51
|
Simultaneous recording of electroencephalographic data in musicians playing in ensemble. Cortex 2011; 47:1082-90. [DOI: 10.1016/j.cortex.2011.05.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 01/20/2010] [Accepted: 01/17/2011] [Indexed: 11/17/2022]
|
52
|
An investigation into manual asymmetries in grasp behavior and kinematics during an object manipulation task. Exp Brain Res 2011; 215:65-75. [PMID: 21938544 DOI: 10.1007/s00221-011-2872-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 09/08/2011] [Indexed: 10/17/2022]
Abstract
Manual asymmetries in the control of movements have been investigated in a variety of experimental paradigms. Initial studies demonstrated that the dominant right hand has advantages over the non-dominant left hand in many aspects of motor control. However, more recent studies have shown that the presence and extent of these asymmetries depends on the task context and accuracy demands. Typically, manual asymmetries on a motor planning and motor execution level are examined separately. However, given that recent research has demonstrated that specific task constraints do not influence both levels equally, the purpose of the present experiment was to investigate manual asymmetries in motor planning and execution. To this end, initial grasp behavior (motor planning) and kinematics (motor execution) were examined in thirteen right-handed participants during a unimanual grasping and placing task. We specifically manipulated grasping hand, target location, object end orientation, and object grasp time at the start location. There were three main findings. First, motor planning or movement execution was similar regardless of grasping hand. Second, prospectively planned actions were influenced by target location and the required end orientation of the object. Third, the amount of time spent in an initial posture did not influence initial grasp postures. However, it did alter the movement kinematics during the grasping (approach phase) and placing (transport phase) portion of the task. We posit that grasping and placing movements are comprised of an initial grasp and a transport component, which are differentially influenced by task constraints.
Collapse
|
53
|
Gutbrod K, Spring D, Degonda N, Heinemann D, Nirkko A, Hauf M, Ozdoba C, Schnider A, Schroth G, Wiest R. Determination of language dominance: Wada test and fMRI compared using a novel sentence task. J Neuroimaging 2011; 22:266-74. [PMID: 21883628 DOI: 10.1111/j.1552-6569.2011.00646.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE This study aimed to develop a new linguistic based functional magnetic resonance imaging (fMRI)-sentence decision task that reliably detects hemispheric language dominance. METHODS FMRI was performed in 13 healthy right-handed controls and 20 patients at 1.5 T prior to neurosurgery. The main components of language were assessed with different paradigms (rhyme, synonym, and sentence). In controls, activations were quantified by a volume of interest analysis. Four neuroimagers tested a visual rating score in the patients group. Interrater agreement and concordance between fMRI and Wada test were calculated. RESULTS In healthy controls, the frontal language area was activated by the sentence and synonym task in 100% and in 73% by the rhyme task. The temporal language area was activated in 100% by the sentence-, in 64% by the synonym, and in 55% by the rhyme task. In the patients group, interrater agreement was .90 for activations in the inferior frontal and .97 in the superior temporal gyrus. Correlation between the WADA test and fMRI was .86 for the sentence, and .89 for the synonym task. CONCLUSIONS The sentence task provides robust activations in putative essential language areas and can be used for visual analysis of predefined areas to facilitate interpretation of clinical fMRI.
Collapse
Affiliation(s)
- Klemens Gutbrod
- Department of Neurology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Schambra HM, Abe M, Luckenbaugh DA, Reis J, Krakauer JW, Cohen LG. Probing for hemispheric specialization for motor skill learning: a transcranial direct current stimulation study. J Neurophysiol 2011; 106:652-61. [PMID: 21613597 DOI: 10.1152/jn.00210.2011] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Convergent findings point to a left-sided specialization for the representation of learned actions in right-handed humans, but it is unknown whether analogous hemispheric specialization exists for motor skill learning. In the present study, we explored this question by comparing the effects of anodal transcranial direct current stimulation (tDCS) over either left or right motor cortex (M1) on motor skill learning in either hand, using a tDCS montage to better isolate stimulation to one hemisphere. Results were compared with those previously found with a montage more commonly used in the field. Six groups trained for three sessions on a visually guided sequential pinch force modulation task with their right or left hand and received right M1, left M1, or sham tDCS. A linear mixed-model analysis for motor skill showed a significant main effect for stimulation group (left M1, right M1, sham) but not for hand (right, left) or their interaction. Left M1 tDCS induced significantly greater skill learning than sham when hand data were combined, a result consistent not only with the hypothesized left hemisphere specialization for motor skill learning but also with possible increased left M1 responsiveness to tDCS. The unihemispheric montage effect size was one-half that of the more common montage, and subsequent power analysis indicated that 75 subjects per group would be needed to detect differences seen with only 12 subjects with the customary bihemispheric montage.
Collapse
Affiliation(s)
- Heidi M Schambra
- Human Cortical Physiology and Stroke Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Bldg 10, 7D54, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
55
|
van den Berg FE, Swinnen SP, Wenderoth N. Involvement of the primary motor cortex in controlling movements executed with the ipsilateral hand differs between left- and right-handers. J Cogn Neurosci 2011; 23:3456-69. [PMID: 21452954 DOI: 10.1162/jocn_a_00018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Unimanual motor tasks, specifically movements that are complex or require high forces, activate not only the contralateral primary motor cortex (M1) but evoke also ipsilateral M1 activity. This involvement of ipsilateral M1 is asymmetric, such that the left M1 is more involved in motor control with the left hand than the right M1 in movements with the right hand. This suggests that the left hemisphere is specialized for movement control of either hand, although previous experiments tested mostly right-handed participants. In contrast, research on hemispheric asymmetries of ipsilateral M1 involvement in left-handed participants is relatively scarce. In the present study, left- and right-handed participants performed complex unimanual movements, whereas TMS was used to disrupt the activity of ipsilateral M1 in accordance with a "virtual lesion" approach. For right-handed participants, more disruptions were induced when TMS was applied over the dominant (left) M1. For left-handed participants, two subgroups could be distinguished, such that one group showed more disruptions when TMS was applied over the nondominant (left) M1, whereas the other subgroup showed more disruptions when the dominant (right) M1 was stimulated. This indicates that functional asymmetries of M1 involvement during ipsilateral movements are influenced by both hand dominance as well as left hemisphere specialization. We propose that the functional asymmetries in ipsilateral M1 involvement during unimanual movements are primarily attributable to asymmetries in the higher-order areas, although the contribution of transcallosal pathways and ipsilateral projections cannot be completely ruled out.
Collapse
|
56
|
Callaert DV, Vercauteren K, Peeters R, Tam F, Graham S, Swinnen SP, Sunaert S, Wenderoth N. Hemispheric asymmetries of motor versus nonmotor processes during (visuo)motor control. Hum Brain Mapp 2010; 32:1311-29. [PMID: 20681013 DOI: 10.1002/hbm.21110] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 05/11/2010] [Accepted: 05/15/2010] [Indexed: 11/11/2022] Open
Abstract
Language and certain aspects of motor control are typically served by the left hemisphere, whereas visuospatial and attentional control are lateralized to the right. Here a (visuo)motor tracing task was used to identify hemispheric lateralization beyond the general, contralateral organization of the motor system. Functional magnetic resonance imaging (fMRI) was applied in 40 male right-handers (19-30 yrs) during line tracing with dominant and nondominant hand, with and without visual guidance. Results revealed a network of areas activating more in the right than left hemisphere, irrespective of the effector. Inferior portions of frontal gyrus and parietal lobe overlapped largely with a previously described ventral attention network responding to unexpected or behaviourally relevant stimuli. This demonstrates a hitherto unreported functionality of this circuit that also seems to activate when spatial information is continuously exploited to adapt motor behaviour. Second, activation of left dorsal premotor and postcentral regions during tracing with the nondominant left hand was more pronounced than that in their right hemisphere homologues during tracing with the dominant right hand. These activation asymmetries of motor areas ipsilateral to the moving hand could not be explained by asymmetries in skill performance, the degree of handedness, or interhemispheric interactions. The latter was measured by a double-pulse transcranial magnetic stimulation paradigm, whereby a conditioning stimulus was applied over one hemisphere and a test stimulus over the other. We propose that the left premotor areas contain action representations strongly related to movement implementation which are also accessed during movements performed with the left body side.
Collapse
Affiliation(s)
- Dorothée V Callaert
- Motor Control Laboratory, Research Center for Movement Control and Neuroplasticity, Biomedical Sciences, KU Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Jacob Y, Rapson A, Kafri M, Baruchi I, Hendler T, Ben Jacob E. Revealing voxel correlation cliques by functional holography analysis of fMRI. J Neurosci Methods 2010; 191:126-37. [DOI: 10.1016/j.jneumeth.2010.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 06/03/2010] [Accepted: 06/07/2010] [Indexed: 10/19/2022]
Affiliation(s)
- Yael Jacob
- School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv, Israel
| | | | | | | | | | | |
Collapse
|
58
|
Movement-related desynchronization of alpha rhythms is lower in athletes than non-athletes: a high-resolution EEG study. Clin Neurophysiol 2010; 121:482-91. [PMID: 20097129 DOI: 10.1016/j.clinph.2009.12.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 11/24/2009] [Accepted: 12/04/2009] [Indexed: 11/21/2022]
Abstract
OBJECTIVE The "neural efficiency" hypothesis posits that neural activity is reduced in experts. Here we tested the hypothesis that compared with non-athletes, elite athletes are characterized by a reduced cortical activation during simple voluntary movement and that this is reflected by the modulation of dominant alpha rhythms (8-12 Hz). METHODS EEG data (56 channels; EB-Neuro) were continuously recorded in the following right-handed subjects: 10 elite karate athletes and 12 non-athletes. During the EEG recordings, they performed brisk voluntary wrist extensions of the right or left hand (right movement and left movement). The EEG cortical sources were estimated by standardized low-resolution brain electromagnetic tomography (sLORETA) freeware. With reference to a baseline period, the power decrease of alpha rhythms during the motor preparation and execution indexed the cortical activation (event-related desynchronization, ERD). RESULTS During both preparation and execution of the right movements, the low- (about 8-10 Hz) and high-frequency alpha ERD (about 10-12 Hz) was lower in amplitude in primary motor area, in lateral and medial premotor areas in the elite karate athletes than in the non-athletes. For the left movement, only the high-frequency alpha ERD during the motor execution was lower in the elite karate athletes than in the non-athletes. CONCLUSIONS These results confirmed that compared with non-athletes, elite athletes are characterized by a reduced cortical activation during simple voluntary movement. SIGNIFICANCE Cortical alpha rhythms are implicated in the "neural efficiency" of athletes' motor systems.
Collapse
|
59
|
Lin FH, Agnew JA, Belliveau JW, Zeffiro TA. Functional and effective connectivity of visuomotor control systems demonstrated using generalized partial least squares and structural equation modeling. Hum Brain Mapp 2009; 30:2232-51. [PMID: 19288462 DOI: 10.1002/hbm.20664] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Tasks employing parametric variation in movement rate are associated with predictable modulations in neural activity and provide a convenient context for developing new techniques for system identification. Using a multistage approach, we explored the functional and effective connectivity of a visuomotor control system by combining generalized partial least squares (gPLS) with subsequent structural equation modeling (SEM) to reveal the relationships between neural activity and finger movement rate in an experiment involving visually paced left or right thumb flexion. The gPLS in the first analysis stage automatically identified spatially distributed sets of BOLD-contrast signal changes using linear combinations of sigmoidal basis functions parameterized by kinematic variables. The gPLS provided superior sensitivity in detecting task-related functional activity patterns via a step-wise comparison with both classical linear modeling and behavior correlation analysis. These activity patterns were used in the second analysis stage, which employed SEM to characterize the areal regional interactions. The hybrid gPLS/SEM procedure allowed modeling of complex regional interactions in a network including primary motor cortex, premotor areas, cerebellum, thalamus, and basal ganglia, with differential activity modulations with respect to rate observed in the corticocerebellar and corticostriate subsystems. This effective connectivity analysis of visuomotor control circuits showed that both the left and right corticocerebellar and corticostriate circuits exhibited movement rate-related modulation. The identification of the functional connectivity among regions participating particular classes of behavior using gPLS, followed by the estimation of the effective connectivity using SEM is an efficient means to characterize the neural interactions underlying variations in sensorimotor behavior.
Collapse
Affiliation(s)
- Fa-Hsuan Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.
| | | | | | | |
Collapse
|
60
|
Nakata H, Sakamoto K, Ferretti A, Gianni Perrucci M, Del Gratta C, Kakigi R, Luca Romani G. Negative BOLD effect on somato-motor inhibitory processing: an fMRI study. Neurosci Lett 2009; 462:101-4. [PMID: 19576957 DOI: 10.1016/j.neulet.2009.06.088] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 06/22/2009] [Accepted: 06/26/2009] [Indexed: 11/19/2022]
Abstract
Inhibiting inappropriate behavior and thoughts in the current context is an essential ability for humans, but the neural mechanisms for response inhibitory processing are a matter of continuous debate. The aim of this event-related functional magnetic resonance imaging (fMRI) study was to evaluate the negative blood oxygen level dependent (BOLD) effect on inhibitory processing during go/no-go paradigms. Fifteen subjects performed two different types of somatosensory go/no-go paradigm: (1) button press and (2) count. Go and no-go stimuli were presented with an even probability. We observed a common negative activation during Movement No-go and Count No-go trials in the right SFG, corresponding to BA 8. These findings suggest that the right SFG region was responsible for the negative BOLD effect on inhibitory processing, which was independent of the required response mode. We hypothesized several possible explanations for the deactivation of the SFG during no-go trials.
Collapse
Affiliation(s)
- Hiroki Nakata
- ITAB-Institute for Advanced Biomedical Technologies, Gabriele D'Annunzio University Foundation, Chieti, Italy.
| | | | | | | | | | | | | |
Collapse
|
61
|
Amann M, Hirsch JG, Gass A. A serial functional connectivity MRI study in healthy individuals assessing the variability of connectivity measures: reduced interhemispheric connectivity in the motor network during continuous performance. Magn Reson Imaging 2009; 27:1347-59. [PMID: 19559557 DOI: 10.1016/j.mri.2009.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 04/03/2009] [Accepted: 05/10/2009] [Indexed: 10/20/2022]
Abstract
To date, little data is available on the reproducibility of functional connectivity MRI (fcMRI) studies. Here, we tested the variability and reproducibility of both the functional connectivity itself and different statistical methods to analyze this phenomenon. In the main part of our study, we repeatedly examined two healthy subjects in 10 sessions over 6 months with fcMRI. Cortical areas involved in motor function were examined under two different cognitive states: during continuous performance (CP) of a flexion/extension task of the fingers of the right hand and while subjects were at rest. Connectivity to left primary motor cortex (lSM1) was calculated by correlation analysis. The resulting correlation coefficients were transformed to z-scores of the standard normal distribution. For each subject, multisession statistical analyses were carried out with the z-score maps of the resting state (RS) and the CP experiments. First, voxel based t tests between the two groups of fcMRI experiments were performed. Second, ROI analyses were carried out for contralateral right SM1 and for supplementary motor area (SMA). For both ROI, mean and maximum z-score were calculated for each experiment. Also, the fraction of significantly (P<.05) correlated voxels (FCV) in each ROI was calculated. To evaluate the differences between the RS and the CP condition, paired t tests were performed for the mean and maximum z-scores, and Wilcoxon signed ranks tests for matched pairs were carried out for the FCV. All statistical methods and connectivity measures under investigation yielded a distinct loss in left-right SM1 connectivity under the CP condition. For SMA, interindividual differences were apparent. We therefore repeated the fcMRI experiments and the ROI analyses in a group of seven healthy subjects (including the two subjects of the main study). In this substudy, we were able to verify the reduction of left-right SM1 connectivity during unilateral performance. Still, the direction of SMA to lSM1 connectivity change during the CP condition remained undefined as four subjects showed a connectivity increase and three showed a decrease. In summary, we were able to demonstrate a distinct reduction in left-right SM1 synchrony in the CP condition compared to the RS both in the longitudinal and in the multisubject study. This effect was reproducible with all statistical methods and all measures of connectivity under investigation. We conclude that despite intra- and interindividual variability, serial and cross-sectional assessment of functional connectivity reveals stable and reliable results.
Collapse
Affiliation(s)
- Michael Amann
- Department of Neurology, University Hospital of Basel, Basel, Switzerland.
| | | | | |
Collapse
|
62
|
Van Impe A, Coxon JP, Goble DJ, Wenderoth N, Swinnen SP. Ipsilateral coordination at preferred rate: effects of age, body side and task complexity. Neuroimage 2009; 47:1854-62. [PMID: 19539766 DOI: 10.1016/j.neuroimage.2009.06.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 06/10/2009] [Accepted: 06/11/2009] [Indexed: 11/25/2022] Open
Abstract
Functional imaging studies have shown that elderly individuals activate widespread additional brain networks, compared to young subjects, when performing motor tasks. However, the parameters that effect this unique neural activation, including the spatial distribution of this activation across hemispheres, are still largely unknown. Here, we examined the effect of task complexity and body side on activation differences between older and younger adults while performing cyclical flexion-extension movements of the ipsilateral hand and foot. In particular, easy (isodirectional) and more difficult (non-isodirectional) coordination patterns were performed with either the left or right body side at a self-selected, comfortable rate. Even in the absence of imposed pacing the older group activated a larger brain network, suggestive of increased attentional deployment for monitoring the spatial relationships between the simultaneously moving segments and enhanced sensory processing and integration. Evidence of age-dependent underactivation was also found in contralateral M1, SMA and bilateral putamen, possibly reflecting a functional decline of the basal ganglia-mesial cortex pathway in the older group. An ANOVA model revealed significant main effects of task complexity and body side. However the interaction of these factors with age did not reach significance. Consequently, we conclude that under self-paced conditions, task complexity and body side did not have a modulatory effect on age-related brain activation.
Collapse
Affiliation(s)
- Annouchka Van Impe
- Research Center for Motor Control and Neuroplasticity, KU Leuven, Heverlee, Belgium
| | | | | | | | | |
Collapse
|
63
|
Eisner-Janowicz I, Barbay S, Hoover E, Stowe AM, Frost SB, Plautz EJ, Nudo RJ. Early and late changes in the distal forelimb representation of the supplementary motor area after injury to frontal motor areas in the squirrel monkey. J Neurophysiol 2008; 100:1498-512. [PMID: 18596180 DOI: 10.1152/jn.90447.2008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuroimaging studies in stroke survivors have suggested that adaptive plasticity occurs following stroke. However, the complex temporal dynamics of neural reorganization after injury make the interpretation of functional imaging studies equivocal. In the present study in adult squirrel monkeys, intracortical microstimulation (ICMS) techniques were used to monitor changes in representational maps of the distal forelimb in the supplementary motor area (SMA) after a unilateral ischemic infarct of primary motor (M1) and premotor distal forelimb representations (DFLs). In each animal, ICMS maps were derived at early (3 wk) and late (13 wk) postinfarct stages. Lesions resulted in severe deficits in motor abilities on a reach and retrieval task. Limited behavioral recovery occurred and plateaued at 3 wk postinfarct. At both early and late postinfarct stages, distal forelimb movements could still be evoked by ICMS in SMA at low current levels. However, the size of the SMA DFL changed after the infarct. In particular, wrist-forearm representations enlarged significantly between early and late stages, attaining a size substantially larger than the preinfarct area. At the late postinfarct stage, the expansion in the SMA DFL area was directly proportional to the absolute size of the lesion. The motor performance scores were positively correlated to the absolute size of the SMA DFL at the late postinfarct stage. Together, these data suggest that, at least in squirrel monkeys, descending output from M1 and dorsal and ventral premotor cortices is not necessary for SMA representations to be maintained and that SMA motor output maps undergo delayed increases in representational area after damage to other motor areas. Finally, the role of SMA in recovery of function after such lesions remains unclear because behavioral recovery appears to precede neurophysiological map changes.
Collapse
Affiliation(s)
- Ines Eisner-Janowicz
- Department of Molecular and Integrative Physiology Department and Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Hayashi MJ, Saito DN, Aramaki Y, Asai T, Fujibayashi Y, Sadato N. Hemispheric asymmetry of frequency-dependent suppression in the ipsilateral primary motor cortex during finger movement: a functional magnetic resonance imaging study. ACTA ACUST UNITED AC 2008; 18:2932-40. [PMID: 18413350 PMCID: PMC2583153 DOI: 10.1093/cercor/bhn053] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Electrophysiological studies have suggested that the activity of the primary motor cortex (M1) during ipsilateral hand movement reflects both the ipsilateral innervation and the transcallosal inhibitory control from its counterpart in the opposite hemisphere, and that their asymmetry might cause hand dominancy. To examine the asymmetry of the involvement of the ipsilateral motor cortex during a unimanual motor task under frequency stress, we conducted block-design functional magnetic resonance imaging with 22 normal right-handed subjects. The task involved visually cued unimanual opponent finger movement at various rates. The contralateral M1 showed symmetric frequency-dependent activation. The ipsilateral M1 showed task-related deactivation at low frequencies without laterality. As the frequency of the left-hand movement increased, the left M1 showed a gradual decrease in the deactivation. This data suggests a frequency-dependent increased involvement of the left M1 in ipsilateral hand control. By contrast, the right M1 showed more prominent deactivation as the frequency of the right-hand movement increased. This suggests that there is an increased transcallosal inhibition from the left M1 to the right M1, which overwhelms the right M1 activation during ipsilateral hand movement. These results demonstrate the dominance of the left M1 in both ipsilateral innervation and transcallosal inhibition in right-handed individuals.
Collapse
Affiliation(s)
- Masamichi J Hayashi
- Department of Physiological Sciences, The Graduate University for Advanced Studies (Sokendai), Okazaki, Japan
| | | | | | | | | | | |
Collapse
|
65
|
Kastrup A, Baudewig J, Schnaudigel S, Huonker R, Becker L, Sohns JM, Dechent P, Klingner C, Witte OW. Behavioral correlates of negative BOLD signal changes in the primary somatosensory cortex. Neuroimage 2008; 41:1364-71. [PMID: 18495495 DOI: 10.1016/j.neuroimage.2008.03.049] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 03/14/2008] [Accepted: 03/23/2008] [Indexed: 10/22/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) hypothesis testing based on the blood oxygenation level dependent (BOLD) contrast mechanism typically involves a search for a positive effect during a specific task relative to a control state. However, aside from positive BOLD signal changes there is converging evidence that neuronal responses within various cortical areas also induce negative BOLD signals. Although it is commonly believed that these negative BOLD signal changes reflect suppression of neuronal activity direct evidence for this assumption is sparse. Since the somatosensory system offers the opportunity to quantitatively test sensory function during concomitant activation and has been well-characterized with fMRI in the past, the aim of this study was to determine the functional significance of ipsilateral negative BOLD signal changes during unilateral sensory stimulation. For this, we measured BOLD responses in the somatosensory system during unilateral electric stimulation of the right median nerve and additionally determined the current perception threshold of the left index finger during right-sided electrical median nerve stimulation as a quantitative measure of sensory function. As expected, positive BOLD signal changes were observed in the contralateral primary and bilateral secondary somatosensory areas, whereas a decreased BOLD signal was observed in the ipsilateral primary somatosensory cortex (SI). The negative BOLD signal changes were much more spatially extensive than the representation of the hand area within the ipsilateral SI. The negative BOLD signal changes in the area of the index finger highly correlated with an increase in current perception thresholds of the contralateral, unstimulated finger, thus supporting the notion that the ipsilateral negative BOLD response reflects a functionally effective inhibition in the somatosensory system.
Collapse
Affiliation(s)
- Andreas Kastrup
- Department of Neurology, University of Göttingen, Göttingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Ipsilateral brain deactivation specific to the nondominant hand during simple finger movements. Neuroreport 2008; 19:483-6. [DOI: 10.1097/wnr.0b013e3282f6030b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
67
|
Schwerin S, Dewald JPA, Haztl M, Jovanovich S, Nickeas M, MacKinnon C. Ipsilateral versus contralateral cortical motor projections to a shoulder adductor in chronic hemiparetic stroke: implications for the expression of arm synergies. Exp Brain Res 2008; 185:509-19. [PMID: 17989973 PMCID: PMC2831614 DOI: 10.1007/s00221-007-1169-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 10/09/2007] [Indexed: 12/25/2022]
Abstract
An increase in ipsilateral descending motor pathway activity has been reported following hemiparetic stroke. In axial muscles, increased ipsilateral cortical activity has been correlated with good recovery whereas in distal arm muscles it is correlated with poor recovery. Currently, little is known about the control of proximal upper limb muscles following stroke. This muscle group is less impaired than the distal arm muscles following stroke, yet contributes to the abnormal motor coordination patterns associated with movements of the arm which can severely impair reaching ability. This study used transcranial magnetic stimulation (TMS) to evaluate the presence and magnitude of ipsilateral and contralateral projections to the pectoralis major (PMJ) muscle in stroke survivors. A laterality index (LI) was used to investigate the relationship between ipsilateral and contralateral projections and strength, clinical impairment level, and the degree of abnormal coordination expressed in the arm. The ipsilateral and contralateral hemispheres were stimulated using 90% TMS intensity while the subject generated shoulder adduction torques in both arms. Motor evoked potentials (MEPs) were measured in the paretic and non-paretic PMJ. The secondary torque at the elbow was measured during maximal adduction as an indicator of the degree of extensor synergy. Ipsilateral MEPs were most common in stroke survivors with moderate to severe motor deficits. The LI was correlated with clinical impairment level (P = 0.05) and the degree of extension synergy expressed in the arm (P = 0.03). The LI was not correlated with strength. These results suggest that increased excitability of ipsilateral pathways projecting to the proximal upper arm may contribute to the expression of the extension synergy following stroke. These findings are discussed in relation to a possible unmasking or upregulation of oligosynaptic cortico-bulbospinal pathways following stroke.
Collapse
Affiliation(s)
- Susan Schwerin
- Institute for Neuroscience, Physical Therapy and Human Movement Sciences, Northwestern University, Evanston, USA.
| | | | | | | | | | | |
Collapse
|
68
|
Brocke J, Schmidt S, Irlbacher K, Cichy RM, Brandt SA. Transcranial cortex stimulation and fMRI: electrophysiological correlates of dual-pulse BOLD signal modulation. Neuroimage 2007; 40:631-643. [PMID: 18234515 DOI: 10.1016/j.neuroimage.2007.11.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 11/21/2007] [Accepted: 11/28/2007] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Are the local hemodynamic changes in BOLD-fMRI correlated to increased or decreased neuronal activity or both? We combined transcranial electrical cortex stimulation (TES) with simultaneous fMRI and electromyographic (EMG) recording to study the influence of inhibitory and excitatory neuronal activity on the concomitant BOLD signal change. Unilateral or bilateral TES was applied with a postero-anterior orientation. This activates pyramidal cells transsynaptically and allows for the induction of cortical inhibition and excitation of the pyramidal cell, respectively. In this project interhemispheric inhibition (IHI) served as an in vivo model to investigate electrophysiologically well defined inhibitory and excitatory effects. METHODOLOGY Included event-related fMRI, which triggered TES; online recording of the EMG response monitored the inhibitory and excitatory influences on discharging corticospinal neurons. RESULTS Revealed that a single suprathreshold stimulus induced a positive BOLD response both in the ipsilateral as well as in the contralateral primary motor cortex (M1). The contralateral co-activation of the homotopic M1 should be a functional correlate of transcallosal connections. If a contralateral conditioning stimulus preceded the test stimulus by 10 ms (IHI), the subsequent ipsilateral BOLD signal was significantly reduced. We find that cortical inhibitory processes are accompanied by attenuation of the local neurovascular signal.
Collapse
Affiliation(s)
- Jan Brocke
- Department of Neurology, Berlin NeuroImaging Center, Charité, 10117 Berlin, Germany
| | - Sein Schmidt
- Department of Neurology, Berlin NeuroImaging Center, Charité, 10117 Berlin, Germany
| | - Kerstin Irlbacher
- Department of Neurology, Berlin NeuroImaging Center, Charité, 10117 Berlin, Germany
| | | | - Stephan A Brandt
- Department of Neurology, Berlin NeuroImaging Center, Charité, 10117 Berlin, Germany.
| |
Collapse
|
69
|
Lebedev MA, O'Doherty JE, Nicolelis MAL. Decoding of temporal intervals from cortical ensemble activity. J Neurophysiol 2007; 99:166-86. [PMID: 18003881 DOI: 10.1152/jn.00734.2007] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurophysiological, neuroimaging, and lesion studies point to a highly distributed processing of temporal information by cortico-basal ganglia-thalamic networks. However, there are virtually no experimental data on the encoding of behavioral time by simultaneously recorded cortical ensembles. We predicted temporal intervals from the activity of hundreds of neurons recorded in motor and premotor cortex as rhesus monkeys performed self-timed hand movements. During the delay periods, when animals had to estimate temporal intervals and prepare hand movements, neuronal ensemble activity encoded both the time that elapsed from the previous hand movement and the time until the onset of the next. The neurons that were most informative of these temporal intervals increased or decreased their rates throughout the delay until reaching a threshold value, at which point a movement was initiated. Variability in the self-timed delays was explainable by the variability of neuronal rates, but not of the threshold. In addition to predicting temporal intervals, the same neuronal ensemble activity was informative for generating predictions that dissociated the delay periods of the task from the movement periods. Left hemispheric areas were the best source of predictions in one bilaterally implanted monkey overtrained to perform the task with the right hand. However, after that monkey learned to perform the task with the left hand, its left hemisphere continued and the right hemisphere started contributing to the prediction. We suggest that decoding of temporal intervals from bilaterally recorded cortical ensembles could improve the performance of neural prostheses for restoration of motor function.
Collapse
Affiliation(s)
- Mikhail A Lebedev
- Deptartment of Neurobiology, Duke Univiversity, Durham, North Carolina 27100, USA.
| | | | | |
Collapse
|
70
|
Neuro-Physiological Adaptations Associated with Cross-Education of Strength. Brain Topogr 2007; 20:77-88. [DOI: 10.1007/s10548-007-0033-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2007] [Indexed: 10/22/2022]
|
71
|
Lenzi D, Conte A, Mainero C, Frasca V, Fubelli F, Totaro P, Caramia F, Inghilleri M, Pozzilli C, Pantano P. Effect of corpus callosum damage on ipsilateral motor activation in patients with multiple sclerosis: a functional and anatomical study. Hum Brain Mapp 2007; 28:636-44. [PMID: 17080438 PMCID: PMC6871400 DOI: 10.1002/hbm.20305] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Functional MRI (fMRI) studies have shown increased activation of ipsilateral motor areas during hand movement in patients with multiple sclerosis (MS). We hypothesized that these changes could be due to disruption of transcallosal inhibitory pathways. We studied 18 patients with relapsing-remitting MS. Conventional T1- and T2-weighted images were acquired and lesion load (LL) measured. Diffusion tensor imaging (DTI) was performed to estimate fractional anisotropy (FA) and mean diffusivity (MD) in the body of the corpus callosum (CC). fMRI was obtained during a right-hand motor task. Patients were studied to evaluate transcallosal inhibition (TCI, latency and duration) and central conduction time (CCT). Eighteen normal subjects were studied with the same techniques. Patients showed increased MD (P < 0.0005) and reduced FA (P < 0.0005) in the body of the CC. Mean latency and duration of TCI were altered in 12 patients and absent in the others. Between-group analysis showed greater activation in patients in bilateral premotor, primary motor (M1), and middle cingulate cortices and in the ipsilateral supplementary motor area, insula, and thalamus. A multivariate analysis between activation patterns, structural MRI, and neurophysiological findings demonstrated positive correlations between T1-LL, MD in the body of CC, and activation of the ipsilateral motor cortex (iM1) in patients. Duration of TCI was negatively correlated with activation in the iM1. Our data suggest that functional changes in iM1 in patients with MS during a motor task partially represents a consequence of loss of transcallosal inhibitory fibers.
Collapse
Affiliation(s)
- Delia Lenzi
- Department of Neurological Sciences, University of Rome La Sapienza, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Jaeggi SM, Buschkuehl M, Etienne A, Ozdoba C, Perrig WJ, Nirkko AC. On how high performers keep cool brains in situations of cognitive overload. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2007; 7:75-89. [PMID: 17672380 DOI: 10.3758/cabn.7.2.75] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
What happens in the brain when we reach or exceed our capacity limits? Are there individual differences for performance at capacity limits? We used functional magnetic resonance imaging (fMRI) to investigate the impact of increases in processing demand on selected cortical areas when participants performed a parametrically varied and challenging dual task. Low-performing participants respond with large and load-dependent activation increases in many cortical areas when exposed to excessive task requirements, accompanied by decreasing performance. It seems that these participants recruit additional attentional and strategy-related resources with increasing difficulty, which are either not relevant or even detrimental to performance. In contrast, the brains of the high-performing participants "keep cool" in terms of activation changes, despite continuous correct performance, reflecting different and more efficient processing. These findings shed light on the differential implications of performance on activation patterns and underline the importance of the interindividual-differences approach in neuroimaging research.
Collapse
Affiliation(s)
- Susanne M Jaeggi
- Department of Psychology, University of Bern, Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|
73
|
Addamo PK, Farrow M, Hoy KE, Bradshaw JL, Georgiou-Karistianis N. The effects of age and attention on motor overflow production—A review. ACTA ACUST UNITED AC 2007; 54:189-204. [PMID: 17300842 DOI: 10.1016/j.brainresrev.2007.01.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 01/11/2007] [Accepted: 01/15/2007] [Indexed: 12/29/2022]
Abstract
Motor overflow refers to overt involuntary movement, or covert muscle activity, that sometimes co-occurs with voluntary movement. Various clinical populations exhibit overflow. Motor overflow is also present in healthy children and the elderly, although in young adults, overt overflow is considered abnormal unless elicited under conditions of extreme force or muscle fatigue. Current theories of overflow imply that the corpus callosum may mediate production of this phenomenon. However, given that the corpus callosum is a conduit enabling the transfer of cortical information, surprisingly few studies have considered the cortical or subcortical structures underlying overflow. This review considers the developmental trend of motor overflow production, specifically in the upper-limbs, and the mechanisms thought to underlie this age-related phenomenon. Potential neurological correlates of motor overflow will be discussed in conjunction with higher order attentional processes which also regulate motor overflow production. Future research investigating the impact of attentional processes on overflow production may be particularly valuable for designing rehabilitation strategies for patients experiencing induced pathological overflow or conversely, to develop techniques to encourage the recovery of movement function in individuals with paretic limbs.
Collapse
Affiliation(s)
- Patricia K Addamo
- Experimental Neuropsychology Research Unit, School of Psychology, Psychiatry and Psychological Medicine, Monash University, Clayton, 3800, Victoria, Australia.
| | | | | | | | | |
Collapse
|
74
|
Boden S, Obrig H, Köhncke C, Benav H, Koch SP, Steinbrink J. The oxygenation response to functional stimulation: is there a physiological meaning to the lag between parameters? Neuroimage 2007; 36:100-7. [PMID: 17400478 DOI: 10.1016/j.neuroimage.2007.01.045] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 01/03/2007] [Accepted: 01/04/2007] [Indexed: 11/20/2022] Open
Abstract
To investigate the regulation of the hemodynamic response to functional stimulation, functional near-infrared spectroscopy (fNIRS) has been used, due to its ability to assess the dynamics of oxygenated, deoxygenated and total hemoglobin concentration ([oxy-Hb], [deoxy-Hb] and [tot-Hb]). Concerning the latency of these parameters, recent studies have returned a consistent picture when comparing the oxygenation response in the sensorimotor to the visual system: changes in [oxy-Hb] lead those in [deoxy-Hb] by 1.6+/-0.2 s (mean+/-SD) for the sensorimotor system but not for the visual system (0.1+/-0.3 s). A number of physiological differences between these cortical areas may account for such a discrepancy, however, the methodological properties of transcranial NIRS also have a relevant influence. Here we show that for the motor system the latency between changes in oxy- compared to deoxy-Hb vanishes once efforts are made to reduce the effects of a systemic response accompanying sensorimotor activity. We apply two independent approaches to reduce the systemic response and find a simultaneous change in [oxy-Hb] and [deoxy-Hb] even in response to a motor paradigm. The two approaches are: (i) an experimental paradigm with alternating contralateral and ipsilateral motor performance without interspersed rest periods designed to minimize systemic changes and (ii) a global correction scheme in an experiment, comparing a unilateral motor performance to rest. These data shed some doubt on the alleged fundamental physiological difference between cortical hemodynamic regulation in motor and visual cortex and highlight the relevance to respect contributions of the systemic hemodynamics.
Collapse
Affiliation(s)
- S Boden
- Berlin Neuroimaging Center, Charitéplatz 1, 10098 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
75
|
Kapreli E, Athanasopoulos S, Papathanasiou M, Van Hecke P, Strimpakos N, Gouliamos A, Peeters R, Sunaert S. Lateralization of brain activity during lower limb joints movement. An fMRI study. Neuroimage 2006; 32:1709-21. [PMID: 16859927 DOI: 10.1016/j.neuroimage.2006.05.043] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 05/08/2006] [Accepted: 05/11/2006] [Indexed: 10/24/2022] Open
Abstract
Studies of unilateral finger movement in right-handed subjects have shown asymmetrical patterns of activation in primary motor cortex and subcortical regions. In order to investigate the existence of an analogous pattern during lower limb joints movements, functional magnetic resonance imaging (fMRI) was used. Eighteen healthy, right leg dominant volunteers participated in a motor block design study, performing unilateral right and left repetitive knee, ankle and toes flexion/extension movements. Aiming to relate lower limb joints activation to the well-described patterns of finger movement, serial finger-to-thumb opposition was also assessed. All movements were auditory paced at 72 beats/min (1.2 Hz). Brain activation during movement of the nondominant joints was more bilateral than during the same movement performed with the dominant joints. Finger movement had a stronger lateralized pattern of activation in comparison with lower limb joints, implying a different functional specialization. Differences were also evident between the joints of the lower limb. Ankle and toes movements elicited the same extend of MR signal change in the majority of the examined brain regions, whereas knee joint movement was associated with a different pattern. Finally, lateralization index in primary sensorimotor cortex and basal ganglia was significantly affected by the main effect of dominance, whereas the lateralization index in cerebellum was significantly affected by the joint main effect, demonstrating a lateralization index increase from proximal to distal joints.
Collapse
Affiliation(s)
- Eleni Kapreli
- Faculty of Physical Education and Sports Science, Laboratory of Sports Physiotherapy, National and Kapodistrian University of Athens, Greece, and Department of Radiology, University Hospitals of K. U. Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Riecker A, Gröschel K, Ackermann H, Steinbrink C, Witte O, Kastrup A. Functional significance of age-related differences in motor activation patterns. Neuroimage 2006; 32:1345-54. [PMID: 16798017 DOI: 10.1016/j.neuroimage.2006.05.021] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Revised: 03/16/2006] [Accepted: 05/04/2006] [Indexed: 11/23/2022] Open
Abstract
Recent functional MRI (fMRI) studies have revealed an increased task-related activation in older subjects during a variety of cognitive or perceptual tasks, which may signal beneficial compensatory activity to counteract structural and neurochemical changes associated with aging. Under the assumption that incremental movement rates are associated with an increased functional demand on the motor system, we used fMRI and acoustically paced movements of the right index finger at six different frequencies (2.0, 2.5, 3.0, 4.0, 5.0 and 6.0 Hz) to investigate the behavioral significance of additionally recruited brain regions in a group of healthy, older subjects (mean age 66 +/- 8 years) compared with a group of young (mean age 23 +/- 7 years) subjects. The actual tapping frequency (F(1,14) = 0.049, P = 0.829), the tapping interval (F(1,14) = 0.043, P = 0.847), and the error rates (F(1,14) = 0.058, P = 0.743) did not differ significantly between both groups, whereas there was a significant increase in reaction time in the older subjects (F(1,14) = 281.786, P < or = 0.001). At all frequencies, the older subjects demonstrated significant overactivation within the ipsilateral sensorimotor and premotor cortex. However, we did not observe an increased age-related overactivation during higher movements rates in these or other motor regions. Moreover, the magnitude of the hemodynamic response in overactivated regions remained constant across all frequencies. In contrast to cognitive tasks, these findings indicate that an age-related overactivation within the motor system is not related to the functional demand and does not necessarily reflect reorganization to compensate for the neurobiological changes of aging.
Collapse
Affiliation(s)
- Axel Riecker
- Departments of Neurology, University of Ulm, Germany
| | | | | | | | | | | |
Collapse
|
77
|
Beurze SM, de Lange FP, Toni I, Medendorp WP. Integration of target and effector information in the human brain during reach planning. J Neurophysiol 2006; 97:188-99. [PMID: 16928798 DOI: 10.1152/jn.00456.2006] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To plan a reaching movement, the brain must integrate information about the location of the target with information about the limb selected for the reach. Here, we applied rapid event-related 3-T fMRI to investigate this process in human subjects (n = 16) preparing a reach following two successive visual instruction cues. One cue instructed which arm to use; the other cue instructed the location of the reach target. We hypothesized that regions involved in the integration of target and effector information should not only respond to each of the two instruction cues, but should respond more strongly to the second cue due to the added integrative processing to establish the reach plan. We found bilateral regions in the posterior parietal cortex, the premotor cortex, the medial frontal cortex, and the insular cortex to be involved in target-arm integration, as well as the left dorsolateral prefrontal cortex and an area in the right lateral occipital sulcus to respond in this manner. We further determined the functional properties of these regions in terms of spatial and effector specificity. This showed that the posterior parietal cortex and the dorsal premotor cortex specify both the spatial location of a target and the effector selected for the response. We therefore conclude that these regions are selectively engaged in the neural computations for reach planning, consistent with the results from physiological studies in nonhuman primates.
Collapse
Affiliation(s)
- S M Beurze
- Nijmegen Institute for Cognition and Information, Radboud University Nijmegen, P.O. Box 9104, NL-6500 HE Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
78
|
Hlushchuk Y, Hari R. Transient suppression of ipsilateral primary somatosensory cortex during tactile finger stimulation. J Neurosci 2006; 26:5819-24. [PMID: 16723540 PMCID: PMC6675271 DOI: 10.1523/jneurosci.5536-05.2006] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The whole human primary somatosensory (SI) cortex is activated by contralateral tactile stimuli, whereas its subarea 2 displays neuronal responses also to ipsilateral stimuli. Here we report on a transient deactivation of area 3b of the ipsilateral SI during long-lasting tactile stimulation. We collected functional magnetic resonance imaging data with a 3 T scanner from 10 healthy adult subjects while tactile pulses were delivered at 1, 4, or 10 Hz in 25 s blocks to three right-hand fingers. In the contralateral SI cortex, activation [positive blood oxygenation level-dependent (BOLD) response] outlasted the stimulus blocks by 20 s, with an average duration of 45 s. In contrast, a transient deactivation (negative BOLD response) occurred in the ipsilateral rolandic cortex with an average duration of 18 s. Additional recordings on 10 subjects confirmed that the deactivation was not limited to the right SI but occurred in the SI cortex ipsilateral to the stimulated hand. Moreover, the primary motor cortex (MI) contained voxels that were phasically deactivated in response to both ipsilateral and contralateral touch. These data indicate that unilateral touch of fingers is associated, in addition to the well known activation of the contralateral SI cortex, with deactivation of the ipsilateral SI cortex and of the MI cortex of both hemispheres. The ipsilateral SI deactivation could result from transcallosal inhibition, whereas intracortical SI-MI connections could be responsible for the MI deactivation. The shorter time course of deactivation than activation would agree with stronger decay of inhibitory than EPSP at the applied stimulus repetition rates.
Collapse
Affiliation(s)
- Yevhen Hlushchuk
- Low Temperature Laboratory, Helsinki University of Technology, 02150 TKK, Espoo, Finland.
| | | |
Collapse
|
79
|
Hoshi E, Tanji J. Differential Involvement of Neurons in the Dorsal and Ventral Premotor Cortex During Processing of Visual Signals for Action Planning. J Neurophysiol 2006; 95:3596-616. [PMID: 16495361 DOI: 10.1152/jn.01126.2005] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined neuronal activity in the dorsal and ventral premotor cortex (PMd and PMv, respectively) to explore the role of each motor area in processing visual signals for action planning. We recorded neuronal activity while monkeys performed a behavioral task during which two visual instruction cues were given successively with an intervening delay. One cue instructed the location of the target to be reached, and the other indicated which arm was to be used. We found that the properties of neuronal activity in the PMd and PMv differed in many respects. After the first cue was given, PMv neuron response mostly reflected the spatial position of the visual cue. In contrast, PMd neuron response also reflected what the visual cue instructed, such as which arm to be used or which target to be reached. After the second cue was given, PMv neurons initially responded to the cue's visuospatial features and later reflected what the two visual cues instructed, progressively increasing information about the target location. In contrast, the activity of the majority of PMd neurons responded to the second cue with activity reflecting a combination of information supplied by the first and second cues. Such activity, already reflecting a forthcoming action, appeared with short latencies (<400 ms) and persisted throughout the delay period. In addition, both the PMv and PMd showed bilateral representation on visuospatial information and motor-target or effector information. These results further elucidate the functional specialization of the PMd and PMv during the processing of visual information for action planning.
Collapse
Affiliation(s)
- Eiji Hoshi
- Tamagawa University Research Institute, Tamagawa Gakuen 6-1-1, Machida, Tokyo 194-8610, Japan
| | | |
Collapse
|
80
|
Cheyne D, Bakhtazad L, Gaetz W. Spatiotemporal mapping of cortical activity accompanying voluntary movements using an event-related beamforming approach. Hum Brain Mapp 2006; 27:213-29. [PMID: 16037985 PMCID: PMC6871358 DOI: 10.1002/hbm.20178] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Accepted: 05/25/2005] [Indexed: 11/07/2022] Open
Abstract
We describe a novel spatial filtering approach to the localization of cortical activity accompanying voluntary movements. The synthetic aperture magnetometry (SAM) minimum-variance beamformer algorithm was used to compute spatial filters three-dimensionally over the entire brain from single trial neuromagnetic recordings of subjects performing self-paced index finger movements. Images of instantaneous source power ("event-related SAM") computed at selected latencies revealed activation of multiple cortical motor areas prior to and following left and right index finger movements in individual subjects, even in the presence of low-frequency noise (e.g., eye movements). A slow premovement motor field (MF) reaching maximal amplitude approximately 50 ms prior to movement onset was localized to the hand area of contralateral precentral gyrus, followed by activity in the contralateral postcentral gyrus at 40 ms, corresponding to the first movement-evoked field (MEFI). A novel finding was a second activation of the precentral gyrus at a latency of approximately 150 ms, corresponding to the second movement-evoked field (MEFII). Group averaging of spatially normalized images indicated additional premovement activity in the ipsilateral precentral gyrus and the left inferior parietal cortex for both left and right finger movements. Weaker activations were also observed in bilateral premotor areas and the supplementary motor area. These results show that event-related beamforming provides a robust method for studying complex patterns of time-locked cortical activity accompanying voluntary movements, and offers a new approach for the localization of multiple cortical sources derived from neuromagnetic recordings in single subject and group data.
Collapse
Affiliation(s)
- Douglas Cheyne
- Neuromagnetic Imaging Laboratory, Department of Diagnostic Imaging, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
81
|
Hlu??t??k P, Mayer M. Paretic Hand in Stroke: From Motor Cortical Plasticity Research to Rehabilitation. Cogn Behav Neurol 2006. [DOI: 10.1097/00146965-200603000-00004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
82
|
Golaszewski SM, Siedentopf CM, Koppelstaetter F, Fend M, Ischebeck A, Gonzalez-Felipe V, Haala I, Struhal W, Mottaghy FM, Gallasch E, Felber SR, Gerstenbrand F. Human brain structures related to plantar vibrotactile stimulation: A functional magnetic resonance imaging study. Neuroimage 2006; 29:923-9. [PMID: 16253525 DOI: 10.1016/j.neuroimage.2005.08.052] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 07/03/2005] [Accepted: 08/23/2005] [Indexed: 11/28/2022] Open
Abstract
The purpose of this study was to investigate the sensorimotor cortex response to plantar vibrotactile stimulation using a newly developed MRI compatible vibration device. Ten healthy subjects (20-45 years) were investigated. Vibrotactile stimulation of the sole of the foot with a frequency of 50 Hz and a displacement of 1 mm was performed during fMRI (echo-planar imaging sequence at 1.5 T) using an MRI compatible moving magnet actuator that is able to produce vibration frequencies between 0 and 100 Hz and displacement amplitudes between 0 and 4 mm. The fMRI measurement during vibrotactile stimulation of the right foot revealed brain activation contralaterally within the primary sensorimotor cortex, bilaterally within the secondary somatosensory cortex, bilaterally within the superior temporal, inferior parietal, and posterior insular region, bilaterally within the anterior and posterior cingular gyrus, bilaterally within the thalamus and caudate nucleus, contralaterally within the lentiform nucleus, and bilaterally within the anterior and posterior cerebellar lobe. The advantages of the new MRI compatible vibration device include effective transmission of the stimulus and controlled vibration amplitudes, frequencies, and intensities. The results indicate that plantar vibration can be a suitable paradigm to observe activation within the sensorimotor network in fMRI. Furthermore, the method may be used to determine the optimal responsiveness of the individual sensorimotor network.
Collapse
|
83
|
Weiller C, May A, Sach M, Buhmann C, Rijntjes M. Role of functional imaging in neurological disorders. J Magn Reson Imaging 2006; 23:840-50. [PMID: 16649207 DOI: 10.1002/jmri.20591] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuroimaging in recent years has greatly contributed to our understanding of a wide range of aspects related to central neurological diseases. These include the classification and localization of disease, such as in headache; the understanding of pathology, such as in Parkinson's disease (PD); the mechanisms of reorganization, such as in stroke and multiple sclerosis (MS); and the subclinical progress of disease, such as in amyotrophic lateral sclerosis (ALS). Apart from presurgical mapping, however, the clinical applications so far are limited. Nevertheless, functional imaging does enable the formulation of neurobiological hypotheses that can be tested clinically, and thus is well suited for testing classic clinical hypotheses about how the brain works. Understanding the mechanisms and sites of pathology, such as has been achieved in cluster headaches, facilitates the development of new therapeutic strategies.
Collapse
|
84
|
Carson RG. Neural pathways mediating bilateral interactions between the upper limbs. ACTA ACUST UNITED AC 2005; 49:641-62. [PMID: 15904971 DOI: 10.1016/j.brainresrev.2005.03.005] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 03/09/2005] [Accepted: 03/15/2005] [Indexed: 11/17/2022]
Abstract
The ease with which we perform tasks such as opening the lid of a jar, in which the two hands execute quite different actions, belies the fact that there is a strong tendency for the movements of the upper limbs to be drawn systematically towards one another. Mirror movements, involuntary contractions during intended unilateral engagement of the opposite limb, are considered pathological, as they occur in association with specific disorders of the CNS. Yet they are also observed frequently in normally developing children, and motor irradiation, an increase in the excitability of the (opposite) homologous motor pathways when unimanual movements are performed, is a robust feature of the mature motor system. The systematic nature of the interactions that occur between the upper limbs has also given rise to the expectation that functional improvements in the control of a paretic limb may occur when movements are performed in a bimanual context. In spite of the ubiquitous nature of these phenomena, there is remarkably little consensus concerning the neural basis of their mediation. In the present review, consideration is given to the putative roles of uncrossed corticofugal fibers, branched bilateral corticomotoroneuronal projections, and segmental networks. The potential for bilateral interactions to occur in various brain regions including the primary motor cortex, the supplementary motor area, non-primary motor areas, the basal ganglia, and the cerebellum is also explored. This information may provide principled bases upon which to evaluate and develop task and deficit-specific programs of movement rehabilitation and therapy.
Collapse
Affiliation(s)
- R G Carson
- Perception and Motor Systems Laboratory, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
85
|
Lang CE, Wagner JM, Bastian AJ, Hu Q, Edwards DF, Sahrmann SA, Dromerick AW. Deficits in grasp versus reach during acute hemiparesis. Exp Brain Res 2005; 166:126-36. [PMID: 16021431 DOI: 10.1007/s00221-005-2350-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Accepted: 03/10/2005] [Indexed: 10/25/2022]
Abstract
We studied how acute hemiparesis affects the ability to perform purposeful movements of proximal versus distal upper extremity segments. Given the gradient of corticospinal input to the spinal motoneuron pools, we postulated that movement performance requiring distal segment control (grasping) should be more impaired than movement performance requiring proximal segment control (reaching) in people with hemiparesis. We tested subjects with acute hemiparesis and control subjects performing reach and reach-to-grasp movements. Three characteristics of movement performance were quantified for each movement: speed, accuracy, and efficiency. For the reach, we calculated peak wrist velocity, endpoint error, and reach path ratio. For the grasp, we calculated peak aperture rate, aperture at touch, and aperture path ratio. To evaluate the relative deficits in reaching versus grasping, performance measures were converted to z-scores using control group means and standard deviations. For both the movements, movement times were longer and performance was more variable in the hemiparetic group compared to the control group. Hemiparetic z-scores indicated that relative deficits in movement speed were small in the two movements, with deficits in grasp being slightly greater than deficits in reach. Relative deficits in accuracy showed a trend for being larger in the reach compared to the grasp, but this difference did not reach statistical significance. In contrast, relative deficits in efficiency were larger in the grasp compared to the reach, with reaching efficiency near the range of normal performance. When considering data across all three movement characteristics, the ability to perform a purposeful movement with the distal segments was not clearly more disrupted than the ability to perform a purposeful movement with the proximal segments in people with acute hemiparesis.
Collapse
Affiliation(s)
- Catherine E Lang
- Program in Physical Therapy, Washington University, 4444 Forest Park Blvd, Campus Box 8502, St Louis, MO, USA.
| | | | | | | | | | | | | |
Collapse
|
86
|
Wasaka T, Nakata H, Kida T, Kakigi R. Gating of SEPs by contraction of the contralateral homologous muscle during the preparatory period of self-initiated plantar flexion. ACTA ACUST UNITED AC 2005; 23:354-60. [PMID: 15820642 DOI: 10.1016/j.cogbrainres.2004.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Revised: 11/05/2004] [Accepted: 11/05/2004] [Indexed: 11/28/2022]
Abstract
To investigate the centrifugal change in somatosensory information processing caused by contraction of the contralateral homologous muscle, we recorded the somatosensory-evoked potentials (SEPs) during the preparatory period of a self-initiated plantar flexion. The SEPs following stimulation of the right tibial nerve at the popliteal fossa were recorded in nine healthy subjects. Self-initiated plantar flexion of the left ankle was performed once every 5 to 7 s. The electrical stimulation was delivered continuously, and the subjects were instructed to concentrate on the movement and not to pay attention to the electrical stimulation. Based on the components of movement-related cortical potential, Bereitschaftspotential (BP) and Negative slope (NS), the preparatory period was divided into four sub-periods (NS, BP-1, BP-2, and Pre-BP). To obtain pre-movement SEPs, the signals following stimulation in each sub-period were averaged. SEPs were attenuated in the preparatory period, especially in the NS sub-period. The amplitude of N40 component was significantly attenuated compared with that in the stationary state and other sub-periods. The amplitude of P53 and N70 was smaller in the NS sub-period than other pre-movement sub-periods. Since there was no centripetal effect on SEPs in the preparatory period, these findings suggested that the activity of motor-related areas modulated the somatosensory information from the contralateral non-movement limb (centrifugal gating). It was assumed that an inhibition on the somatosensory inputs from contralateral limb was caused by the projection via either the corpus callosum or ipsilateral cortico-cortical projections.
Collapse
Affiliation(s)
- Toshiaki Wasaka
- Department of Integrated Physiology, National Institute for Physiological Sciences, 38 Nishigonaka Myoudaiji, 444-8585 Okazaki, Japan.
| | | | | | | |
Collapse
|
87
|
Verstynen T, Diedrichsen J, Albert N, Aparicio P, Ivry RB. Ipsilateral Motor Cortex Activity During Unimanual Hand Movements Relates to Task Complexity. J Neurophysiol 2005; 93:1209-22. [PMID: 15525809 DOI: 10.1152/jn.00720.2004] [Citation(s) in RCA: 334] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Functional imaging studies have revealed recruitment of ipsilateral motor areas during the production of sequential unimanual finger movements. This phenomenon is more prominent in the left hemisphere during left-hand movements than in the right hemisphere during right-hand movements. Here we investigate whether this lateralization pattern is related specifically to the sequential structure of the unimanual action or generalizes to other complex movements. Using event-related fMRI, we measured activation changes in the motor cortex during three types of unimanual movements: repetitions of a sequence of movements with multiple fingers, repetitive “chords” composed of three simultaneous key presses, and simple repetitive tapping movements with a single finger. During sequence and chord movements, strong ipsilateral activation was observed and was especially pronounced in the left hemisphere during left-hand movements. This pattern was evident for both right-handed and, to a lesser degree, left-handed individuals. Ipsilateral activation was less pronounced in the tapping condition. The site of ipsilateral activation was shifted laterally, ventrally, and anteriorly with respect to that observed during contralateral movements and the time course of activation implied a role in the execution rather than planning of the movement. A control experiment revealed that strong ipsilateral activity in left motor cortex is specific to complex movements and does not depend on the number of required muscles. These findings indicate a prominent role of left hemisphere in the execution of complex movements independent of the sequential nature of the task.
Collapse
Affiliation(s)
- Timothy Verstynen
- Deptartment of Psychology, University of California, Berkeley, CA 94720, USA.
| | | | | | | | | |
Collapse
|
88
|
Praamstra P, Seiss E. The Neurophysiology of Response Competition: Motor Cortex Activation and Inhibition following Subliminal Response Priming. J Cogn Neurosci 2005; 17:483-93. [PMID: 15814007 DOI: 10.1162/0898929053279513] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Some widely used tasks in cognitive neuroscience depend on the induction of a response conflict between choice alternatives, involving partial activation of the incorrect response before the correct response is emitted. Although such “conflict tasks” are often used to investigate frontal-lobe-based conflict-monitoring processes, it is not known how response competition evolves in the motor cortex. To investigate the dynamics of motor cortex activation during response competition, we used a subliminal priming task that induced response competition while bypassing preresponse stage processing conflict. Analyses of movement-related EEG potentials supported an interaction between competing responses characterized by reciprocal inhibition. Inhibitory interactions between response channels contribute to the resolution of response conflict. However, the reciprocal inhibition at motor cortex level seemed to operate independent of higher level conflict-monitoring processes, which were relatively insensitive to response conflict induced by subliminal priming. These results elucidate how response conflict causes interference as well as the conditions under which frontal-lobe-based interference control processes are engaged.
Collapse
|
89
|
Newton JM, Sunderland A, Gowland PA. fMRI signal decreases in ipsilateral primary motor cortex during unilateral hand movements are related to duration and side of movement. Neuroimage 2004; 24:1080-7. [PMID: 15670685 DOI: 10.1016/j.neuroimage.2004.10.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 09/28/2004] [Accepted: 10/06/2004] [Indexed: 11/15/2022] Open
Abstract
Interactions between the primary motor cortices of each hemisphere during unilateral hand movements appear to be inhibitory, although there is evidence that the strengths of these interactions are asymmetrical. In the present study, functional magnetic resonance imaging (fMRI) was used to investigate the effects of motor task duration and hand used on unilateral movement-related BOLD signal increases and decreases in the hand region of primary motor cortex (M1) of each hemisphere in six right-handed volunteers. Significant task-related BOLD signal decreases were observed in ipsilateral M1 during single and brief bursts of unilateral movements for both hands. However, these negative-to-baseline responses were found to intensify with increasing movement duration in parallel with greater task-related increases in contralateral M1. Movement-related BOLD signal decreases in ipsilateral M1 were also stronger for the right, dominant hand than for the left hand in our right-handed subjects. These findings would be consistent with the existence of interhemispheric interactions between M1 of each hemisphere, whereby increased neuronal activation in M1 of one hemisphere induces reduced neuronal activity in M1 of the opposite hemisphere. The observation of a hemispheric asymmetry in inhibition between M1 of each hemisphere agrees well with previous neuroimaging and electrophysiological data. These findings are discussed in the context of current understanding of the physiological origins of negative-to-baseline BOLD responses.
Collapse
Affiliation(s)
- Jennifer M Newton
- Division of Stroke Medicine, University of Nottingham, Nottingham NG7 2RD, UK.
| | | | | |
Collapse
|
90
|
Vangheluwe S, Puttemans V, Wenderoth N, Van Baelen M, Swinnen SP. Inter- and intralimb transfer of a bimanual task: generalisability of limb dissociation. Behav Brain Res 2004; 154:535-47. [PMID: 15313043 DOI: 10.1016/j.bbr.2004.03.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Revised: 03/24/2004] [Accepted: 03/24/2004] [Indexed: 11/17/2022]
Abstract
The present study examined whether the ability to dissociate bimanual limb movements following learning of a new coordination task (i.e. star-line drawing paradigm) can be generalised to different effector systems, as expressed by inter- and intralimb transfer. In Experiment 1, subjects practised the 'Line-Star' task (i.e. left arm traced the line/right arm traced the star) and then transferred this pattern to its symmetry partner: the 'Star-Line' task (left arm star/right arm line). In Experiment 2, intralimb transfer from the shoulder-elbow (proximal) to the wrist-finger joints (distal), and vice versa, was investigated. Results revealed positive interlimb transfer among symmetry partners of the star-line movement. Moreover, learning the star-line task spontaneously transferred from the trained to the untrained effector system whereby proximal to distal transfer was larger than vice versa. It is concluded that learning to spatially dissociate the movements of both limbs is generalisable to different motor conditions even though transfer to some conditions is suboptimal. It is hypothesised that the nature of the representation of the spatial interference task is largely effector independent.
Collapse
Affiliation(s)
- Sophie Vangheluwe
- Laboratory of Motor Control, Department of Kinesiology, Group Biomedical Sciences, K.U. Leuven, Tervuurse Vest 101, 3001 Leuven, Belgium
| | | | | | | | | |
Collapse
|
91
|
Miller J. Exaggerated redundancy gain in the split brain: A hemispheric coactivation account. Cogn Psychol 2004; 49:118-54. [PMID: 15304369 DOI: 10.1016/j.cogpsych.2003.12.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2003] [Indexed: 11/22/2022]
Abstract
Recent studies of redundancy gain indicate that it is especially large when redundant stimuli are presented to different hemispheres of an individual without a functioning corpus callosum. This suggests the hypothesis that responses to redundant stimuli are speeded partly because both hemispheres are involved in the activation of the response. A simple formal model incorporating this idea is developed and then elaborated to account for additional related findings. Predictions of the latter model are in good qualitative agreement with data from a number of sources, and there is neuroanatomic and psychophysiological support for its underlying structure.
Collapse
Affiliation(s)
- Jeff Miller
- Department of Psychology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
92
|
Rogers BP, Carew JD, Meyerand ME. Hemispheric asymmetry in supplementary motor area connectivity during unilateral finger movements. Neuroimage 2004; 22:855-9. [PMID: 15193615 DOI: 10.1016/j.neuroimage.2004.02.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 01/22/2004] [Accepted: 02/18/2004] [Indexed: 11/30/2022] Open
Abstract
Studies of unilateral finger movement in right-handed subjects have shown asymmetrical patterns of activation in primary motor cortex. Some studies have measured a similar asymmetry in the supplementary motor area (SMA), but others have not. To shed more light on the symmetry of function in the SMA, we used path analysis of functional MRI data to investigate effective connectivity during a unilateral finger movement task. We observed a slight asymmetry in task activation: left SMA was equally active during movement of either hand, while right SMA was more active for left-hand movement, suggesting a dominant role of left SMA. In addition, we tested for a corresponding asymmetry in the influence of SMA on sensorimotor cortex (SMC) using a path model based on the well-established principle that SMA is involved in motor control and SMC in execution. We observed that the influence of left SMA on left SMC increased during right-hand movement, and the influence of left SMA on right SMC increased during left-hand movement. However, there was no significant hand-dependent change in the influences of the right SMA. This asymmetry in connectivity implies that left SMA does play a dominant role in unilateral movements of either hand in right handers. The experiment also provides a basis for further studies of motor system connectivity in healthy or patient populations.
Collapse
Affiliation(s)
- Baxter P Rogers
- Department of Medical Physics, Medical School, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | |
Collapse
|
93
|
Stefanovic B, Warnking JM, Pike GB. Hemodynamic and metabolic responses to neuronal inhibition. Neuroimage 2004; 22:771-8. [PMID: 15193606 DOI: 10.1016/j.neuroimage.2004.01.036] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Revised: 12/11/2003] [Accepted: 01/06/2004] [Indexed: 10/26/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) was used to investigate the changes in blood oxygenation level dependent (BOLD) signal, cerebral blood flow (CBF) and cerebral metabolic rate of oxygen consumption (CMR(O(2))) accompanying neuronal inhibition. Eight healthy volunteers performed a periodic right-hand pinch grip every second using 5% of their maximum voluntary contraction (MVC), a paradigm previously shown to produce robust ipsilateral neuronal inhibition. To simultaneously quantify CBF and BOLD signals, an interleaved multislice pulsed arterial spin labeling (PASL) and T(2)*-weighted gradient echo sequence was employed. The CMR(O(2)) was calculated using the deoxyhemoglobin dilution model, calibrated by data measured during graded hypercapnia. In all subjects, BOLD, CBF and CMR(O(2)) signals increased in the contralateral and decreased in the ipsilateral primary motor (M1) cortex. The relative changes in CMR(O(2)) and CBF were linearly related, with a slope of approximately 0.4. The coupling ratio thus established for both positive and negative CMR(O(2)) and CBF changes is in close agreement with the ones observed by earlier studies investigating M1 perfusion and oxygen consumption increases. These findings characterize the hemodynamic and metabolic downregulation accompanying neuronal inhibition and thereby establish the sustained negative BOLD response as a marker of neuronal deactivation.
Collapse
Affiliation(s)
- Bojana Stefanovic
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec, Canada H3A 2B4.
| | | | | |
Collapse
|
94
|
Seitz RJ, Kleiser R, Bütefisch CM, Jörgens S, Neuhaus O, Hartung HP, Wittsack HJ, Sturm V, Hermann MM. Bimanual recoupling by visual cueing in callosal disconnection. Neurocase 2004; 10:316-25. [PMID: 15788269 DOI: 10.1080/13554790490505373] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The cerebral control of bimanual movements is not completely understood. We investigated a 59-year-old, right-handed man who presented with an acute bimanual coordination deficit. Magnetic resonance imaging showed a lesion involving the entire corpus callosum, which was found on stereotactic biopsy to be an ischemic infarct. Paired-pulse transcranial magnetic stimulation indicated that the patient had a lack of interhemispheric inhibition, while intracortical inhibition in motor cortex of either side was normal. Functional magnetic resonance imaging showed activation of the left SMA, the bilateral motor cortex and anterior cerebellum during spontaneous bimanual thumb-index oppositions, which were uncoupled as evident from simultaneous electromyographic recordings. In contrast, when the bimanual thumb-index oppositions were cued by a visual stimulus, the movements of both hands were tightly correlated. This synchronized activity was accompanied by additional activations bilateral in lateral occipital cortex, dorsal premotor cortex and cerebellum. The data suggest that the visually cued movements of both hands were recoupled by action of a bihemispheric motor network.
Collapse
Affiliation(s)
- Rüdiger J Seitz
- Department of Neurology, University Hospital Düsseldorf, Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Gordon KE, Ferris DP. Proportional myoelectric control of a virtual object to investigate human efferent control. Exp Brain Res 2004; 159:478-86. [PMID: 15258714 DOI: 10.1007/s00221-004-1970-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 03/26/2004] [Indexed: 10/26/2022]
Abstract
We used proportional myoelectric control of a one-dimensional virtual object to investigate differences in efferent control between the proximal and distal muscles of the upper limbs. Eleven subjects placed one of their upper limbs in a brace that restricted movement while we recorded electromyography (EMG) signals from elbow flexors/extensors or wrist flexors/extensors during isometric contractions. By activating their muscles, subjects applied virtual forces to a virtual object using a real-time computer interface. The magnitudes of these forces were proportional to EMG amplitudes. Subjects used this proportional EMG control to move the virtual object through two tracking tasks, one with a static target and one with a moving target (i.show $132#e., a sine wave). We hypothesized that subjects would have better control over the virtual object using their distal muscles rather than using their proximal muscles because humans typically use more distal joints to perform fine motor tasks. The results indicated that there was no difference in subjects' ability to control virtual object movements when using either upper arm muscles or forearm muscles. These results suggest that differences in control accuracy between elbow joint movements and wrist joint movements are more likely to be a result of motor practice, proprioceptive feedback or joint mechanics rather than inherent differences in efferent control.
Collapse
Affiliation(s)
- Keith E Gordon
- Department of Movement Science, University of Michigan, 401 Washtenaw Avenue, Ann Arbor, MI 48103-2214, USA.
| | | |
Collapse
|
96
|
Lang CE, Schieber MH. Reduced muscle selectivity during individuated finger movements in humans after damage to the motor cortex or corticospinal tract. J Neurophysiol 2003; 91:1722-33. [PMID: 14668295 DOI: 10.1152/jn.00805.2003] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We investigated how damage to the motor cortex or corticospinal tract affects the selective activation of finger muscles in humans. We hypothesized that damage relatively restricted to the motor cortex or corticospinal tract would result in unselective muscle activations during an individuated finger movement task. People with pure motor hemiparesis attributed to ischemic cerebrovascular accident were tested. Pure motor hemiparetic and control subjects were studied making flexion/extension and then abduction/adduction finger movements. During the abduction/adduction movements, we recorded muscle activity from 3 intrinsic finger muscles: the abductor pollicis brevis, the first dorsal interosseus, and the abductor digit quinti. Each of these muscles acts as an agonist for only one of the abduction/adduction movements and might therefore be expected to be active in a highly selective manner. Motor cortex or corticospinal tract damage in people with pure motor hemiparesis reduced the selectivity of finger muscle activation during individuated abduction/adduction finger movements, resulting in reduced independence of these movements. Abduction/adduction movements showed a nonsignificant trend toward being less independent than flexion/extension movements in the affected hands of hemiparetic subjects. These changes in the selectivity of muscle activation and the consequent decrease in individuation of movement were correlated with decreased hand function. Our findings imply that, in humans, spared cerebral motor areas and descending pathways that remain might activate finger muscles, but cannot fully compensate for the highly selective control provided by the primary motor cortex and the crossed corticospinal system.
Collapse
Affiliation(s)
- Catherine E Lang
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|
97
|
Franceschini MA, Fantini S, Thompson JH, Culver JP, Boas DA. Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging. Psychophysiology 2003; 40:548-60. [PMID: 14570163 PMCID: PMC3786740 DOI: 10.1111/1469-8986.00057] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have performed a noninvasive bilateral optical imaging study of the hemodynamic evoked response to unilateral finger opposition task, finger tactile, and electrical median nerve stimulation in the human sensorimotor cortex. This optical study shows the hemoglobin-evoked response to voluntary and nonvoluntary stimuli. We performed measurements on 10 healthy volunteers using block paradigms for motor, sensory, and electrical stimulations of the right and left hands separately. We analyzed the spatial/temporal features and the amplitude of the optical signal induced by cerebral activation during these three paradigms. We consistently found an increase (decrease) in the cerebral concentration of oxy-hemoglobin (deoxy-hemoglobin) at the cortical side contralateral to the stimulated side. We observed an optical response to activation that was larger in size and amplitude during voluntary motor task compared to the other two stimulations. The ipsilateral response was consistently smaller than the contralateral response, and even reversed (i.e., a decrease in oxy-hemoglobin, and an increase in deoxy-hemoglobin) in the case of the electrical stimulation. We observed a systemic contribution to the optical signal from the increase in the heart rate increase during stimulation, and we made a first attempt to subtract it from the evoked hemoglobin signal. Our findings based on optical imaging are in agreement with results in the literature obtained with positron emission tomography and functional magnetic resonance imaging.
Collapse
Affiliation(s)
- Maria Angela Franceschini
- NMR Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| | | | | | | | | |
Collapse
|
98
|
Vandermeeren Y, Bastings E, Fadiga L, Olivier E. Long-latency motor evoked potentials in congenital hemiplegia. Clin Neurophysiol 2003; 114:1808-18. [PMID: 14499742 DOI: 10.1016/s1388-2457(03)00161-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To investigate long-latency motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation in congenital hemiplegia (CH) and to seek for correlation with paretic hand movement deficits. METHODS MEPs were recorded from the first dorsal interosseous of both hands in 12 CH patients and 12 age-matched controls; dexterity and upper limb function were quantitatively assessed in both groups. RESULTS In CH patients, long-latency MEPs, occurring much later than the commonly reported MEPs, were frequently observed in the paretic and non-paretic hands. Four distinct groups of long-latency MEPs were found, each cluster being identified by its mean latency, namely 35, 85, 160 and 225 ms. The residual dexterity of the paretic hand was correlated with the presence of contralateral MEPs with a 20 and 225 ms latency and was negatively correlated with ipsilateral MEPs, irrespective of their latency. In controls, only few MEPs with a latency of 225 ms were found in 4 out of 12 subjects. CONCLUSIONS The pattern of MEPs found in CH patients differs dramatically from that reported in adult stroke patients, suggesting that long-latency MEPs are a rather distinctive consequence of early corticospinal lesions. The hypothesis that a given cluster of long-latency MEPs is mediated by a particular pathway appears very unlikely. Rather, we suggest that an exacerbation of cortical and/or spinal excitability is at the origin of these long-latency MEPs.
Collapse
Affiliation(s)
- Y Vandermeeren
- Laboratory of Neurophysiology, Université catholique de Louvain, 54, Avenue Hippocrate, B-1200, Brussels, Belgium
| | | | | | | |
Collapse
|
99
|
Hermsdörfer J, Blankenfeld H, Goldenberg G. The dependence of ipsilesional aiming deficits on task demands, lesioned hemisphere, and apraxia. Neuropsychologia 2003; 41:1628-43. [PMID: 12887988 DOI: 10.1016/s0028-3932(03)00097-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Neuroimaging studies as well as neurophysiological and lesion data indicate that the ipsilateral hemisphere plays a role in controlling the active limb. However, the nature and the conditions of this ipsilateral control are not well understood. We measured aiming movements with the ipsilesional limb toward targets with different characteristics which were made by patients with unilateral left brain damage (LBD) or right brain damage (RBD). The movement kinematics were analysed. Performance measures of the pointing movements were impaired in LBD patients, whereas RBD patients performed normally. LBD patients had obvious deficits during all tasks; however, they were exacerbated when high accuracy was required, and when an exocentric target had to be reached without visual feedback. Thus, the motor-dominant hemisphere plays a specific role in the programming and execution of ipsilateral aiming movements, and the importance of ipsilateral control increases with increasing task demands. To assess the relationship between pointing deficits and apraxia in LBD patients, the imitation of meaning gestures was tested. We replicated a recent study, showing that deviations of the final hand position from the demonstration were not correlated with abnormal kinematics of the corresponding arm movement when LBD patients performed this test. However, there were correlations between related kinematic measures during pointing and gesture imitation. These findings suggest a deficit of motor programming and execution after damage to the motor-dominant brain which is unrelated to the spatial errors characteristic of apraxia. This deficit affects different types of goal-directed aiming movements and its severity depends on task demands.
Collapse
Affiliation(s)
- J Hermsdörfer
- Clinical Neuropsychology Research Group (EKN), Neuropsychological Department, München-Bogenhausen Hospital, Dachauerstr. 164, D-80992 Munich, Germany.
| | | | | |
Collapse
|
100
|
Vandermeeren Y, Sébire G, Grandin CB, Thonnard JL, Schlögel X, De Volder AG. Functional reorganization of brain in children affected with congenital hemiplegia: fMRI study. Neuroimage 2003; 20:289-301. [PMID: 14527589 DOI: 10.1016/s1053-8119(03)00262-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using functional magnetic resonance imaging, the brain activation related to unilateral sequential finger-to-thumb opposition was studied in six children with a right congenital hemiplegia of cortical origin. They were compared to six age-matched controls. In the control group, movements with either hand asymmetrically activated the sensorimotor cortex and premotor areas in both cerebral hemispheres with a typical contralateral predominance. By contrast, paretic finger movements activated both hemispheres in the hemiplegic patients, with a strong ipsilateral predominance favoring the undamaged hemisphere. The activation induced by nonparetic finger movements was restricted to the contralateral undamaged hemisphere. Furthermore, the level of activation in the undamaged cortex was partly related to residual finger dexterity, according to covariance analysis. These activation patterns indicate an adaptive reorganization of the cortical motor networks in this group of patients, with a prominent involvement of the undamaged hemisphere in the control of finger movements with either hand.
Collapse
Affiliation(s)
- Yves Vandermeeren
- Laboratory of Neurophysiology, Louvain School of Medicine, B-1200 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|