁺ uptake in the sarcoplasmic reticulum and muscle contractility. PLN exists in two conformations; a T state, where the cytoplasmic domain is helical and adsorbed on the membrane surface, and an R state, where the cytoplasmic domain is unfolded and membrane detached. Previous studies have shown that the PLN conformational equilibrium is crucial to SERCA regulation. Here, we used a combination of solution and solid-state NMR to compare the structural topology and conformational dynamics of monomeric PLN (PLN(AFA)) with that of the PLN(R14del), a naturally occurring deletion mutant that is linked to the progression of dilated cardiomyopathy. We found that the behavior of the inhibitory transmembrane domain of PLN(R14del) is similar to that of the native sequence. Conversely, the conformational dynamics of R14del both in micelles and lipid membranes are enhanced. We conclude that the deletion of Arg14 in the cytoplasmic region weakens the interactions with the membrane and shifts the conformational equilibrium of PLN toward the disordered R state. This conformational transition is correlated with the loss-of-function character of this mutant and is corroborated by SERCA's activity assays. These findings support our hypothesis that SERCA function is fine-tuned by PLN conformational dynamics and begin to explain the aberrant regulation of SERCA by the R14del mutant.
Collapse
Affiliation(s)
- Vitaly V Vostrikov
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kailey J Soller
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kim N Ha
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Department of Chemistry and Biochemistry, St. Catherine University, St. Paul, MN 55105, USA
| | - T Gopinath
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
61
|
Kunert B, Gardiennet C, Lacabanne D, Calles-Garcia D, Falson P, Jault JM, Meier BH, Penin F, Böckmann A. Efficient and stable reconstitution of the ABC transporter BmrA for solid-state NMR studies. Front Mol Biosci 2014; 1:5. [PMID: 25988146 PMCID: PMC4428385 DOI: 10.3389/fmolb.2014.00005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/26/2014] [Indexed: 01/20/2023] Open
Abstract
We present solid-state NMR sample preparation and first 2D spectra of the Bacillus subtilis ATP-binding cassette (ABC) transporter BmrA, a membrane protein involved in multidrug resistance. The homodimeric 130-kDa protein is a challenge for structural characterization due to its membrane-bound nature, size, inherent flexibility and insolubility. We show that reconstitution of this protein in lipids from Bacillus subtilis at a lipid-protein ratio of 0.5 w/w allows for optimal protein insertion in lipid membranes with respect to two central NMR requirements, high signal-to-noise in the spectra and sample stability over a time period of months. The obtained spectra point to a well-folded protein and a highly homogenous preparation, as witnessed by the narrow resonance lines and the signal dispersion typical for the expected secondary structure distribution of BmrA. This opens the way for studies of the different conformational states of the transporter in the export cycle, as well as on interactions with substrates, via chemical-shift fingerprints and sequential resonance assignments.
Collapse
Affiliation(s)
- Britta Kunert
- Labex Ecofect, Bases Moleculaires et Structurales des Systemes Infectieux, UMR 5086 CNRS, IBCP, Université de Lyon 1Lyon, France
| | - Carole Gardiennet
- Labex Ecofect, Bases Moleculaires et Structurales des Systemes Infectieux, UMR 5086 CNRS, IBCP, Université de Lyon 1Lyon, France
| | - Denis Lacabanne
- Labex Ecofect, Bases Moleculaires et Structurales des Systemes Infectieux, UMR 5086 CNRS, IBCP, Université de Lyon 1Lyon, France
| | - Daniel Calles-Garcia
- Labex Ecofect, Bases Moleculaires et Structurales des Systemes Infectieux, UMR 5086 CNRS, IBCP, Université de Lyon 1Lyon, France
| | - Pierre Falson
- Labex Ecofect, Bases Moleculaires et Structurales des Systemes Infectieux, UMR 5086 CNRS, IBCP, Université de Lyon 1Lyon, France
| | - Jean-Michel Jault
- Labex Ecofect, Bases Moleculaires et Structurales des Systemes Infectieux, UMR 5086 CNRS, IBCP, Université de Lyon 1Lyon, France
| | | | - François Penin
- Labex Ecofect, Bases Moleculaires et Structurales des Systemes Infectieux, UMR 5086 CNRS, IBCP, Université de Lyon 1Lyon, France
| | - Anja Böckmann
- Labex Ecofect, Bases Moleculaires et Structurales des Systemes Infectieux, UMR 5086 CNRS, IBCP, Université de Lyon 1Lyon, France
| |
Collapse
|
62
|
Gong XM, Ding Y, Yu J, Yao Y, Marassi FM. Structure of the Na,K-ATPase regulatory protein FXYD2b in micelles: implications for membrane-water interfacial arginines. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:299-306. [PMID: 24794573 DOI: 10.1016/j.bbamem.2014.04.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/19/2014] [Accepted: 04/23/2014] [Indexed: 01/06/2023]
Abstract
FXYD2 is a membrane protein responsible for regulating the function of the Na,K-ATPase in mammalian kidney epithelial cells. Here we report the structure of FXYD2b, one of two splice variants of the protein, determined by NMR spectroscopy in detergent micelles. Solid-state NMR characterization of the protein embedded in phospholipid bilayers indicates that several arginine side chains may be involved in hydrogen bond interactions with the phospholipid polar head groups. The structure and the NMR data suggest that FXYD2b could regulate the Na,K-ATPase by modulating the effective membrane surface electrostatics near the ion binding sites of the pump.
Collapse
Affiliation(s)
- Xiao-Min Gong
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yi Ding
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jinghua Yu
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yong Yao
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Francesca M Marassi
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
63
|
Wadhwani P, Strandberg E, van den Berg J, Mink C, Bürck J, Ciriello RA, Ulrich AS. Dynamical structure of the short multifunctional peptide BP100 in membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:940-9. [DOI: 10.1016/j.bbamem.2013.11.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/25/2013] [Accepted: 11/01/2013] [Indexed: 11/26/2022]
|
64
|
Murray DT, Hung I, Cross TA. Assignment of oriented sample NMR resonances from a three transmembrane helix protein. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 240:34-44. [PMID: 24509383 PMCID: PMC3980497 DOI: 10.1016/j.jmr.2013.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/21/2013] [Accepted: 12/28/2013] [Indexed: 06/03/2023]
Abstract
Oriented sample solid state NMR techniques have been routinely employed to determine the structures of membrane proteins with one or two transmembrane helices. For larger proteins the technique has been limited by spectral resolution and lack of assignment strategies. Here, a strategy for resonance assignment is devised and applied to a three transmembrane helix protein. Sequence specific assignments for all labeled transmembrane amino acid sites are obtained, which provide a set of orientational restraints and helix orientations in the bilayer. Our experiments expand the utility of solid state NMR in membrane protein structure characterization to three transmembrane helix proteins and represent a straightforward strategy for routinely characterizing multiple transmembrane helix protein structures.
Collapse
Affiliation(s)
- D T Murray
- Institute for Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA; National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - I Hung
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - T A Cross
- Institute for Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA; National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
65
|
Marvin DA, Symmons MF, Straus SK. Structure and assembly of filamentous bacteriophages. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 114:80-122. [PMID: 24582831 DOI: 10.1016/j.pbiomolbio.2014.02.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 02/09/2014] [Indexed: 12/24/2022]
Abstract
Filamentous bacteriophages are interesting paradigms in structural molecular biology, in part because of the unusual mechanism of filamentous phage assembly. During assembly, several thousand copies of an intracellular DNA-binding protein bind to each copy of the replicating phage DNA, and are then displaced by membrane-spanning phage coat proteins as the nascent phage is extruded through the bacterial plasma membrane. This complicated process takes place without killing the host bacterium. The bacteriophage is a semi-flexible worm-like nucleoprotein filament. The virion comprises a tube of several thousand identical major coat protein subunits around a core of single-stranded circular DNA. Each protein subunit is a polymer of about 50 amino-acid residues, largely arranged in an α-helix. The subunits assemble into a helical sheath, with each subunit oriented at a small angle to the virion axis and interdigitated with neighbouring subunits. A few copies of "minor" phage proteins necessary for infection and/or extrusion of the virion are located at each end of the completed virion. Here we review both the structure of the virion and aspects of its function, such as the way the virion enters the host, multiplies, and exits to prey on further hosts. In particular we focus on our understanding of the way the components of the virion come together during assembly at the membrane. We try to follow a basic rule of empirical science, that one should chose the simplest theoretical explanation for experiments, but be prepared to modify or even abandon this explanation as new experiments add more detail.
Collapse
Affiliation(s)
- D A Marvin
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
| | - M F Symmons
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - S K Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
66
|
Tesch DM, Nevzorov AA. Sensitivity enhancement and contrasting information provided by free radicals in oriented-sample NMR of bicelle-reconstituted membrane proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 239:9-15. [PMID: 24355622 DOI: 10.1016/j.jmr.2013.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/13/2013] [Accepted: 11/18/2013] [Indexed: 06/03/2023]
Abstract
Elucidating structure and topology of membrane proteins (MPs) is essential for unveiling functionality of these important biological constituents. Oriented-sample solid-state NMR (OS-NMR) is capable of providing such information on MPs under nearly physiological conditions. However, two dimensional OS-NMR experiments can take several days to complete due to long longitudinal relaxation times combined with the large number of scans to achieve sufficient signal sensitivity in biological samples. Here, free radicals 5-DOXYL stearic acid, TEMPOL, and CAT-1 were added to uniformly (15)N-labeled Pf1 coat protein reconstituted in DMPC/DHPC bicelles, and their effect on the longitudinal relaxation times (T1Z) was investigated. The dramatically shortened T1Z's allowed for the signal gain per unit time to be used for either: (i) up to a threefold reduction of the total experimental time at 99% magnetization recovery or (ii) obtaining up to 74% signal enhancement between the control and radical samples during constant experimental time at "optimal" relaxation delays. In addition, through OS-NMR and high-field EPR studies, free radicals were able to provide positional constraints in the bicelle system, which provide a description of the location of each residue in Pf1 coat protein within the bicellar membranes. This information can be useful in the determination of oligomerization states and immersion depths of larger membrane proteins.
Collapse
Affiliation(s)
- Deanna M Tesch
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, United States
| | - Alexander A Nevzorov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, United States.
| |
Collapse
|
67
|
Cross TA, Ekanayake V, Paulino J, Wright A. Solid state NMR: The essential technology for helical membrane protein structural characterization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 239:100-9. [PMID: 24412099 PMCID: PMC3957465 DOI: 10.1016/j.jmr.2013.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/03/2013] [Accepted: 12/09/2013] [Indexed: 05/21/2023]
Abstract
NMR spectroscopy of helical membrane proteins has been very challenging on multiple fronts. The expression and purification of these proteins while maintaining functionality has consumed countless graduate student hours. Sample preparations have depended on whether solution or solid-state NMR spectroscopy was to be performed - neither have been easy. In recent years it has become increasingly apparent that membrane mimic environments influence the structural result. Indeed, in these recent years we have rediscovered that Nobel laureate, Christian Anfinsen, did not say that protein structure was exclusively dictated by the amino acid sequence, but rather by the sequence in a given environment (Anfinsen, 1973) [106]. The environment matters, molecular interactions with the membrane environment are significant and many examples of distorted, non-native membrane protein structures have recently been documented in the literature. However, solid-state NMR structures of helical membrane proteins in proteoliposomes and bilayers are proving to be native structures that permit a high resolution characterization of their functional states. Indeed, solid-state NMR is uniquely able to characterize helical membrane protein structures in lipid environments without detergents. Recent progress in expression, purification, reconstitution, sample preparation and in the solid-state NMR spectroscopy of both oriented samples and magic angle spinning samples has demonstrated that helical membrane protein structures can be achieved in a timely fashion. Indeed, this is a spectacular opportunity for the NMR community to have a major impact on biomedical research through the solid-state NMR spectroscopy of these proteins.
Collapse
Affiliation(s)
- Timothy A Cross
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA; Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA.
| | - Vindana Ekanayake
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Joana Paulino
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA; Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Anna Wright
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA; Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
68
|
Opella SJ. The development of solid-state NMR of membrane proteins. BIOMEDICAL SPECTROSCOPY AND IMAGING 2014; 3:81-105. [PMID: 26069880 PMCID: PMC4461144 DOI: 10.3233/bsi-140080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Most biological functions are carried out in supramolecular assemblies. As a result of their slow reorientation in solution, these assemblies have been resistant to the widely employed solution NMR approaches. The development of solid-state NMR to first of all overcome the correlation time problem and then obtain informative high-resolution spectra of proteins in supramolecular assemblies, such as virus particles and membranes, is described here. High resolution solid-state NMR is deeply intertwined with the history of NMR, and the seminal paper was published in 1948. Although the general principles were understood by the end of the 1950s, it has taken more than fifty years for instrumentation and experimental methods to become equal to the technical problems presented by the biological assemblies of greatest interest. It is now possible to obtain atomic resolution structures of viral coat proteins in virus particles and membrane proteins in phospholipid bilayers by oriented sample solid-state NMR methods. The development of this aspect of the field of solid-state NMR is summarized in this review article.
Collapse
Affiliation(s)
- Stanley J. Opella
- Address for correspondence: Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive 307,La Jolla, California, 92093-0307 USA.,
| |
Collapse
|
69
|
Lu GJ, Opella SJ. Resonance assignments of a membrane protein in phospholipid bilayers by combining multiple strategies of oriented sample solid-state NMR. JOURNAL OF BIOMOLECULAR NMR 2014; 58:69-81. [PMID: 24356892 PMCID: PMC3928288 DOI: 10.1007/s10858-013-9806-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/12/2013] [Indexed: 06/01/2023]
Abstract
Oriented sample solid-state NMR spectroscopy can be used to determine the three-dimensional structures of membrane proteins in magnetically or mechanically aligned lipid bilayers. The bottleneck for applying this technique to larger and more challenging proteins is making resonance assignments, which is conventionally accomplished through the preparation of multiple selectively isotopically labeled samples and performing an analysis of residues in regular secondary structure based on Polarity Index Slant Angle (PISA) Wheels and Dipolar Waves. Here we report the complete resonance assignment of the full-length mercury transporter, MerF, an 81-residue protein, which is challenging because of overlapping PISA Wheel patterns from its two trans-membrane helices, by using a combination of solid-state NMR techniques that improve the spectral resolution and provide correlations between residues and resonances. These techniques include experiments that take advantage of the improved resolution of the MSHOT4-Pi4/Pi pulse sequence; the transfer of resonance assignments through frequency alignment of heteronuclear dipolar couplings, or through dipolar coupling correlated isotropic chemical shift analysis; (15)N/(15)N dilute spin exchange experiments; and the use of the proton-evolved local field experiment with isotropic shift analysis to assign the irregular terminal and loop regions of the protein, which is the major "blind spot" of the PISA Wheel/Dipolar Wave method.
Collapse
|
70
|
Lobo NP, Das BB, Narasimhaswamy T, Ramanathan KV. Molecular topology of three ring nematogens from 13C–1H dipolar couplings. RSC Adv 2014. [DOI: 10.1039/c4ra03963g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A facile way of estimating the order parameter and the molecular orientation from 13C–1H dipolar couplings for three ring based nematogens with a terminal C–H vector.
Collapse
Affiliation(s)
- Nitin P. Lobo
- Department of Physics
- Indian Institute of Science
- Bangalore 560012, India
| | - Bibhuti B. Das
- Department of Physics
- Indian Institute of Science
- Bangalore 560012, India
| | - T. Narasimhaswamy
- Polymer Laboratory
- CSIR-Central Leather Research Institute
- Chennai 600 020, India
| | - K. V. Ramanathan
- NMR Research Centre
- Indian Institute of Science
- Bangalore 560012, India
| |
Collapse
|
71
|
Maltsev S, Lorigan GA. Membrane proteins structure and dynamics by nuclear magnetic resonance. Compr Physiol 2013; 1:2175-87. [PMID: 23733702 DOI: 10.1002/cphy.c110022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Membrane proteins represent a challenging class of biological systems to study. They are extremely difficult to crystallize and in most cases they retain their structure and functions only in membrane environments. Therefore, commonly used diffraction methods fail to give detailed molecular structure and other approaches have to be utilized to obtain biologically relevant information. Nuclear magnetic resonance (NMR) spectroscopy, however, can provide powerful structural and dynamical constraints on these complicated systems. Solution- and solid-state NMR are powerful methods for investigating membrane proteins studies. In this work, we briefly review both solution and solid-state NMR techniques for membrane protein studies and illustrate the applications of these methods to elucidate proteins structure, conformation, topology, dynamics, and function. Recent advances in electronics, biological sample preparation, and spectral processing provided opportunities for complex biological systems, such as membrane proteins inside lipid vesicles, to be studied faster and with outstanding quality. New analysis methods therefore have emerged, that benefit from the combination of sample preparation and corresponding specific high-end NMR techniques, which give access to more structural and dynamic information.
Collapse
Affiliation(s)
- Sergey Maltsev
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | | |
Collapse
|
72
|
Ferella L, Luchinat C, Ravera E, Rosato A. SedNMR: a web tool for optimizing sedimentation of macromolecular solutes for SSNMR. JOURNAL OF BIOMOLECULAR NMR 2013; 57:319-26. [PMID: 24243317 DOI: 10.1007/s10858-013-9795-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 11/11/2013] [Indexed: 05/09/2023]
Abstract
We have proposed solid state NMR (SSNMR) of sedimented solutes as a novel approach to sample preparation for biomolecular SSNMR without crystallization or other sample manipulations. The biomolecules are confined by high gravity--obtained by centrifugal forces either directly in a SSNMR rotor or in a ultracentrifugal device--into a hydrated non-crystalline solid suitable for SSNMR investigations. When gravity is removed, the sample reverts to solution and can be treated as any solution NMR sample. We here describe a simple web tool to calculate the relevant parameters for the success of the experiment.
Collapse
Affiliation(s)
- Lucio Ferella
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy
| | | | | | | |
Collapse
|
73
|
Rösner HI, Kragelund BB. Structure and dynamic properties of membrane proteins using NMR. Compr Physiol 2013; 2:1491-539. [PMID: 23798308 DOI: 10.1002/cphy.c110036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Integral membrane proteins are one of the most challenging groups of macromolecules despite their apparent conformational simplicity. They manage and drive transport, circulate information, and participate in cellular movements via interactions with other proteins and through intricate conformational changes. Their structural and functional decoding is challenging and has imposed demanding experimental development. Solution nuclear magnetic resonance (NMR) spectroscopy is one of the techniques providing the capacity to make a significant difference in the deciphering of the membrane protein structure-function paradigm. The method has evolved dramatically during the last decade resulting in a plethora of new experiments leading to a significant increase in the scientific repertoire for studying membrane proteins. Besides solving the three-dimensional structures using state-of-the-art approaches, a large variety of developments of well-established techniques are available providing insight into membrane protein flexibility, dynamics, and interactions. Inspired by the speed of development in the application of new strategies, by invention of methods to measure solvent accessibility and describe low-populated states, this review seeks to introduce the vast possibilities solution NMR can offer to the study of membrane protein structure-function analyses with special focus on applicability.
Collapse
Affiliation(s)
- Heike I Rösner
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
74
|
Gleason NJ, Greathouse DV, Grant CV, Opella SJ, Koeppe RE. Single tryptophan and tyrosine comparisons in the N-terminal and C-terminal interface regions of transmembrane GWALP peptides. J Phys Chem B 2013; 117:13786-94. [PMID: 24111589 DOI: 10.1021/jp407542e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hydrophobic membrane-spanning helices often are flanked by interfacial aromatic or charged residues. In this paper, we compare the consequences of single Trp → Tyr substitutions at each interface for the properties of a defined transmembrane helix in the absence of charged residues. The choice of molecular framework is critical for these single-residue experiments because the presence of "too many" aromatic residues (more than one at either membrane-water interface) introduces excess dynamic averaging of solid state NMR observables. To this end, we compare the outcomes when changing W(5) or W(19), or both of them, to tyrosine in the well-characterized transmembrane peptide acetyl-GGALW(5)(LA)6LW(19)LAGA-amide ("GWALP23"). By means of solid-state (2)H and (15)N NMR experiments, we find that Y(19)GW(5)ALP23 displays similar magnitudes of peptide helix tilt as Y(5)GW(19)ALP23 and responds similarly to changes in bilayer thickness, from DLPC to DMPC to DOPC. The presence of Y(19) changes the azimuthal rotation angle ρ (about the helix axis) to a similar extent as Y(5), but in the opposite direction. When tyrosines are substituted for both tryptophans to yield GY(5,19)ALP23, the helix tilt angle is again of comparable magnitude, and furthermore, the preferred azimuthal rotation angle ρ is relatively unchanged from that of GW(5,19)ALP23. The extent of dynamic averaging increases marginally when Tyr replaces Trp. Yet, importantly, all members of the peptide family having single Tyr or Trp residues near each interface exhibit only moderate and not highly extensive dynamic averaging. The results provide important benchmarks for evaluating conformational and dynamic control of membrane protein function.
Collapse
Affiliation(s)
- Nicholas J Gleason
- Department of Chemistry and Biochemistry, University of Arkansas , Fayetteville, Arkansas 72701, United States
| | | | | | | | | |
Collapse
|
75
|
Vostrikov VV, Mote KR, Verardi R, Veglia G. Structural dynamics and topology of phosphorylated phospholamban homopentamer reveal its role in the regulation of calcium transport. Structure 2013; 21:2119-30. [PMID: 24207128 DOI: 10.1016/j.str.2013.09.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/07/2013] [Accepted: 09/11/2013] [Indexed: 01/25/2023]
Abstract
Phospholamban (PLN) inhibits the sarco(endo)plasmic reticulum Ca²⁺-ATPase (SERCA), thereby regulating cardiac diastole. In membranes, PLN assembles into homopentamers that in both the phosphorylated and nonphosphorylated states have been proposed to form ion-selective channels. Here, we determined the structure of the phosphorylated pentamer using a combination of solution and solid-state nuclear magnetic resonance methods. We found that the pinwheel architecture of the homopentamer is preserved upon phosphorylation, with each monomer having an L-shaped conformation. The TM domains form a hydrophobic pore approximately 24 Å long and 2 Å in diameter, which is inconsistent with canonical Ca²⁺-selective channels. Phosphorylation, however, enhances the conformational dynamics of the cytoplasmic region of PLN, causing partial unwinding of the amphipathic helix. We propose that PLN oligomers act as storage for active monomers, keeping SERCA function within a physiological window.
Collapse
Affiliation(s)
- Vitaly V Vostrikov
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
76
|
Das N, Murray DT, Cross TA. Lipid bilayer preparations of membrane proteins for oriented and magic-angle spinning solid-state NMR samples. Nat Protoc 2013; 8:2256-70. [PMID: 24157546 DOI: 10.1038/nprot.2013.129] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Solid-state NMR spectroscopy has been used successfully for characterizing the structure and dynamics of membrane proteins as well as their interactions with other proteins in lipid bilayers. Such an environment is often necessary for achieving native-like structures. Sample preparation is the key to this success. Here we present a detailed description of a robust protocol that results in high-quality membrane protein samples for both magic-angle spinning and oriented-sample solid-state NMR. The procedure is demonstrated using two proteins: CrgA (two transmembrane helices) and Rv1861 (three transmembrane helices), both from Mycobacterium tuberculosis. The success of this procedure relies on two points. First, for samples for both types of NMR experiment, the reconstitution of the protein from a detergent environment to an environment in which it is incorporated into liposomes results in 'complete' removal of detergent. Second, for the oriented samples, proper dehydration followed by rehydration of the proteoliposomes is essential. By using this protocol, proteoliposome samples for magic-angle spinning NMR and uniformly aligned samples (orientational mosaicity of <1°) for oriented-sample NMR can be obtained within 10 d.
Collapse
Affiliation(s)
- Nabanita Das
- 1] Institute of Molecular Biophysics (IMB), Florida State University (FSU), Tallahassee, Florida, USA. [2] National High Magnetic Field Laboratory (NMHFL), FSU, Tallahassee, Florida, USA
| | | | | |
Collapse
|
77
|
Jean-Francois FL, Dai J, Yu L, Myrick A, Rubin E, Fajer PG, Song L, Zhou HX, Cross TA. Binding of MgtR, a Salmonella transmembrane regulatory peptide, to MgtC, a Mycobacterium tuberculosis virulence factor: a structural study. J Mol Biol 2013; 426:436-46. [PMID: 24140750 DOI: 10.1016/j.jmb.2013.10.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 01/28/2023]
Abstract
MgtR, a highly hydrophobic peptide expressed in Salmonella enterica serovar Typhimurium, inhibits growth in macrophages through binding to the membrane protein MgtC that has been identified as essential for replication in macrophages. While the Mycobacterium tuberculosis MgtC is highly homologous to its S. Typhi analogue, there does not appear to be an Mtb homologue for MgtR, raising significant pharmacological interest in this system. Here, solid-state NMR and EPR spectroscopy in lipid bilayer preparations were used to demonstrate the formation of a heterodimer between S. Typhi MgtR and the transmembrane helix 4 of Mtb MgtC. Based on the experimental restraints, a structural model of this heterodimer was developed using computational techniques. The result is that MgtR appears to be ideally situated in the membrane to influence the functionality of MgtC.
Collapse
Affiliation(s)
- Frantz L Jean-Francois
- National High Magnetic Field Laboratory, Tallahassee, FL 32306, USA; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Jian Dai
- Department of Physics, Florida State University, Tallahassee, FL 32306, USA; Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Lu Yu
- University of Science and Technology of China, Hefei 230031, China
| | - Alissa Myrick
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02138, USA
| | - Eric Rubin
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02138, USA
| | - Piotr G Fajer
- National High Magnetic Field Laboratory, Tallahassee, FL 32306, USA; Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Likai Song
- National High Magnetic Field Laboratory, Tallahassee, FL 32306, USA
| | - Huan-Xiang Zhou
- Department of Physics, Florida State University, Tallahassee, FL 32306, USA; Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Timothy A Cross
- National High Magnetic Field Laboratory, Tallahassee, FL 32306, USA; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA; Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
78
|
Wang Y, Park SH, Tian Y, Opella SJ. Impact of histidine residues on the transmembrane helices of viroporins. Mol Membr Biol 2013; 30:360-9. [PMID: 24102567 DOI: 10.3109/09687688.2013.842657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Abstract The role of histidine in channel-forming transmembrane (TM) helices was investigated by comparing the TM helices from Virus protein 'u' (Vpu) and the M2 proton channel. Both proteins are members of the viroporin family of small membrane proteins that exhibit ion channel activity, and have a single TM helix that is capable of forming oligomers. The TM helices from both proteins have a conserved tryptophan towards the C-terminus. Previously, alanine 18 of Vpu was mutated to histidine in order to artificially introduce the same HXXXW motif that is central to the proton channel activity of M2. Interestingly, the mutated Vpu TM resulted in an increase in helix tilt angle of 11° in lipid bilayers compared to the wild-type Vpu TM. Here, we find the reverse, when histidine 37 of the HXXXW motif in M2 was mutated to alanine, it decreased the helix tilt by 10° from that of wild-type M2. The tilt change is independent of both the helix length and the presence of tryptophan. In addition, compared to wild-type M2, the H37A mutant displayed lowered sensitivity to proton concentration. We also found that the solvent accessibility of histidine-containing M2 is greater than without histidine. This suggests that the TM helix may increase the solvent exposure by changing its tilt angle in order to accommodate a polar/charged residue within the hydrophobic membrane region. The comparative results of M2, Vpu and their mutants demonstrated the significance of histidine in a transmembrane helix and the remarkable plasticity of the function and structure of ion channels stemming from changes at a single amino acid site.
Collapse
Affiliation(s)
- Yan Wang
- Department of Chemistry and Biochemistry, University of California , San Diego, La Jolla, California 92037-0307 , USA
| | | | | | | |
Collapse
|
79
|
Sánchez-Muñoz OL, Strandberg E, Esteban-Martín E, Grage SL, Ulrich AS, Salgado J. Canonical azimuthal rotations and flanking residues constrain the orientation of transmembrane helices. Biophys J 2013; 104:1508-16. [PMID: 23561527 DOI: 10.1016/j.bpj.2013.02.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/31/2013] [Accepted: 02/20/2013] [Indexed: 12/22/2022] Open
Abstract
In biological membranes the alignment of embedded proteins provides crucial structural information. The transmembrane (TM) parts have well-defined secondary structures, in most cases α-helices and their orientation is given by a tilt angle and an azimuthal rotation angle around the main axis. The tilt angle is readily visualized and has been found to be functionally relevant. However, there exist no general concepts on the corresponding azimuthal rotation. Here, we show that TM helices prefer discrete rotation angles. They arise from a combination of intrinsic properties of the helix geometry plus the influence of the position and type of flanking residues at both ends of the hydrophobic core. The helical geometry gives rise to canonical azimuthal angles for which the side chains of residues from the two ends of the TM helix tend to have maximum or minimum immersion within the membrane. This affects the preferential position of residues that fall near hydrophobic/polar interfaces of the membrane, depending on their hydrophobicity and capacity to form specific anchoring interactions. On this basis, we can explain the orientation and dynamics of TM helices and make accurate predictions, which correspond well to the experimental values of several model peptides (including dimers), and TM segments of polytopic membrane proteins.
Collapse
|
80
|
Ding Y, Yao Y, Marassi FM. Membrane protein structure determination in membrana. Acc Chem Res 2013; 46:2182-90. [PMID: 24041243 DOI: 10.1021/ar400041a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The two principal components of biological membranes, the lipid bilayer and the proteins integrated within it, have coevolved for specific functions that mediate the interactions of cells with their environment. Molecular structures can provide very significant insights about protein function. In the case of membrane proteins, the physical and chemical properties of lipids and proteins are highly interdependent; therefore structure determination should include the membrane environment. Considering the membrane alongside the protein eliminates the possibility that crystal contacts or detergent molecules could distort protein structure, dynamics, and function and enables ligand binding studies to be performed in a natural setting. Solid-state NMR spectroscopy is compatible with three-dimensional structure determination of membrane proteins in phospholipid bilayer membranes under physiological conditions and has played an important role in elucidating the physical and chemical properties of biological membranes, providing key information about the structure and dynamics of the phospholipid components. Recently, developments in the recombinant expression of membrane proteins, sample preparation, pulse sequences for high-resolution spectroscopy, radio frequency probes, high-field magnets, and computational methods have enabled a number of membrane protein structures to be determined in lipid bilayer membranes. In this Account, we illustrate solid-state NMR methods with examples from two bacterial outer membrane proteins (OmpX and Ail) that form integral membrane β-barrels. The ability to measure orientation-dependent frequencies in the solid-state NMR spectra of membrane-embedded proteins provides the foundation for a powerful approach to structure determination based primarily on orientation restraints. Orientation restraints are particularly useful for NMR structural studies of membrane proteins because they provide information about both three-dimensional structure and the orientation of the protein within the membrane. When combined with dihedral angle restraints derived from analysis of isotropic chemical shifts, molecular fragment replacement, and de novo structure prediction, orientation restraints can yield high-quality three-dimensional structures with few or no distance restraints. Using complementary solid-state NMR methods based on oriented sample (OS) and magic angle spinning (MAS) approaches, one can resolve and assign multiple peaks through the use of (15)N/(13)C labeled samples and measure precise restraints to determine structures.
Collapse
Affiliation(s)
- Yi Ding
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yong Yao
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Francesca M. Marassi
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
81
|
Murray DT, Das N, Cross TA. Solid state NMR strategy for characterizing native membrane protein structures. Acc Chem Res 2013; 46:2172-81. [PMID: 23470103 DOI: 10.1021/ar3003442] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Unlike water soluble proteins, the structures of helical transmembrane proteins depend on a very complex environment. These proteins sit in the midst of dramatic electrical and chemical gradients and are often subject to variations in the lateral pressure profile, order parameters, dielectric constant, and other properties. Solid state NMR is a collection of tools that can characterize high resolution membrane protein structure in this environment. Indeed, prior work has shown that this complex environment significantly influences transmembrane protein structure. Therefore, it is important to characterize such structures under conditions that closely resemble its native environment. Researchers have used two approaches to gain protein structural restraints via solid state NMR spectroscopy. The more traditional approach uses magic angle sample spinning to generate isotropic chemical shifts, much like solution NMR. As with solution NMR, researchers can analyze the backbone chemical shifts to obtain torsional restraints. They can also examine nuclear spin interactions between nearby atoms to obtain distances between atomic sites. Unfortunately, for membrane proteins in lipid preparations, the spectral resolution is not adequate to obtain complete resonance assignments. Researchers have developed another approach for gaining structural restraints from membrane proteins: the use of uniformly oriented lipid bilayers, which provides a method for obtaining high resolution orientational restraints. When the bilayers are aligned with respect to the magnetic field of the NMR spectrometer, researchers can obtain orientational restraints in which atomic sites in the protein are restrained relative to the alignment axis. However, this approach does not allow researchers to determine the relative packing between helices. By combining the two approaches, we can take advantage of the information acquired from each technique to minimize the challenges and maximize the quality of the structural results. By combining the distance, torsional, and orientational restraints, we can characterize high resolution membrane protein structure in native-like lipid bilayer environments.
Collapse
Affiliation(s)
- Dylan T. Murray
- Institute of Molecular Biophysics, Department of Chemistry and Biochemistry, and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Nabanita Das
- Institute of Molecular Biophysics, Department of Chemistry and Biochemistry, and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Timothy A. Cross
- Institute of Molecular Biophysics, Department of Chemistry and Biochemistry, and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| |
Collapse
|
82
|
Gayen A, Banigan JR, Traaseth NJ. Ligand-induced conformational changes of the multidrug resistance transporter EmrE probed by oriented solid-state NMR spectroscopy. Angew Chem Int Ed Engl 2013; 52:10321-4. [PMID: 23939862 DOI: 10.1002/anie.201303091] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 07/12/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Anindita Gayen
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 (USA) http://www.nyu.edu/fas/dept/chemistry/traasethgroup/
| | | | | |
Collapse
|
83
|
Gayen A, Banigan JR, Traaseth NJ. Ligand-Induced Conformational Changes of the Multidrug Resistance Transporter EmrE Probed by Oriented Solid-State NMR Spectroscopy. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201303091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
84
|
Abstract
The number of membrane protein structures in the Protein Data Bank is becoming significant and growing. Here, the transmembrane domain structures of the helical membrane proteins are evaluated to assess the influences of the membrane mimetic environments. Toward this goal, many of the biophysical properties of membranes are discussed and contrasted with those of the membrane mimetics commonly used for structure determination. Although the mimetic environments can perturb the protein structures to an extent that potentially gives rise to misinterpretation of functional mechanisms, there are also many structures that have a native-like appearance. From this assessment, an initial set of guidelines is proposed for distinguishing native-like from nonnative-like membrane protein structures. With experimental techniques for validation and computational methods for refinement and quality assessment and enhancement, there are good prospects for achieving native-like structures for these very important proteins.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Institute of Molecular Biophysic, Florida State University, Tallahassee, USA
| | | |
Collapse
|
85
|
G-protein-coupled receptor structure, ligand binding and activation as studied by solid-state NMR spectroscopy. Biochem J 2013; 450:443-57. [DOI: 10.1042/bj20121644] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
GPCRs (G-protein-coupled receptors) are versatile signalling molecules at the cell surface and make up the largest and most diverse family of membrane receptors in the human genome. They convert a large variety of extracellular stimuli into intracellular responses through the activation of heterotrimeric G-proteins, which make them key regulatory elements in a broad range of normal and pathological processes, and are therefore one of the most important targets for pharmaceutical drug discovery. Knowledge of a GPCR structure enables us to gain a mechanistic insight into its function and dynamics, and further aid rational drug design. Despite intensive research carried out over the last three decades, resolving the structural basis of GPCR function is still a major activity. The crystal structures obtained in the last 5 years provide the first opportunity to understand how protein structure dictates the unique functional properties of these complex signalling molecules. However, owing to the intrinsic hydrophobicity, flexibility and instability of membrane proteins, it is still a challenge to crystallize GPCRs, and, when this is possible, it is no longer in its native membrane environment and no longer without modification. Furthermore, the conformational change of the transmembrane α-helices associated with the structure activation increases the difficulty of capturing the activation state of a GPCR to a higher resolution by X-ray crystallography. On the other hand, solid-state NMR may offer a unique opportunity to study membrane protein structure, ligand binding and activation at atomic resolution in the native membrane environment, as well as described functionally significant dynamics. In the present review, we discuss some recent achievements of solid-state NMR for understanding GPCRs, the largest mammalian proteome at ~1% of the total expressed proteins. Structural information, details of determination, details of ligand conformations and the consequences of ligand binding to initiate activation can all be explored with solid-state NMR.
Collapse
|
86
|
Lemmin T, Soto CS, Clinthorne G, DeGrado WF, Dal Peraro M. Assembly of the transmembrane domain of E. coli PhoQ histidine kinase: implications for signal transduction from molecular simulations. PLoS Comput Biol 2013; 9:e1002878. [PMID: 23359663 PMCID: PMC3554529 DOI: 10.1371/journal.pcbi.1002878] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/17/2012] [Indexed: 01/26/2023] Open
Abstract
The PhoQP two-component system is a signaling complex essential for bacterial virulence and cationic antimicrobial peptide resistance. PhoQ is the histidine kinase chemoreceptor of this tandem machine and assembles in a homodimer conformation spanning the bacterial inner membrane. Currently, a full understanding of the PhoQ signal transduction is hindered by the lack of a complete atomistic structure. In this study, an atomistic model of the key transmembrane (TM) domain is assembled by using molecular simulations, guided by experimental cross-linking data. The formation of a polar pocket involving Asn202 in the lumen of the tetrameric TM bundle is crucial for the assembly and solvation of the domain. Moreover, a concerted displacement of the TM helices at the periplasmic side is found to modulate a rotation at the cytoplasmic end, supporting the transduction of the chemical signal through a combination of scissoring and rotational movement of the TM helices. Two-component systems (TCSs) are signaling complexes essential for bacterial survival and virulence. PhoQ is the histidine kinase chemoreceptor of the PhoQ-PhoP tandem machine that detects the concentration of cationic species at the inner membrane of Gram-negative bacteria. A full understanding of the PhoQ signal transduction mechanism is currently hindered by the lack of a complete atomistic structure. Here, by using molecular simulations integrated with cross-linking disulfide scanning data, we present the first structural model of the transmembrane (TM) portion of PhoQ from E. coli. Its structural and dynamic features induce a concerted displacement of the TM helices at the periplasmic side, which modulates a rotation at the cytoplasmic end. This supports the idea that signal transduction is promoted through a combination of scissoring and rotational movements of the TM helices. This complex mechanism is the key to understanding how the chemical stimuli sensed by the periplasmic sensor domain trigger, via the relay of the HAMP domain, the histidine auto-phosphorylation and kinase/phosphatase activity at the cytoplasmic end.
Collapse
Affiliation(s)
- Thomas Lemmin
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Cinque S. Soto
- Department of Biochemistry and Biophysics, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Graham Clinthorne
- Department of Biochemistry and Biophysics, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, University of California – San Francisco, San Francisco, California, United States of America
| | - Matteo Dal Peraro
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
87
|
Yao Y, Ding Y, Tian Y, Opella SJ, Marassi FM. Membrane protein structure determination: back to the membrane. Methods Mol Biol 2013; 1063:145-58. [PMID: 23975776 DOI: 10.1007/978-1-62703-583-5_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
NMR spectroscopy enables the structures of membrane proteins to be determined in the native-like environment of the phospholipid bilayer membrane. This chapter outlines the methods for membrane protein structural studies using solid-state NMR spectroscopy with samples of membrane proteins incorporated in proteoliposomes or planar lipid bilayers. The methods for protein expression and purification, sample preparation, and NMR experiments are described and illustrated with examples from OmpX and Ail, two bacterial outer membrane proteins that function in bacterial virulence.
Collapse
Affiliation(s)
- Yong Yao
- Sanford Burnham Medical Research Institute, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
88
|
Opella SJ. Structure determination of membrane proteins by nuclear magnetic resonance spectroscopy. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2013; 6:305-28. [PMID: 23577669 PMCID: PMC3980955 DOI: 10.1146/annurev-anchem-062012-092631] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Many biological membranes consist of 50% or more (by weight) membrane proteins, which constitute approximately one-third of all proteins expressed in biological organisms. Helical membrane proteins function as receptors, enzymes, and transporters, among other unique cellular roles. Additionally, most drugs have membrane proteins as their receptors, notably the superfamily of G protein-coupled receptors with seven transmembrane helices. Determining the structures of membrane proteins is a daunting task because of the effects of the membrane environment; specifically, it has been difficult to combine biologically compatible environments with the requirements for the established methods of structure determination. There is strong motivation to determine the structures in their native phospholipid bilayer environment so that perturbations from nonnatural lipids and phases do not have to be taken into account. At present, the only method that can work with proteins in liquid crystalline phospholipid bilayers is solid-state NMR spectroscopy.
Collapse
Affiliation(s)
- Stanley J Opella
- Department of Chemistry and Biochemistry, University of California, San Diego 92093, USA.
| |
Collapse
|
89
|
Rankenberg JM, Vostrikov VV, Greathouse DV, Grant CV, Opella SJ, Koeppe RE. Properties of membrane-incorporated WALP peptides that are anchored on only one end. Biochemistry 2012; 51:10066-74. [PMID: 23171005 DOI: 10.1021/bi301394z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptides of the "WALP" family, acetyl-GWW(LA)(n)LWWA-[ethanol]amide, have proven to be opportune models for investigating lipid-peptide interactions. Because the average orientations and motional behavior of the N- and C-terminal Trp (W) residues differ, it is of interest to investigate how the positions of the tryptophans influence the properties of the membrane-incorporated peptides. To address this question, we synthesized acetyl-GGWW(LA)(n)-ethanolamide and acetyl-(AL)(n)WWG-ethanolamide, in which n = 4 or 8, which we designate as "N-anchored" and "C-anchored" peptides, respectively. Selected (2)H or (15)N labels were incorporated for solid-state nuclear magnetic resonance (NMR) spectroscopy. These peptides can be considered "half"-anchored WALP peptides, having only one pair of interfacial Trp residues near either the amino or the carboxyl terminus. The hydrophobic lengths of the (n = 8) peptides are similar to that of WALP23. These longer half-anchored WALP peptides incorporate into lipid bilayers as α-helices, as reflected in their circular dichroism spectra. Solid-state NMR experiments indicate that the longer peptide helices assume defined transmembrane orientations with small non-zero average tilt angles and moderate to high dynamic averaging in bilayer membranes of 1,2-dioleoylphosphatidylcholine, 1,2-dimyristoylphosphatidylcholine, and 1,2-dilauroylphosphatidylcholine. The intrinsically small apparent tilt angles suggest that interactions of aromatic residues with lipid headgroups may play an important role in determining the magnitude of the peptide tilt in the bilayer membrane. The shorter (n = 4) peptides, in stark contrast to the longer peptides, display NMR spectra that are characteristic of greatly reduced motional averaging, probably because of peptide aggregation in the bilayer environment, and CD spectra that are characteristic of β-structure.
Collapse
Affiliation(s)
- Johanna M Rankenberg
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | | | | | | | | | | |
Collapse
|
90
|
Dürr UN, Gildenberg M, Ramamoorthy A. The magic of bicelles lights up membrane protein structure. Chem Rev 2012; 112:6054-74. [PMID: 22920148 PMCID: PMC3497859 DOI: 10.1021/cr300061w] [Citation(s) in RCA: 274] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Indexed: 12/12/2022]
Affiliation(s)
| | - Melissa Gildenberg
- Biophysics
and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055,
United States
| | - Ayyalusamy Ramamoorthy
- Biophysics
and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055,
United States
| |
Collapse
|
91
|
Tang W, Knox RW, Nevzorov AA. A spectroscopic assignment technique for membrane proteins reconstituted in magnetically aligned bicelles. JOURNAL OF BIOMOLECULAR NMR 2012; 54:307-316. [PMID: 22976525 DOI: 10.1007/s10858-012-9673-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 09/06/2012] [Indexed: 06/01/2023]
Abstract
Oriented-sample NMR (OS-NMR) has emerged as a powerful tool for the structure determination of membrane proteins in their physiological environments. However, the traditional spectroscopic assignment method in OS NMR that uses the "shotgun" approach, though effective, is quite labor- and time-consuming as it is based on the preparation of multiple selectively labeled samples. Here we demonstrate that, by using a combination of the spin exchange under mismatched Hartmann-Hahn conditions and a recent sensitivity-enhancement REP-CP sequence, spectroscopic assignment of solid-state NMR spectra of Pf1 coat protein reconstituted in magnetically aligned bicelles can be significantly improved. This method yields a two-dimensional spin-exchanged version of the SAMPI4 spectrum correlating the (15)N chemical shift and (15)N-(1)H dipolar couplings, as well as spin-correlations between the (i, i ± 1) amide sites. Combining the spin-exchanged SAMPI4 spectrum with the original SAMPI4 experiment makes it possible to establish sequential assignments, and this technique is generally applicable to other uniaxially aligned membrane proteins. Inclusion of an (15)N-(15)N correlation spectrum into the assignment process helps establish correlations between the peaks in crowded or ambiguous spectral regions of the spin-exchanged SAMPI4 experiment. Notably, unlike the traditional method, only a uniformly labeled protein sample is required for spectroscopic assignment with perhaps only a few selectively labeled "seed" spectra. Simulations for the magnetization transfer between the dilute spins under mismatched Hartmann Hahn conditions for various B (1) fields have also been performed. The results adequately describe the optimal conditions for establishing the cross peaks, thus eliminating the need for lengthy experimental optimizations.
Collapse
Affiliation(s)
- Wenxing Tang
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, USA
| | | | | |
Collapse
|
92
|
Tsutsumi A, Javkhlantugs N, Kira A, Umeyama M, Kawamura I, Nishimura K, Ueda K, Naito A. Structure and orientation of bovine lactoferrampin in the mimetic bacterial membrane as revealed by solid-state NMR and molecular dynamics simulation. Biophys J 2012; 103:1735-43. [PMID: 23083717 DOI: 10.1016/j.bpj.2012.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 09/05/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022] Open
Abstract
Bovine lactoferrampin (LFampinB) is a newly discovered antimicrobial peptide found in the N1-domain of bovine lactoferrin (268-284), and consists of 17 amino-acid residues. It is important to determine the orientation and structure of LFampinB in bacterial membranes to reveal the antimicrobial mechanism. We therefore performed (13)C and (31)P NMR, (13)C-(31)P rotational echo double resonance (REDOR), potassium ion-selective electrode, and quartz-crystal microbalance measurements for LFampinB with mimetic bacterial membrane and molecular-dynamics simulation in acidic membrane. (31)P NMR results indicated that LFampinB caused a defect in mimetic bacterial membranes. Ion-selective electrode measurements showed that ion leakage occurred for the mimetic bacterial membrane containing cardiolipin. Quartz-crystal microbalance measurements revealed that LFampinB had greater affinity to acidic phospholipids than that to neutral phospholipids. (13)C DD-MAS and static NMR spectra showed that LFampinB formed an α-helix in the N-terminus region and tilted 45° to the bilayer normal. REDOR dephasing patterns between carbonyl carbon nucleus in LFampinB and phosphorus nuclei in lipid phosphate groups were measured by (13)C-(31)P REDOR and the results revealed that LFampinB is located in the interfacial region of the membrane. Molecular-dynamics simulation showed the tilt angle to be 42° and the rotation angle to be 92.5° for Leu(3), which are in excellent agreement with the experimental values.
Collapse
Affiliation(s)
- Atsushi Tsutsumi
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Hohlweg W, Kosol S, Zangger K. Determining the orientation and localization of membrane-bound peptides. Curr Protein Pept Sci 2012; 13:267-79. [PMID: 22044140 PMCID: PMC3394173 DOI: 10.2174/138920312800785049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 10/01/2011] [Accepted: 10/10/2011] [Indexed: 01/06/2023]
Abstract
Many naturally occurring bioactive peptides bind to biological membranes. Studying and elucidating the mode of interaction is often an essential step to understand their molecular and biological functions. To obtain the complete orientation and immersion depth of such compounds in the membrane or a membrane-mimetic system, a number of methods are available, which are separated in this review into four main classes: solution NMR, solid-state NMR, EPR and other methods. Solution NMR methods include the Nuclear Overhauser Effect (NOE) between peptide and membrane signals, residual dipolar couplings and the use of paramagnetic probes, either within the membrane-mimetic or in the solvent. The vast array of solid state NMR methods to study membrane-bound peptide orientation and localization includes the anisotropic chemical shift, PISA wheels, dipolar waves, the GALA, MAOS and REDOR methods and again the use of paramagnetic additives on relaxation rates. Paramagnetic additives, with their effect on spectral linewidths, have also been used in EPR spectroscopy. Additionally, the orientation of a peptide within a membrane can be obtained by the anisotropic hyperfine tensor of a rigidly attached nitroxide label. Besides these magnetic resonance techniques a series of other methods to probe the orientation of peptides in membranes has been developed, consisting of fluorescence-, infrared- and oriented circular dichroism spectroscopy, colorimetry, interface-sensitive X-ray and neutron scattering and Quartz crystal microbalance.
Collapse
Affiliation(s)
| | | | - Klaus Zangger
- Institute of Chemistry / Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| |
Collapse
|
94
|
Rankenberg JM, Vostrikov VV, DuVall CD, Greathouse DV, Koeppe RE, Grant CV, Opella SJ. Proline kink angle distributions for GWALP23 in lipid bilayers of different thicknesses. Biochemistry 2012; 51:3554-64. [PMID: 22489564 DOI: 10.1021/bi300281k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
By using selected (2)H and (15)N labels, we have examined the influence of a central proline residue on the properties of a defined peptide that spans lipid bilayer membranes by solid-state nuclear magnetic resonance (NMR) spectroscopy. For this purpose, GWALP23 (acetyl-GGALW(5)LALALALALALALW(19)LAGA-ethanolamide) is a suitable model peptide that employs, for the purpose of interfacial anchoring, only one tryptophan residue on either end of a central α-helical core sequence. Because of its systematic behavior in lipid bilayer membranes of differing thicknesses [Vostrikov, V. V., et al. (2010) J. Biol. Chem. 285, 31723-31730], we utilize GWALP23 as a well-characterized framework for introducing guest residues within a transmembrane sequence; for example, a central proline yields acetyl-GGALW(5)LALALAP(12)ALALALW(19)LAGA-ethanolamide. We synthesized GWALP23-P12 with specifically placed (2)H and (15)N labels for solid-state NMR spectroscopy and examined the peptide orientation and segmental tilt in oriented DMPC lipid bilayer membranes using combined (2)H GALA and (15)N-(1)H high-resolution separated local field methods. In DMPC bilayer membranes, the peptide segments N-terminal and C-terminal to the proline are both tilted substantially with respect to the bilayer normal, by ~34 ± 5° and 29 ± 5°, respectively. While the tilt increases for both segments when proline is present, the range and extent of the individual segment motions are comparable to or smaller than those of the entire GWALP23 peptide in bilayer membranes. In DMPC, the proline induces a kink of ~30 ± 5°, with an apparent helix unwinding or "swivel" angle of ~70°. In DLPC and DOPC, on the basis of (2)H NMR data only, the kink angle and swivel angle probability distributions overlap those of DMPC, yet the most probable kink angle appears to be somewhat smaller than in DMPC. As has been described for GWALP23 itself, the C-terminal helix ends before Ala(21) in the phospholipids DMPC and DLPC yet remains intact through Ala(21) in DOPC. The dynamics of bilayer-incorporated, membrane-spanning GWALP23 and GWALP23-P12 are less extensive than those observed for WALP family peptides that have more than two interfacial Trp residues.
Collapse
Affiliation(s)
- Johanna M Rankenberg
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | | | | | | | | | | | | |
Collapse
|
95
|
Chen X, Chen X, Wu T, Wang Q. Simulation of steered molecular dynamics on the exploration of the dynamic structure of HIV-1 protease. MOLECULAR SIMULATION 2012. [DOI: 10.1080/08927022.2011.621951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
96
|
Gleason NJ, Vostrikov VV, Greathouse DV, Grant CV, Opella SJ, Koeppe RE. Tyrosine replacing tryptophan as an anchor in GWALP peptides. Biochemistry 2012; 51:2044-53. [PMID: 22364236 DOI: 10.1021/bi201732e] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthetic model peptides have proven useful for examining fundamental peptide-lipid interactions. A frequently employed peptide design consists of a hydrophobic core of Leu-Ala residues with polar or aromatic amino acids flanking each side at the interfacial positions, which serve to "anchor" a specific transmembrane orientation. For example, WALP family peptides (acetyl-GWW(LA)(n)LWWA-[ethanol]amide), anchored by four Trp residues, have received particular attention in both experimental and theoretical studies. A recent modification proved successful in reducing the number of Trp anchors to only one near each end of the peptide. The resulting GWALP23 (acetyl-GGALW(5)(LA)(6)LW(19)LAGA-[ethanol]amide) displays reduced dynamics and greater sensitivity to lipid-peptide hydrophobic mismatch than traditional WALP peptides. We have further modified GWALP23 to incorporate a single tyrosine, replacing W(5) with Y(5). The resulting peptide, Y(5)GWALP23 (acetyl-GGALY(5)(LA)(6)LW(19)LAGA-amide), has a single Trp residue that is sensitive to fluorescence experiments. By incorporating specific (2)H and (15)N labels in the core sequence of Y(5)GWALP23, we were able to use solid-state NMR spectroscopy to examine the peptide orientation in hydrated lipid bilayer membranes. The peptide orients well in membranes and gives well-defined (2)H quadrupolar splittings and (15)N/(1)H dipolar couplings throughout the core helical sequence between the aromatic residues. The substitution of Y(5) for W(5) has remarkably little influence on the tilt or dynamics of GWALP23 in bilayer membranes of the phospholipids DOPC, DMPC, or DLPC. A second analogue of the peptide with one Trp and two Tyr anchors, Y(4,5)GWALP23, is generally less responsive to the bilayer thickness and exhibits lower apparent tilt angles with evidence of more extensive dynamics. In general, the peptide behavior with multiple Tyr anchors appears to be quite similar to the situation when multiple Trp anchors are present, as in the original WALP series of model peptides.
Collapse
Affiliation(s)
- Nicholas J Gleason
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | | | | | | | | | | |
Collapse
|
97
|
Zhang R, Chen Y, Chen T, Sun P, Li B, Ding D. Accessing Structure and Dynamics of Mobile Phase in Organic Solids by Real-Time T1C Filter PISEMA NMR Spectroscopy. J Phys Chem A 2012; 116:979-84. [DOI: 10.1021/jp2078902] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rongchun Zhang
- School of Physics, Nankai University, Tianjin 300071, People's Republic of China
| | - Yuzhu Chen
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Tiehong Chen
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Pingchuan Sun
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Baohui Li
- School of Physics, Nankai University, Tianjin 300071, People's Republic of China
| | - Datong Ding
- School of Physics, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
98
|
Tian Y, Schwieters CD, Opella SJ, Marassi FM. AssignFit: a program for simultaneous assignment and structure refinement from solid-state NMR spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 214:42-50. [PMID: 22036904 PMCID: PMC3257385 DOI: 10.1016/j.jmr.2011.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 09/23/2011] [Accepted: 10/02/2011] [Indexed: 05/23/2023]
Abstract
AssignFit is a computer program developed within the XPLOR-NIH package for the assignment of dipolar coupling (DC) and chemical shift anisotropy (CSA) restraints derived from the solid-state NMR spectra of protein samples with uniaxial order. The method is based on minimizing the difference between experimentally observed solid-state NMR spectra and the frequencies back calculated from a structural model. Starting with a structural model and a set of DC and CSA restraints grouped only by amino acid type, as would be obtained by selective isotopic labeling, AssignFit generates all of the possible assignment permutations and calculates the corresponding atomic coordinates oriented in the alignment frame, together with the associated set of NMR frequencies, which are then compared with the experimental data for best fit. Incorporation of AssignFit in a simulated annealing refinement cycle provides an approach for simultaneous assignment and structure refinement (SASR) of proteins from solid-state NMR orientation restraints. The methods are demonstrated with data from two integral membrane proteins, one α-helical and one β-barrel, embedded in phospholipid bilayer membranes.
Collapse
Affiliation(s)
- Ye Tian
- Sanford Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, C A 92037, USA
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0307, USA
| | - Charles D. Schwieters
- Division of Computational Bioscience, Building 12A, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892-5624
| | - Stanley J. Opella
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0307, USA
| | - Francesca M. Marassi
- Sanford Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, C A 92037, USA
| |
Collapse
|
99
|
Verardi R, Traaseth NJ, Masterson LR, Vostrikov VV, Veglia G. Isotope labeling for solution and solid-state NMR spectroscopy of membrane proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 992:35-62. [PMID: 23076578 PMCID: PMC3555569 DOI: 10.1007/978-94-007-4954-2_3] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this chapter, we summarize the isotopic labeling strategies used to obtain high-quality solution and solid-state NMR spectra of biological samples, with emphasis on integral membrane proteins (IMPs). While solution NMR is used to study IMPs under fast tumbling conditions, such as in the presence of detergent micelles or isotropic bicelles, solid-state NMR is used to study the structure and orientation of IMPs in lipid vesicles and bilayers. In spite of the tremendous progress in biomolecular NMR spectroscopy, the homogeneity and overall quality of the sample is still a substantial obstacle to overcome. Isotopic labeling is a major avenue to simplify overlapped spectra by either diluting the NMR active nuclei or allowing the resonances to be separated in multiple dimensions. In the following we will discuss isotopic labeling approaches that have been successfully used in the study of IMPs by solution and solid-state NMR spectroscopy.
Collapse
Affiliation(s)
- Raffaello Verardi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | | | | | | | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
100
|
Park TJ, Kim JS, Ahn HC, Kim Y. Solution and solid-state NMR structural studies of antimicrobial peptides LPcin-I and LPcin-II. Biophys J 2011; 101:1193-201. [PMID: 21889457 DOI: 10.1016/j.bpj.2011.06.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 06/07/2011] [Accepted: 06/23/2011] [Indexed: 11/26/2022] Open
Abstract
Lactophoricin (LPcin-I) is an antimicrobial, amphiphatic, cationic peptide with 23-amino acid residues isolated from bovine milk. Its analogous peptide, LPcin-II, lacks six N-terminal amino acids compared to LPcin-I. Interestingly, LPcin-II does not display any antimicrobial activity, whereas LPcin-I inhibits the growth of both Gram-negative and Gram-positive bacteria without exhibiting any hemolytic activity. Uniformly (15)N-labeled LPcin peptides were prepared by the recombinant expression of fusion proteins in Escherichia coli, and their properties were characterized by electrospray ionization mass spectrometry, circular dichroism spectroscopy, and antimicrobial activity tests. To understand the structure-activity relationship of these two peptides, they were studied in model membrane environments by a combination of solution and solid-state NMR spectroscopy. We determined the tertiary structure of LPcin-I and LPcin-II in the presence of dodecylphosphorylcholine micelles by solution NMR spectroscopy. Magnetically aligned unflipped bicelle samples were used to investigate the structure and topology of LPcin-I and LPcin-II by solid-state NMR spectroscopy.
Collapse
Affiliation(s)
- Tae-Joon Park
- Department of Chemistry and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies, Yong-In, Korea
| | | | | | | |
Collapse
|