51
|
Cheng Y, Wang R, Sun Y, Xu T. The complete mitochondrial genome of the small yellow croaker and partitioned Bayesian analysis of Sciaenidae fish phylogeny. Genet Mol Biol 2012; 35:191-9. [PMID: 22481894 PMCID: PMC3313511 DOI: 10.1590/s1415-47572012005000006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 10/24/2011] [Indexed: 11/22/2022] Open
Abstract
To understand the phylogenetic position of Larimichthys polyactis within the family Sciaenidae and the phylogeny of this family, the organization of the mitochondrial genome of small yellow croaker was determined herein. The complete, 16,470 bp long, mitochondrial genome contains 37 mitochondrial genes (13 protein-coding, 2 ribosomal RNA and 22 transfer RNA genes), as well as a control region (CR), as in other bony fishes. Comparative analysis of initiation/termination codon usage in mitochondrial protein-coding genes of Percoidei species, indicated that COI in Sciaenidae entails an ATG/AGA codon usage different from other Percoidei fishes, where absence of a typical conserved domain or motif in the control regions is common. Partitioned Bayesian analysis of 618 bp of COI sequences data were used to infer the phylogenetic relationships within the family Sciaenidae. An improvement in harmonic mean -lnL was observed when specific models and parameter estimates were assumed for partitions of the total data. The phylogenetic analyses did not support the monophyly of Otolithes, Argyrosomus, and Argyrosominae. L. polyactis was found to be most closely related to Collichthys niveatus, whereby, according to molecular systematics studies, the relationships within the subfamily Pseudosciaenidae should be reconsidered.
Collapse
Affiliation(s)
- Yuanzhi Cheng
- Laboratory for Marine Living Resources and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, Zhejiang, P.R. China
| | | | | | | |
Collapse
|
52
|
Wang Y, Guo R, Li H, Zhang X, Du J, Song Z. The complete mitochondrial genome of the Sichuan taimen (Hucho bleekeri): Repetitive sequences in the control region and phylogenetic implications for Salmonidae. Mar Genomics 2011; 4:221-8. [DOI: 10.1016/j.margen.2011.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/04/2011] [Accepted: 06/11/2011] [Indexed: 11/17/2022]
|
53
|
Rasmussen Hellberg RS, Morrissey MT, Hanner RH. A Multiplex PCR Method for the Identification of Commercially Important Salmon and Trout Species (Oncorhynchus and Salmo) in North America. J Food Sci 2010; 75:C595-606. [DOI: 10.1111/j.1750-3841.2010.01752.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
54
|
Perkins EM, Donnellan SC, Bertozzi T, Whittington ID. Closing the mitochondrial circle on paraphyly of the Monogenea (Platyhelminthes) infers evolution in the diet of parasitic flatworms. Int J Parasitol 2010; 40:1237-45. [DOI: 10.1016/j.ijpara.2010.02.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 02/16/2010] [Accepted: 02/16/2010] [Indexed: 11/30/2022]
|
55
|
Cheng Y, Xu T, Shi G, Wang R. Complete mitochondrial genome of the miiuy croaker Miichthys miiuy (Perciformes, Sciaenidae) with phylogenetic consideration. Mar Genomics 2010; 3:201-9. [DOI: 10.1016/j.margen.2010.10.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 10/13/2010] [Accepted: 10/15/2010] [Indexed: 11/26/2022]
|
56
|
McKeown NJ, Hynes RA, Duguid RA, Ferguson A, Prodöhl PA. Phylogeographic structure of brown trout Salmo trutta in Britain and Ireland: glacial refugia, postglacial colonization and origins of sympatric populations. JOURNAL OF FISH BIOLOGY 2010; 76:319-47. [PMID: 20738710 DOI: 10.1111/j.1095-8649.2009.02490.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The phylogeographical structure of brown trout Salmo trutta in Britain and Ireland was studied using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of four mitochondrial DNA segments (16S/ND1, ND5/6, COXIII/ND5 and ND5/12S). Analysis of 3636 individuals from 83 sites-morphotypes revealed a total of 25 haplotypes. These haplotypes were nested in seven two-step clades. Although there was a clear geographical patterning to the occurrence of derived clades, admixture among ancestral clades was extensive throughout the studied area. A relevant feature of the data was that some populations contained mixtures of highly divergent clades. This type II phylogeographic pattern is uncommon in nature. Clade intermixing is likely to have taken place during earlier interglacials as well as since the Last Glacial Maximum. The anadromous life history of many S. trutta populations has probably also contributed to clade mixing. Based on the data presented here and published data, postglacial colonization of Britain and Ireland most likely involved S. trutta from at least five potential glacial refuges. Probable locations for such refugia were: south of England-western France, east of the Baltic Sea, western Ireland, Celtic Sea and North Sea. Ferox S. trutta, as defined by their longevity, late maturation and piscivory, exhibited a strong association with a particular clade indicating that they share a common ancestor. Current evidence indicates that the Lough Melvin gillaroo S. trutta and sonaghen S. trutta sympatric types diverged prior to colonization of Lough Melvin and, although limited gene flow has occurred since secondary contact, they have remained largely reproductively isolated due to inlet and outlet river spawning segregation. Gillaroo S. trutta may reflect descendents of a previously more widespread lineage that has declined due to habitat alterations particularly affecting outlet rivers. The mosaic-like distribution of mtDNA lineages means that conservation prioritization in Britain and Ireland should be based on the biological characteristics of local populations rather than solely on evolutionary lineages.
Collapse
Affiliation(s)
- N J McKeown
- School of Biological Sciences, Queen's University Belfast, MBC 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| | | | | | | | | |
Collapse
|
57
|
Catanese G, Manchado M, Infante C. Evolutionary relatedness of mackerels of the genus Scomber based on complete mitochondrial genomes: strong support to the recognition of Atlantic Scomber colias and Pacific Scomber japonicus as distinct species. Gene 2009; 452:35-43. [PMID: 20035845 DOI: 10.1016/j.gene.2009.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/11/2009] [Accepted: 12/12/2009] [Indexed: 11/29/2022]
Abstract
Mackerels of the genus Scomber are commercially important species, but their taxonomic status is still controversial. Although previous phylogenetic data support the recognition of Atlantic Scomber colias and Pacific Scomber japonicus as separate species, it is only based on the analysis of partial mitochondrial and nuclear DNA sequences. In an attempt to shed light on this relevant issue, we have determined the complete mitochondrial DNA sequence of S. colias, S. japonicus, and Scomber australasicus. The total length of the mitogenomes was 16,568 bp for S. colias and 16,570 bp for both S. japonicus and S. australasicus. All mitogenomes had a gene content (13 protein-coding, 2 rRNAs, and 22 tRNAs) and organization similar to that observed in Scomber scombrus and most other vertebrates. The major noncoding region (control region) ranged between 865 and 866 bp in length and showed the typical conserved blocks. Phylogenetic analyses revealed a monophyletic origin of Scomber species with regard to other scombrid fish. The major finding of this study is that S. colias and S. japonicus were significantly grouped in distinct lineages within Scomber cluster, which phylogenetically constitutes evidence that they may be considered as separate species. Additionally, molecular data here presented provide a useful tool for evolutionary as well as population genetic studies.
Collapse
Affiliation(s)
- Gaetano Catanese
- IFAPA Centro El Toruño, Junta de Andalucía, 11500 El Puerto de Santa María (Cádiz), Spain
| | | | | |
Collapse
|
58
|
Adamson EAS, Hurwood DA, Baker AM, Mather PB. Population subdivision in Siamese mud carp Henicorhynchus siamensis in the Mekong River basin: implications for management. JOURNAL OF FISH BIOLOGY 2009; 75:1371-1392. [PMID: 20738620 DOI: 10.1111/j.1095-8649.2009.02369.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A molecular approach was employed to investigate stock structure in Siamese mud carp Henicorhynchus siamensis populations collected from 14 sites across mainland south-east Asia, with the major focus being the lower Mekong River basin. Spatial analysis of a mitochondrial DNA fragment (ATPase 6 and 8) identified four stocks in the Mekong River basin that were all significantly differentiated from a population in the nearby Khlong River, Thailand. In the Mekong River basin, populations in northern Lao People's Democratic Republic and northern Thailand represent two independent stocks, and samples from Thai tributaries group with those from adjacent Mekong sites above the Khone Falls to form a third stock. All sites below the Khone Falls constituted a single vast stock that includes Cambodia and the Mekong Delta in Vietnam. While H. siamensis is considered currently to undertake extensive annual migrations across the Mekong River basin, the data presented here suggest that natural gene flow may occur over much more restricted geographical scales within the basin, and hence populations may need to be managed at finer spatial scales than at the whole-of-drainage-basin level.
Collapse
Affiliation(s)
- E A S Adamson
- QUT School of Natural Resource Sciences, GPO BOX 2434, Brisbane QLD 4001, Australia.
| | | | | | | |
Collapse
|
59
|
The complete mitochondrial genome sequence of the cutlassfish Trichiurus japonicus (Perciformes: Trichiuridae): Genome characterization and phylogenetic considerations. Mar Genomics 2009; 2:133-42. [PMID: 21798182 DOI: 10.1016/j.margen.2009.07.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Revised: 07/09/2009] [Accepted: 07/23/2009] [Indexed: 11/22/2022]
Abstract
Mitochondrial genome sequence and structure analysis has become a powerful tool for studying molecular evolution and phylogenetic relationships. To understand the systematic status of Trichiurus japonicus in suborder Scombroidei, we determined the complete mitochondrial genome (mitogenome) sequence using the long-polymerase chain reaction (long-PCR) and shotgun sequencing method. The entire mitogenome is 16,796bp in length and has three unusual features, including (1) the absence of tRNA(Pro) gene, (2) the possibly nonfunctional light-strand replication origin (O(L)) showing a shorter loop in secondary structure and no conserved motif (5'-GCCGG-3'), (3) two sets of the tandem repeats at the 5' and 3' ends of the control region. The three features seem common for Trichiurus mitogenomes, as we have confirmed them in other three T. japonicus individuals and in T. nanhaiensis. Phylogenetic analysis does not support the monophyly of Trichiuridae, which is against the morphological result. T. japonicus is most closely related to those species of family Scombridae; they in turn have a sister relationship with Perciformes members including suborders Acanthuroidei, Caproidei, Notothenioidei, Zoarcoidei, Trachinoidei, and some species of Labroidei, based on the current dataset of complete mitogenome. T. japonicus together with T. brevis, T. lepturus and Aphanopus carbo form a clade distinct from Lepidopus caudatus in terms of the complete Cyt b sequences. T. japonicus mitogenome, as the first discovered complete mitogenome of Trichiuridae, should provide important information on both genomics and phylogenetics of Trichiuridae.
Collapse
|
60
|
Wilson WD, Turner TF. Phylogenetic analysis of the Pacific cutthroat trout (Oncorhynchus clarki ssp.: Salmonidae) based on partial mtDNA ND4 sequences: A closer look at the highly fragmented inland species. Mol Phylogenet Evol 2009; 52:406-15. [DOI: 10.1016/j.ympev.2009.03.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 03/17/2009] [Accepted: 03/23/2009] [Indexed: 10/20/2022]
|
61
|
Complete mitochondrial genome of the blackspot seabream, Pagellus bogaraveo (Perciformes: Sparidae), with high levels of length heteroplasmy in the WANCY region. Gene 2008; 409:44-52. [DOI: 10.1016/j.gene.2007.11.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2007] [Revised: 11/09/2007] [Accepted: 11/12/2007] [Indexed: 11/19/2022]
|
62
|
Oh DJ, Kim JY, Lee JA, Yoon WJ, Park SY, Jung YH. Complete mitochondrial genome of the rock bream Oplegnathus fasciatus (Perciformes, Oplegnathidae) with phylogenetic considerations. Gene 2006; 392:174-80. [PMID: 17258872 DOI: 10.1016/j.gene.2006.12.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 12/14/2006] [Accepted: 12/14/2006] [Indexed: 11/26/2022]
Abstract
We determined the complete nucleotide sequence of the mitochondrial genome for the rock bream, Oplegnathus fasciatus (Perciformes, Oplegnathidae). This mitochondrial genome, consisting of 16,511 base pairs (bp), encoded genes for 13 protein-coding genes, two ribosomal RNAs, 22 transfer RNAs, and a noncoding control region like those found in other vertebrates, with the gene order identical to that of typical vertebrates. Most of the genes of O. fasciatus were encoded on the H-strand, while the ND6 and eight tRNA (Gln, Ala, Asn, Cys, Tyr, Ser (UCN), Glu and Pro) genes were encoded on the L-strand. The reading frames of two pairs of genes overlapped: ATPase 8 and 6 and ND4L and ND4 by ten and seven nucleotides, respectively. The origin of L-strand replication in O. fasciatus was in a cluster of five tRNA genes (WANCY) and was 41 nucleotides in length. The conserved motif (5'-GCGGG-3') was found at the base of the stem within the tRNA-Cys gene. A major noncoding region between the tRNA-Pro and tRNA-Phe genes (835 bp) was considered to be the control region (D-loop). Within this sequence, we identified a termination-associated sequence and a conserved sequence block characteristic to this region. In most parsimony analyses, the O. fasciatus was positioned in the clade including Emmelichthyidae, Lutjanidae, Percidae, Centrarchidae, and Sparidae, with 100% bootstrap support for their divergence.
Collapse
Affiliation(s)
- Dae-Ju Oh
- Jeju Biodiversity Research Institute, Jeju Hi-Tech Industry Development Institute, Jeju 690-121, South Korea
| | | | | | | | | | | |
Collapse
|
63
|
Kim IC, Jung SO, Lee YM, Lee CJ, Park JK, Lee JS. The complete mitochondrial genome of the rayfish Raja porosa (Chondrichthyes, Rajidae). ACTA ACUST UNITED AC 2006; 16:187-94. [PMID: 16147874 DOI: 10.1080/10425170500087975] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We isolated mitochondrial DNA from the rayfish Raja porosa by long-polymerase chain reaction (Long-PCR) with conserved primers, and sequenced it by primer walking method using flanking sequences as sequencing primers. R. porosa mitochondrial DNA consists of 16,972 bp and its structural organization is conserved in comparison with other fishes and mammals. Based on the mitochondrial cytochrome b (cyt b) sequence, the phylogenetic position of R. porosa among cartilaginous fishes was inferred using different phylogenetic methods (ML-based quartet puzzling, Neighbor-joining (NJ) and Bayesian approaches). In this paper, we report the characteristics of the R. porosa mitochondrial genome including structural organization, base composition of rRNAs, tRNAs and protein-encoding genes and characteristics of mitochondrial tRNAs. These findings are applicable to comparative mitogenomics of R. porosa with other related taxa.
Collapse
Affiliation(s)
- Il-Chan Kim
- Polar BioCenter, Korea Polar Research Institute, Korea Ocean Research & Development Institute, Ansan, South Korea
| | | | | | | | | | | |
Collapse
|
64
|
Brown KH, Drew RE, Weber LA, Thorgaard GH. Intraspecific variation in the rainbow trout mitochondrial DNA genome. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2006; 1:219-26. [DOI: 10.1016/j.cbd.2005.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 11/29/2005] [Accepted: 11/30/2005] [Indexed: 11/30/2022]
|
65
|
Brown KH, Lee RW, Thorgaard GH. Use of androgenesis for estimating maternal and mitochondrial genome effects on development and oxygen consumption in rainbow trout, Oncorhynchus mykiss. Comp Biochem Physiol B Biochem Mol Biol 2006; 143:415-21. [PMID: 16458562 DOI: 10.1016/j.cbpb.2005.12.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 12/16/2005] [Accepted: 12/18/2005] [Indexed: 11/27/2022]
Abstract
Chromosome set manipulation was used to produce rainbow trout, Oncorhynchus mykiss, with identical nuclear backgrounds, but different maternal backgrounds to determine mitochondrial effects on development rate and oxygen consumption. Significant differences in development rate and oxygen consumption were observed between groups from different females. Development rates ranged from a mean of 317.97 degree days ( degrees d) to 335.25 degrees d in progeny from different females. Mean oxygen consumption rates ranged from 3.31 micromol O2 g(-1) wet mass h(-1) to 9.66 micromol O2 g(-1) wet mass h(-1). Oxygen consumption and development rate analysis revealed the two slowest developing groups had the highest oxygen consumption rates. Development rate differences between second generation clonal females indicate that mitochondrial genomes play a significant role on early development and are comparable to development rate differences between clonal lines of rainbow trout. These results indicate that selection for mitochondrial genomes could increase growth rates and possibly food conversion ratios in aquaculture species.
Collapse
Affiliation(s)
- K H Brown
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA.
| | | | | |
Collapse
|
66
|
Peng Z, He S, Wang J, Wang W, Diogo R. Mitochondrial molecular clocks and the origin of the major Otocephalan clades (Pisces: Teleostei): A new insight. Gene 2006; 370:113-24. [PMID: 16476526 DOI: 10.1016/j.gene.2005.11.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 11/24/2005] [Accepted: 11/25/2005] [Indexed: 11/20/2022]
Abstract
The Otocephala, a clade including ostariophysan and clupeomorph teleosts, represents about a quarter of total fish species diversity, with about 1000 genera and more than 7000 species. A series of recent papers have defended that the origin of this clade and of its major groups may be significantly older than the oldest fossils of each of these groups suggest. Some of these recent papers explicitly defend a Pangean origin for some otocephalan groups such as the Siluriformes or Cypriniformes. To know whether or not the otocephalans as a whole, and particularly the mainly freshwater, cosmopolitan otophysans could have originated before the splitting of the Pangean supercontinent is of extreme importance, since otophysan fishes are among the most useful animal groups for the determination of historical continental relationships. In the present work we examined divergence times for each major otocephalan group by an analysis of complete mtDNA sequences, in order to investigate if these divergence times support the hypotheses advanced in recent studies. The complete mtDNA sequences of nine representative non-otocephalan fish species and of twenty-one representative otocephalan species was compared. The present study is thus, among the studies dealing with molecular divergence times of teleosts, the one in which a greater number of otocephalan species are included. The divergence times obtained support that the major otocephalan groups had a much older origin than the oldest fossil records available for these groups suggest. The origin of the Otocephala is estimated as having occurred about 282 Mya, with the origin of the Otophysi being estimated at about 251 Mya.
Collapse
Affiliation(s)
- Zuogang Peng
- Laboratory of Fish Phylogenetics and Biogeography, Institute of Hydrobiology, Chinese Academy of Sciences, 7# Donghu South Road, Wuhan 430072, China
| | | | | | | | | |
Collapse
|
67
|
MIYA MASAKI, SATOH TAKASHIP, NISHIDA MUTSUMI. The phylogenetic position of toadfishes (order Batrachoidiformes) in the higher ray-finned fish as inferred from partitioned Bayesian analysis of 102 whole mitochondrial genome sequences. Biol J Linn Soc Lond 2005. [DOI: 10.1111/j.1095-8312.2005.00483.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
68
|
Trotta M, Schönhuth S, Pepe T, Cortesi ML, Puyet A, Bautista JM. Multiplex PCR method for use in real-time PCR for identification of fish fillets from grouper (Epinephelus and Mycteroperca species) and common substitute species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:2039-2045. [PMID: 15769133 DOI: 10.1021/jf048542d] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Mitochondrial 16S rRNA sequences from morphological validated grouper (Epinephelus aeneus, E. caninus, E. costae, and E. marginatus; Mycteroperca fusca and M. rubra), Nile perch (Lates niloticus), and wreck fish (Polyprion americanus) were used to develop an analytical system for group diagnosis based on two alternative Polymerase Chain Reaction (PCR) approaches. The first includes conventional multiplex PCR in which electrophoretic migration of different sizes of bands allowed identification of the fish species. The second approach, involving real-time PCR, produced a single amplicon from each species that showed different Tm values allowing the fish groups to be directly identified. Real-time PCR allows the quick differential diagnosis of the three groups of species and high-throughput screening of multiple samples. Neither PCR system cross-reacted with DNA samples from 41 common marketed fish species, thus conforming to standards for species validation. The use of these two PCR-based methods makes it now possible to discriminate grouper from substitute fish species.
Collapse
Affiliation(s)
- Michele Trotta
- Departamento de Bioquímica y Biología Molecular IV, Facultad Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
69
|
Liu ZQ, Wang YQ, Su B. The mitochondrial genome organization of the rice frog, Fejervarya limnocharis (Amphibia: Anura): a new gene order in the vertebrate mtDNA. Gene 2005; 346:145-51. [PMID: 15716031 DOI: 10.1016/j.gene.2004.10.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 10/01/2004] [Accepted: 10/14/2004] [Indexed: 10/25/2022]
Abstract
The mitochondrial DNA of the rice frog, Fejervarya limnocharis (Amphibia, Anura), was obtained using long-and-accurate polymerase chain reaction (LA-PCR) combining with subcloning method. The complete nucleotide sequence (17,717 bp) of mitochondrial genome was determined subsequently. This mitochondrial genome is characterized by four distinctive features: the translocation of ND5 gene, a cluster of rearranged tRNA genes (tRNAThr, tRNAPro, tRNA(Leu CUN)), a tandem duplication of tRNAMet gene, and eight large 89-bp tandem repeats in the control region, as well as three short noncoding regions containing two repeated motifs existing in the gene cluster of ND5/tRNAThr/tRNAPro/tRNALeu/tRNAPhe. The tandem duplication of gene regions followed by deletions of supernumerary genes can be invoked to explain the shuffling of tRNAMet and a cluster of tRNA and ND5 genes, as observed in this study. Both ND5 gene translocation and tandem duplication of tRNAMet were first observed in the vertebrate mitochondrial genomes.
Collapse
Affiliation(s)
- Zhong-Quan Liu
- School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | | | | |
Collapse
|
70
|
Inoue JG, Miya M, Tsukamoto K, Nishida M. Mitogenomic evidence for the monophyly of elopomorph fishes (Teleostei) and the evolutionary origin of the leptocephalus larva. Mol Phylogenet Evol 2005; 32:274-86. [PMID: 15186813 DOI: 10.1016/j.ympev.2003.11.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2003] [Revised: 10/31/2003] [Indexed: 10/26/2022]
Abstract
The monophyly of Elopomorpha (eels and their relatives) has long been one of the most problematic issues in systematic ichthyology. Since established the Elopomorpha based on the existence of the leaf-like larval form, termed a leptocephalus, no one has corroborated their monophyly using character matrices derived from both morphological and molecular data during the last 30 years. We investigated their monophyly and interrelationships at the ordinal level using complete mitochondrial genomic (mitogenomic) data from 33 purposefully chosen species (data for nine species being newly determined during the study) that fully represent the major teleostean and elopomorph lineages. Partitioned Bayesian analyses were conducted with the two data sets that comprised concatenated nucleotide sequences from 12 protein-coding genes (with and without third codon positions), 22 transfer RNA genes, and two ribosomal RNA genes. The resultant trees were well resolved and largely congruent, with most internal branches being supported by high statistical values. Mitogenomic data strongly supported the monophyly of Elopomorpha, indicating the validity of the leptocephalus as an elopomorph synapomorphy. The order Elopiformes occupied the most basal position in the elopomorph phylogeny, with the Albuliformes and a clade comprising the Anguilliformes and the Saccopharyngiformes forming a sister group. The most parsimonious reconstruction of the three previously recognized, distinct larval types of elopomorphs onto the molecular phylogeny revealed that one of the types (fork-tailed type) had originated as the common ancestor of the Elopomorpha, the other two (filament-tailed and round-tailed types) having diversified separately in two more derived major clades.
Collapse
Affiliation(s)
- Jun G Inoue
- Ocean Research Institute, University of Tokyo, 1-15-1 Minamidai, Nakano-ku, Tokyo 164-8639, Japan.
| | | | | | | |
Collapse
|
71
|
|
72
|
Lavoué S, Sullivan JP. Simultaneous analysis of five molecular markers provides a well-supported phylogenetic hypothesis for the living bony-tongue fishes (Osteoglossomorpha: Teleostei). Mol Phylogenet Evol 2004; 33:171-85. [PMID: 15324846 DOI: 10.1016/j.ympev.2004.04.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2003] [Revised: 04/23/2004] [Indexed: 10/26/2022]
Abstract
Fishes of the Superorder Osteoglossomorpha (the "bonytongues") constitute a morphologically heterogeneous group of basal teleosts, including highly derived subgroups such as African electric fishes, the African butterfly fish, and Old World knifefishes. Lack of consensus among hypotheses of osteoglossomorph relationships advanced during the past 30 years may be due in part to the difficulty of identifying shared derived characters among the morphologically differentiated extant families of this group. In this study, we present a novel phylogenetic hypothesis for this group, based on the analysis of more than 4000 characters from five molecular markers (the mitochondrial cytochrome b, 12S and 16S rRNA genes, and the nuclear genes RAG2 and MLL). Our taxonomic sampling includes one representative of each extant non-mormyrid osteoglossomorph genus, one representative for the monophyletic family Mormyridae, and four outgroup taxa within the basal Teleostei. Maximum parsimony analysis of combined and equally weighted characters from the five molecular markers and Bayesian analysis provide a single, well-supported, hypothesis of osteoglossomorph interrelationships and show the group to be monophyletic. The tree topology is the following: (Hiodon alosoides, (Pantodon buchholzi, (((Osteoglossum bicirrhosum, Scleropages sp.), (Arapaima gigas, Heterotis niloticus)), ((Gymnarchus niloticus, Ivindomyrus opdenboschi), ((Notopterus notopterus, Chitala ornata), (Xenomystus nigri, Papyrocranus afer)))))). We compare our results with previously published phylogenetic hypotheses based on morpho-anatomical data. Additionally, we explore the consequences of the long terminal branch length for the taxon Pantodon buchholzi in our phylogenetic reconstruction and we use the obtained phylogenetic tree to reconstruct the evolutionary history of electroreception in the Notopteroidei.
Collapse
Affiliation(s)
- Sébastien Lavoué
- Department of Neurobiology and Behavior, W263 Seeley G. Mudd Hall, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
73
|
Genetic divergence of mykizha (Parasalmo (Oncorhynchus) mykiss) from Kamchatka inferred from restriction analysis and sequencing of mtDNA cytochrome b gene. RUSS J GENET+ 2004. [DOI: 10.1007/s11177-005-0072-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
74
|
Casey SP, Hall HJ, Stanley HF, Vincent ACJ. The origin and evolution of seahorses (genus Hippocampus): a phylogenetic study using the cytochrome b gene of mitochondrial DNA. Mol Phylogenet Evol 2004; 30:261-72. [PMID: 14715219 DOI: 10.1016/j.ympev.2003.08.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phylogenetic relationships among 93 specimens of 22 species of seahorses (genus Hippocampus) from the Atlantic and Indo-Pacific Oceans were analysed using cytochrome b gene sequence data. A maximum sequence divergence of 23.2% (Kimura 2-parameter model) suggests a pre-Tethyan origin for the genus. Despite a greater number of seahorse species in the Indo-Pacific than in the Atlantic Ocean, there was no compelling genetic evidence to support an Indo-Pacific origin for the genus Hippocampus. The phylogenetic data suggest that high diversity in the Indo-Pacific results from speciation events dating from the Pleistocene to the Miocene, or earlier. Both vicariance and dispersal events in structuring the current global distribution of seahorses. The results suggested that several species designations need re-evaluating, and further phylogeographic studies are required to determine patterns and processes of seahorse dispersal.
Collapse
Affiliation(s)
- Stephen P Casey
- Institute of Zoology, The Zoological Society of London, Regents Park, London NW1 4RY, UK.
| | | | | | | |
Collapse
|
75
|
Kim IC, Kweon HS, Kim YJ, Kim CB, Gye MC, Lee WO, Lee YS, Lee JS. The complete mitochondrial genome of the javeline goby Acanthogobius hasta (Perciformes, Gobiidae) and phylogenetic considerations. Gene 2004; 336:147-53. [PMID: 15246526 DOI: 10.1016/j.gene.2004.04.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2003] [Revised: 02/23/2004] [Accepted: 04/13/2004] [Indexed: 10/26/2022]
Abstract
We isolated Acanthogobius hasta mitochondrial DNA by long-polymerase chain reaction (long-PCR) with conserved primers, and sequenced this mitogenome with primer walking. The resultant A. hasta mitochondrial DNA sequence was found to consist of 16,663 bp with a structural organization conserved relative to that of other fish. In this paper, we report the basic characteristics of the A. hasta mitochondrial genome including structural organization, base composition of rRNAs and the tRNAs and protein-encoding genes, and characteristics of mitochondrial tRNAs. These findings are applicable to molecular phylogenetics in the suborder Gobioidei.
Collapse
Affiliation(s)
- Il-Chan Kim
- Department of Biochemistry, College of Medicine, Hanyang University, Seoul 133-791, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Zardoya R, Malaga-Trillo E, Veith M, Meyer A. Complete nucleotide sequence of the mitochondrial genome of a salamander, Mertensiella luschani. Gene 2003; 317:17-27. [PMID: 14604788 DOI: 10.1016/s0378-1119(03)00655-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The complete nucleotide sequence (16,650 bp) of the mitochondrial genome of the salamander Mertensiella luschani (Caudata, Amphibia) was determined. This molecule conforms to the consensus vertebrate mitochondrial gene order. However, it is characterized by a long non-coding intervening sequence with two 124-bp repeats between the tRNA(Thr) and tRNA(Pro) genes. The new sequence data were used to reconstruct a phylogeny of jawed vertebrates. Phylogenetic analyses of all mitochondrial protein-coding genes at the amino acid level recovered a robust vertebrate tree in which lungfishes are the closest living relatives of tetrapods, salamanders and frogs are grouped together to the exclusion of caecilians (the Batrachia hypothesis) in a monophyletic amphibian clade, turtles show diapsid affinities and are placed as sister group of crocodiles+birds, and the marsupials are grouped together with monotremes and basal to placental mammals. The deduced phylogeny was used to characterize the molecular evolution of vertebrate mitochondrial proteins. Amino acid frequencies were analyzed across the main lineages of jawed vertebrates, and leucine and cysteine were found to be the most and least abundant amino acids in mitochondrial proteins, respectively. Patterns of amino acid replacements were conserved among vertebrates. Overall, cartilaginous fishes showed the least variation in amino acid frequencies and replacements. Constancy of rates of evolution among the main lineages of jawed vertebrates was rejected.
Collapse
Affiliation(s)
- Rafael Zardoya
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal, 2, 28006 Madrid, Spain.
| | | | | | | |
Collapse
|
77
|
Ishiguro NB, Miya M, Nishida M. Basal euteleostean relationships: a mitogenomic perspective on the phylogenetic reality of the "Protacanthopterygii". Mol Phylogenet Evol 2003; 27:476-88. [PMID: 12742752 DOI: 10.1016/s1055-7903(02)00418-9] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Higher-level relationships of the basal Euteleostei (=Protacanthopterygii) are so complex and controversial that at least nine different morphology-based phylogenetic hypotheses have been proposed during the last 30 years. Relationships of the Protacanthopterygii were investigated using mitochondrial genomic (mitogenomic) data from 34 purposefully chosen species (data for 12 species being newly determined during the study) that fully represented major basal euteleostean lineages and some basal teleosts plus neoteleosts as outgroups. Unweighted and weighted maximum parsimony (MP) and maximum likelihood (ML) analyses were conducted with the data set that comprised concatenated nucleotide sequences from 12 protein-coding genes (excluding the ND6 gene and 3rd codon positions) and 22 transfer RNA (tRNA) genes (stem regions only) from the 34 species. The resultant trees were well resolved and largely congruent, with most internal branches being supported by high statistical values. Monophyly of the protacanthopterygians was confidently rejected by the mitogenomic data. Of the five major monophyletic groups that received high statistical support within the protacanthopterygians, a clade comprising members of the alepocephaloids was unexpectedly nested within the Otocephala, sister-group of the euteleosts. The remaining four major monophyletic groups, on the other hand, occupied phylogenetic positions intermediate between the otocephalans and neoteleosts, with a clade comprising esociforms + salmoniforms being more basal to the argentinoids and osmeroids. Although interrelationships of the latter two clades (argentinoids and osmeroids) with the neoteleosts remained ambiguous, the present results indicated explicitly that the protacanthopterygians as currently defined merely represent a collective, polyphyletic group of the basal euteleosts, located between the basal teleosts (elopomorphs and below) and neoteleosts (stomiiforms and above).
Collapse
Affiliation(s)
- Naoya B Ishiguro
- Ocean Research Institute, University of Tokyo, 1-15-1 Minamidai, Nakano-ku, Tokyo 164-8639, Japan.
| | | | | |
Collapse
|
78
|
Miya M, Takeshima H, Endo H, Ishiguro NB, Inoue JG, Mukai T, Satoh TP, Yamaguchi M, Kawaguchi A, Mabuchi K, Shirai SM, Nishida M. Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Mol Phylogenet Evol 2003; 26:121-38. [PMID: 12470944 DOI: 10.1016/s1055-7903(02)00332-9] [Citation(s) in RCA: 507] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A recent preliminary study using complete mitochondrial DNA sequences from 48 species of teleosts has suggested that higher teleostean phylogenies should be reinvestigated on the basis of more intensive taxonomic sampling. As a second step towards the resolution of higher teleostean phylogenies, which have been described as the "(unresolved) bush at the top of the tree," we reanalyzed their relationships using mitogenomic data from 100 purposefully chosen species that fully represented all of the higher teleostean orders, except for the Batrachoidiformes. Unweighted and weighted maximum parsimony analyses were conducted with the data set that comprised concatenated nucleotide sequences from 12 protein-coding genes (excluding 3rd codon positions) and 21 transfer RNA (tRNA) genes (stem regions only) from each species. The resultant trees were well resolved and largely congruent, with most internal branches being supported by high statistical values. All major, comprehensive groups above ordinal level as currently defined in higher teleosts (with the exception of the Neoteleostei and several monotypic groups), such as the Eurypterygii, Ctenosquamata, Acanthomorpha, Paracanthopterygii, Acanthopterygii, and Percomorpha, appeared to be nonmonophyletic in the present tree. Such incongruities largely resulted from differences in the placement and/or limits of the orders Ateleopodiformes, Lampridiformes, Polymixiiformes, Ophidiiformes, Lophiiformes, Beryciformes, Stephanoberyciformes, and Zeiformes, long-standing problematic taxa in systematic ichthyology. Of these, the resulting phylogenetic positions of the Ophidiiformes and Lophiiformes were totally unexpected, because, although they have consistently been considered relatively primitive groups within higher teleosts (Paracanthopterygii), they were confidently placed within a crown group of teleosts, herein called the Percomorpha. It should be noted that many unexpected, but highly supported relationships were found within the Percomorpha, being highly promising for the next investigative step towards resolution of this remarkably diversified group of teleosts.
Collapse
Affiliation(s)
- Masaki Miya
- Department of Zoology, Natural History Museum & Institute, Chiba, 955-2 Aoba-cho, Chuo-ku, Chiba 260-8682, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Inoue JG, Miya M, Tsukamoto K, Nishida M. Basal actinopterygian relationships: a mitogenomic perspective on the phylogeny of the "ancient fish". Mol Phylogenet Evol 2003; 26:110-20. [PMID: 12470943 DOI: 10.1016/s1055-7903(02)00331-7] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The basal actinopterygians comprise four major lineages (polypteriforms, acipenseriforms, lepisosteids, and Amia) and have been collectively called "ancient fish." We investigated the phylogeny of this group of fishes in relation to teleosts using mitochondrial genomic (mitogenomic) data, and compared this to the various alternative phylogenetic hypotheses that have been proposed previously. In addition to the previously determined complete mitochondrial DNA (mtDNA) sequences from 14 teleosts and two outgroups, we used newly determined mitogenomic sequences of 12 purposefully chosen species representing all the ancient fish lineages plus related teleosts. This data set comprised concatenated nucleotide sequences from 12 protein-coding genes (excluding the ND6 gene and third codon positions) and 22 transfer RNA (tRNA) genes (stem regions only) and these data were subjected to maximum parsimony, maximum likelihood, and Bayesian analyses. The resultant trees from the three methods were well resolved and largely congruent, with most internal branches being supported by high statistical values. Mitogenomic data strongly supported not only the monophyly of the teleosts (osteoglossomorphs and above), but also a sister-group relationship between the teleosts and a clade comprising the acipenseriforms, lepisosteids, and Amia, with the polypteriforms occupying the most basal position in the actinopterygian phylogeny. Although the tree topology differed from any of the previously proposed hypotheses based on morphology, it exhibited congruence with a recently proposed novel hypothesis based on nuclear markers.
Collapse
Affiliation(s)
- Jun G Inoue
- Ocean Research Institute, University of Tokyo, 1-15-1 Minamidai, Nakano-ku, Tokyo 164-8639, Japan.
| | | | | | | |
Collapse
|
80
|
Thorgaard GH, Bailey GS, Williams D, Buhler DR, Kaattari SL, Ristow SS, Hansen JD, Winton JR, Bartholomew JL, Nagler JJ, Walsh PJ, Vijayan MM, Devlin RH, Hardy RW, Overturf KE, Young WP, Robison BD, Rexroad C, Palti Y. Status and opportunities for genomics research with rainbow trout. Comp Biochem Physiol B Biochem Mol Biol 2002; 133:609-46. [PMID: 12470823 DOI: 10.1016/s1096-4959(02)00167-7] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The rainbow trout (Oncorhynchus mykiss) is one of the most widely studied of model fish species. Extensive basic biological information has been collected for this species, which because of their large size relative to other model fish species are particularly suitable for studies requiring ample quantities of specific cells and tissue types. Rainbow trout have been widely utilized for research in carcinogenesis, toxicology, comparative immunology, disease ecology, physiology and nutrition. They are distinctive in having evolved from a relatively recent tetraploid event, resulting in a high incidence of duplicated genes. Natural populations are available and have been well characterized for chromosomal, protein, molecular and quantitative genetic variation. Their ease of culture, and experimental and aquacultural significance has led to the development of clonal lines and the widespread application of transgenic technology to this species. Numerous microsatellites have been isolated and two relatively detailed genetic maps have been developed. Extensive sequencing of expressed sequence tags has begun and four BAC libraries have been developed. The development and analysis of additional genomic sequence data will provide distinctive opportunities to address problems in areas such as evolution of the immune system and duplicate genes.
Collapse
Affiliation(s)
- Gary H Thorgaard
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164-4236, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Doiron S, Bernatchez L, Blier PU. A comparative mitogenomic analysis of the potential adaptive value of Arctic charr mtDNA introgression in brook charr populations (Salvelinus fontinalis Mitchill). Mol Biol Evol 2002; 19:1902-9. [PMID: 12411599 DOI: 10.1093/oxfordjournals.molbev.a004014] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Wild brook charr populations (Salvelinus fontinalis) completely introgressed with the mitochondrial genome (mtDNA) of arctic charr (Salvelinus alpinus) are found in several lakes of northeastern Québec, Canada. Mitochondrial respiratory enzymes of these populations are thus encoded by their own nuclear DNA and by arctic charr mtDNA. In the present study we performed a comparative sequence analysis of the whole mitochondrial genome of both brook and arctic charr to identify the distribution of mutational differences across these two genomes. This analysis revealed 47 amino acid replacements, 45 of which were confined to subunits of the NADH dehydrogenase complex (Complex I), one in the cox3 gene (Complex IV), and one in the atp8 gene (Complex V). A cladistic approach performed with brook charr, arctic charr, and two other salmonid fishes (rainbow trout [Oncorhynchus mykiss] and Atlantic salmon [Salmo salar]) revealed that only five amino acid replacements were specific to the charr comparison and not shared with the other two salmonids. In addition, five amino acid substitutions localized in the nad2 and nad5 genes denoted negative scores according to the functional properties of amino acids and, therefore, could possibly have an impact on the structure and functional properties of these mitochondrial peptides. The comparison of both brook and arctic charr mtDNA with that of rainbow trout also revealed a relatively constant mutation rate for each specific gene among species, whereas the rate was quite different among genes. This pattern held for both synonymous and nonsynonymous nucleotide positions. These results, therefore, support the hypothesis of selective constraints acting on synonymous codon usage.
Collapse
Affiliation(s)
- Sarah Doiron
- Département de Biologie, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | | | | |
Collapse
|
82
|
Churikov D, Gharrett AJ. Comparative phylogeography of the two pink salmon broodlines: an analysis based on a mitochondrial DNA genealogy. Mol Ecol 2002; 11:1077-101. [PMID: 12030984 DOI: 10.1046/j.1365-294x.2002.01506.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Over most of their natural northern Pacific Ocean range, pink salmon (Oncorhynchus gorbuscha) spawn in a habitat that was repeatedly and profoundly affected by Pleistocene glacial advances. A strictly two-year life cycle of pink salmon has resulted in two reproductively isolated broodlines, which spawn in alternating years and evolved as temporal replicates of the same species. To study the influence of historical events on phylogeographical and population genetic structure of the two broodlines, we first reconstructed a fine-scale mtDNA haplotype genealogy from a sample of 80 individuals and then determined the geographical distribution of the major genealogical assemblages for 718 individuals sampled from nine Alaskan and eastern Asian even- and nine odd-year pink salmon populations. Analysis of restriction site states in seven polymerase chain reaction (PCR)-amplified mtDNA regions (comprising 97% of the mitochondrial genome) using 13 endonucleases resolved 38 haplotypes, which clustered into five genealogical lineages that differed from 0.065 to 0.225% in net sequence divergence. The lineage sorting between broodlines was incomplete, which suggests a recent common ancestry. Within each lineage, haplotypes exhibited star-like genealogies indicating recent population growth. The depth of the haplotype genealogy is shallow ( approximately 0.5% of nucleotide sequence divergence) and probably reflects repeated decreases in population size due to Pleistocene glacial advances. Nested clade analysis (NCA) of geographical distances showed that the geographical distribution observed for mitochondrial DNA (mtDNA) haplotypes resulted from alternating influences of historical range expansions and episodes of restricted dispersal. Analyses of molecular variance showed weak geographical structuring of mtDNA variation, except for the strong subdivision between Asian and Alaskan populations within the even-year broodline. The genetic similarities observed among and within geographical regions probably originated from postglacial recolonizations from common sources rather than extensive gene flow. The phylogeographical and population genetic structures differ substantally between broodlines. This can be explained by stochastic lineage sorting in glacial refugia and perhaps different recolonization routes in even- and odd-year broodlines.
Collapse
Affiliation(s)
- D Churikov
- Fisheries Division, School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 11120 Glacier Highway, Juneau 99801, USA.
| | | |
Collapse
|
83
|
Delarbre C, Gallut C, Barriel V, Janvier P, Gachelin G. Complete mitochondrial DNA of the hagfish, Eptatretus burgeri: the comparative analysis of mitochondrial DNA sequences strongly supports the cyclostome monophyly. Mol Phylogenet Evol 2002; 22:184-92. [PMID: 11820840 DOI: 10.1006/mpev.2001.1045] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The phylogenetic position of cyclostomes, i.e., the relationships between hagfishes, lampreys, and jawed vertebrates is an unresolved problem. Anatomical data support the paraphyly of cyclostomes, whereas nuclear genes data support monophyly of cyclostomes. Previous results obtained using mitochondrial DNA are ambiguous, presumably due to a lack of informative sequences. By adding the complete mtDNA of a hagfish, Eptatretus burgeri, we have generated a novel data set for sequences of hagfishes and of lampreys. The addition of this mtDNA sequence to the 12 taxa we have already used becomes sufficient to obtain unambiguous results. This data set, which includes sequences of mtDNA of animals closely related to the lamprey/hagfish node, was used in a phylogenetic analysis with two independent statistical approaches and unequivocally supported the monophyly of cyclostomes. Thus molecular data, i.e., our results and those obtained using nuclear genes, conclude that hagfishes and lampreys form a clade.
Collapse
|
84
|
Wang HY, Lee SC. Secondary structure of mitochondrial 12S rRNA among fish and its phylogenetic applications. Mol Biol Evol 2002; 19:138-48. [PMID: 11801742 DOI: 10.1093/oxfordjournals.molbev.a004066] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The complete 12S ribosomal RNA(rRNA) sequences from 23 gobioid species and nine diverse assortments of other fish species were employed to establish a core secondary structure model for fish 12S rRNA. Of the 43 stems recognized, 41 were supported by at least some compensatory evidence among vertebrates. The rates of nucleotide substitution were lower in stems than in loops. This may produce less phylogenetic information in stems when recently diverged taxa are compared. An analysis of compensatory substitution shows that the percentage of covariation is 68%, and the weighting factor for phylogenetic analyses to account for the dependence of mutations should be 0.66. Different stem-loop weighting schemes applied to the analyses of phylogenetic relationships of the Gobioidei indicate that down-weighting paired regions because of nonindependence could not improve the present phylogenetic analysis. A biased nucleotide composition (adenine% [A%] > thymine% [T%], cytosine% [C%] > guanine% [G%]) in the loop regions was also observed in the mammalian counterpart. The excess of A and C in the loop regions may be because of the asymmetric mechanism of mtDNA replication, which leads to the spontaneous deamination of C and A. This process may also be responsible for a transition-transversion bias and the patterns of nucleotide substitutions in both stems and loops.
Collapse
Affiliation(s)
- Hurng-Yi Wang
- Department of Biology, National Taiwan Normal University, Taipei, Taiwan
| | | |
Collapse
|
85
|
Lee JS, Miya M, Lee YS, Kim CG, Park EH, Aoki Y, Nishida M. The complete DNA sequence of the mitochondrial genome of the self-fertilizing fish Rivulus marmoratus (Cyprinodontiformes, Rivulidae) and the first description of duplication of a control region in fish. Gene 2001; 280:1-7. [PMID: 11738812 DOI: 10.1016/s0378-1119(01)00765-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We isolated Rivulus marmoratus mitochondrial DNA by long-polymerase chain reaction with conserved primers, and sequenced it with 36 sets of internal conserved primers, which were designed from the extensive sequence similarities of mitochondrial DNA from several fish species. The R. marmoratus mitochondrial DNA has 17,329 bp with a conserved structural organization compared to those of other fish. Rivulus marmoratus mitochondrial DNA also has two nearly identical control regions. The basic characteristics of the R. marmoratus mitochondrial genome are discussed.
Collapse
Affiliation(s)
- J S Lee
- Department of Biochemistry, College of Medicine, Hanyang University, Seoul 133-791, South Korea.
| | | | | | | | | | | | | |
Collapse
|
86
|
Miya M, Kawaguchi A, Nishida M. Mitogenomic exploration of higher teleostean phylogenies: a case study for moderate-scale evolutionary genomics with 38 newly determined complete mitochondrial DNA sequences. Mol Biol Evol 2001; 18:1993-2009. [PMID: 11606696 DOI: 10.1093/oxfordjournals.molbev.a003741] [Citation(s) in RCA: 291] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although adequate resolution of higher-level relationships of organisms apparently requires longer DNA sequences than those currently being analyzed, limitations of time and resources present difficulties in obtaining such sequences from many taxa. For fishes, these difficulties have been overcome by the development of a PCR-based approach for sequencing the complete mitochondrial genome (mitogenome), which employs a long PCR technique and many fish-versatile PCR primers. In addition, recent studies have demonstrated that such mitogenomic data are useful and decisive in resolving persistent controversies over higher-level relationships of teleosts. As a first step toward resolution of higher teleostean relationships, which have been described as the "(unresolved) bush at the top of the tree," we investigated relationships using mitogenomic data from 48 purposefully chosen teleosts, of which those from 38 were newly determined during the present study (a total of 632,315 bp), using the above method. Maximum-parsimony and maximum-likelihood analyses were conducted with the data set that comprised concatenated nucleotide sequences from 12 protein-coding genes (excluding the ND6 gene and third codon positions) and 22 transfer RNA (tRNA) genes (stem regions only) from the 48 species. The resultant two trees from the two methods were well resolved and largely congruent, with many internal branches supported by high statistical values. The tree topologies themselves, however, exhibited considerable variation from the previous morphology-based cladistic hypotheses, with most of the latter being confidently rejected by the mitogenomic data. Such incongruence resulted largely from the phylogenetic positions or limits of long-standing problematic taxa, which were quite unexpected from previous morphological and molecular analyses. We concluded that the present study provided a basis of and guidelines for future investigations of teleostean evolutionary mitogenomics and that purposeful higher-density taxonomic sampling, subsequent sequencing efforts, and phylogenetic analyses of their mitogenomes may be decisive in resolving persistent controversies over higher-level relationships of teleosts, the most diversified group of all vertebrates, comprising over 23,500 extant species.
Collapse
Affiliation(s)
- M Miya
- Natural History Museum and Institute, Chiba, Japan.
| | | | | |
Collapse
|
87
|
Takahashi H, Goto A. Evolution of East Asian ninespine sticklebacks as shown by mitochondrial DNA control region sequences. Mol Phylogenet Evol 2001; 21:135-55. [PMID: 11603944 DOI: 10.1006/mpev.2001.1001] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Evolutionary processes in East Asian ninespine sticklebacks (Pungitius spp.), including both extremes of armor morphology in the genus, were demonstrated with mitochondrial DNA control region (CR) phylogeny. Entire CR sequences (830-930 bp long) were determined for three species: the most heavily armored (P. sinensis), the most reduced (P. tymensis), and an intermediate (P. pungitius). The former two species are endemic to East Asia, the latter being circumpolar. Three major lineages (A, B, and C) were revealed, whereas both the phylogenetic trees and the insertion sequence dynamics supported the polyphyly of P. sinensis. Haplotypes of the mainland populations of P. sinensis possessed lineage B, being the sister group of P. tymensis lineage A. Island populations of P. sinensis, however, possessed lineage C, along with all P. pungitius haplotypes. A molecular clock hypothesis was clearly rejected for the CR sequences, significantly slower evolutionary rates being observed in the P. tymensis lineage. The split of mainland P. sinensis and P. tymensis was considered to have preceded that of the lineage C colonization in East Asia. The contrasting morphology is probably attributable to adaptation of P. tymensis to island freshwater environments and an ecological interaction between P. tymensis and lineage C emigrants.
Collapse
Affiliation(s)
- H Takahashi
- Laboratory of Breeding Science, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan.
| | | |
Collapse
|
88
|
Inoue JG, Miya M, Tsukamoto K, Nishida M. A mitogenomic perspective on the basal teleostean phylogeny: resolving higher-level relationships with longer DNA sequences. Mol Phylogenet Evol 2001; 20:275-85. [PMID: 11476635 DOI: 10.1006/mpev.2001.0970] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A recent study demonstrated that mitochondrial genomic (mitogenomic) data comprising nucleotide sequences from the concatenated protein-coding (no 3rd codon positions) plus transfer RNA (stem regions only) genes reproduced the expected phylogeny of teleosts with high statistical support. We reexamined the interrelationships of the five major, basal teleostean lineages (Osteoglossomorpha, Elopomorpha, Clupeomorpha, Ostariophysi, and Protacanthopterygii; given various rankings) using mitogenomic data for which five alternative phylogenetic hypotheses have been previously proposed on the basis of both morphological and molecular analyses. In addition to previously determined complete mitochondrial DNA (mtDNA) sequences from eight basal teleosts and two outgroups, we determined the complete mtDNA sequences (excluding a portion of the control region) for two, purposefully chosen species of Osteoglossomorpha (Osteoglossum bicirrhosum and Pantodon buchholzi), and the data were subjected to maximumparsimony and maximum-likelihood analyses. The resultant tree topologies from the two methods were congruent, although they differed from any of the previously proposed hypotheses. Furthermore, the mitogenomic data confidently rejected all of these hypotheses with high statistical significance.
Collapse
Affiliation(s)
- J G Inoue
- Ocean Research Institute, University of Tokyo, 1-15-1 Minamidai, Nakano-ku, Tokyo 164-8639, Japan.
| | | | | | | |
Collapse
|
89
|
Janke A, Erpenbeck D, Nilsson M, Arnason U. The mitochondrial genomes of the iguana (Iguana iguana) and the caiman (Caiman crocodylus): implications for amniote phylogeny. Proc Biol Sci 2001; 268:623-31. [PMID: 11297180 PMCID: PMC1088649 DOI: 10.1098/rspb.2000.1402] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The complete mitochondrial genomes of two reptiles, the common iguana (Iguana iguana) and the caiman (Caiman crocodylus), were sequenced in order to investigate phylogenetic questions of tetrapod evolution. The addition of the two species allows analysis of reptilian relationships using data sets other than those including only fast-evolving species. The crocodilian mitochondrial genomes seem to have evolved generally at a higher rate than those of other vertebrates. Phylogenetic analyses of 2889 amino-acid sites from 35 mitochondrial genomes supported the bird-crocodile relationship, lending no support to the Haematotherma hypothesis (with birds and mammals representing sister groups). The analyses corroborated the view that turtles are at the base of the bird-crocodile branch. This position of the turtles makes Diapsida paraphyletic. The origin of the squamates was estimated at 294 million years (Myr) ago and that of the turtles at 278 Myr ago. Phylogenetic analysis of mammalian relationships using the additional outgroups corroborated the Marsupionta hypothesis, which joins the monotremes and the marsupials to the exclusion of the eutherians.
Collapse
Affiliation(s)
- A Janke
- Department of Genetics, University of Lund, Sweden.
| | | | | | | |
Collapse
|
90
|
Cao Y, Sorenson MD, Kumazawa Y, Mindell DP, Hasegawa M. Phylogenetic position of turtles among amniotes: evidence from mitochondrial and nuclear genes. Gene 2000; 259:139-48. [PMID: 11163971 DOI: 10.1016/s0378-1119(00)00425-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Maximum likelihood analysis, accounting for site-heterogeneity in evolutionary rate with the Gamma-distribution model, was carried out with amino acid sequences of 12 mitochondrial proteins and nucleotide sequences of mitochondrial 12S and 16S rRNAs from three turtles, one squamate, one crocodile, and eight birds. The analysis strongly suggests that turtles are closely related to archosaurs (birds+crocodilians), and it supports both Tree-2: (((birds, crocodilians), turtles), squamates) and Tree-3: ((birds, (crocodilians, turtles)), squamates). A more traditional Tree-1: (((birds, crocodilians), squamates), turtles) and a tree in which turtles are basal to other amniotes were rejected with high statistical significance. Tree-3 has recently been proposed by Hedges and Poling [Science 283 (1999) 998-1001] based mainly on nuclear genes. Therefore, we re-analyzed their data using the maximum likelihood method, and evaluated the total evidence of the analyses of mitochondrial and nuclear data sets. Tree-1 was again rejected strongly. The most likely hypothesis was Tree-3, though Tree-2 remained a plausible candidate.
Collapse
Affiliation(s)
- Y Cao
- The Institute of Statistical Mathematics, 4-6-7 Minami-Azabu, Minato-ku, Tokyo 106-8569, Japan
| | | | | | | | | |
Collapse
|
91
|
Kumazawa Y, Nishida M. Molecular phylogeny of osteoglossoids: a new model for Gondwanian origin and plate tectonic transportation of the Asian arowana. Mol Biol Evol 2000; 17:1869-78. [PMID: 11110903 DOI: 10.1093/oxfordjournals.molbev.a026288] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
One of the traditional enigmas in freshwater zoogeography has been the evolutionary origin of Scleropages formosus inhabiting Southeast Asia (the Asian arowana), which is a species threatened with extinction among the highly freshwater-adapted fishes from the order Osteoglossiformes. Dispersalists have hypothesized that it originated from the recent (the Miocene or later) transmarine dispersal of morphologically quite similar Australasian arowanas across Wallace's Line, but this hypothesis has been questioned due to their remarkable adaptation to freshwater. We determined the complete nucleotide sequences of two mitochondrial protein genes from 12 osteoglossiform species, including all members of the suborder Osteoglossoidei, with which robust molecular phylogeny was constructed and divergence times were estimated. In agreement with previous morphology-based phylogenetic studies, our molecular phylogeny suggested that the osteoglossiforms diverged from a basal position of the teleostean lineage, that heterotidines (the Nile arowana and the pirarucu) form a sister group of osteoglossines (arowanas in South America, Australasia, and Southeast Asia), and that the Asian arowana is more closely related to Australasian arowanas than to South American ones. However, molecular distances between the Asian and Australasian arowanas were much larger than expected from the fact that they are classified within the same genus. By using the molecular clock of bony fishes, tested for its good performance for rather deep divergences and calibrated using some reasonable assumptions, the divergence between the Asian and Australasian arowanas was estimated to date back to the early Cretaceous. Based on the molecular and geological evidence, we propose a new model whereby the Asian arowana vicariantly diverged from the Australasian arowanas in the eastern margin of Gondwanaland and migrated into Eurasia on the Indian subcontinent or smaller continental blocks. This study also implicates the relatively long absence of osteoglossiform fossil records from the Mesozoic.
Collapse
Affiliation(s)
- Y Kumazawa
- Department of Earth and Planetary Sciences, Nagoya University, Nagoya, Japan.
| | | |
Collapse
|
92
|
Miya M, Nishida M. Use of mitogenomic information in teleostean molecular phylogenetics: a tree-based exploration under the maximum-parsimony optimality criterion. Mol Phylogenet Evol 2000; 17:437-55. [PMID: 11133198 DOI: 10.1006/mpev.2000.0839] [Citation(s) in RCA: 234] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We explored the phylogenetic utility and limits of the individual and concatenated mitochondrial genes for reconstructing the higher-level relationships of teleosts, using the complete (or nearly complete) mitochondrial DNA sequences of eight teleosts (including three newly determined sequences), whose relative phylogenetic positions were noncontroversial. Maximum-parsimony analyses of the nucleotide and amino acid sequences of 13 protein-coding genes from the above eight teleosts, plus two outgroups (bichir and shark), indicated that all of the individual protein-coding genes, with the exception of ND5, failed to recover the expected phylogeny, although unambiguously aligned sequences from 22 concatenated transfer RNA (tRNA) genes (stem regions only) recovered the expected phylogeny successfully with moderate statistical support. The phylogenetic performance of the 13 protein-coding genes in recovering the expected phylogeny was roughly classified into five groups, viz. very good (ND5, ND4, COIII, COI), good (COII, cyt b), medium (ND3, ND2), poor (ND1, ATPase 6), and very poor (ND4L, ND6, ATPase 8). Although the universality of this observation was unclear, analysis of successive concatenation of the 13 protein-coding genes in the same ranking order revealed that the combined data sets comprising nucleotide sequences from the several top-ranked protein-coding genes (no 3rd codon positions) plus the 22 concatenated tRNA genes (stem regions only) best recovered the expected phylogeny, with all internal branches being supported by bootstrap values >90%. We conclude that judicious choice of mitochondrial genes and appropriate data weighting, in conjunction with purposeful taxonomic sampling, are prerequisites for resolving higher-level relationships in teleosts under the maximum-parsimony optimality criterion.
Collapse
Affiliation(s)
- M Miya
- Department of Zoology, Natural History Museum & Institute, Chiba, 955-2 Aoba-cho, Chuo-ku, Chiba, 260-8682, Japan.
| | | |
Collapse
|
93
|
Abstract
With the advent of DNA sequencing techniques the organization of the vertebrate mitochondrial genome shows variation between higher taxonomic levels. The most conserved gene order is found in placental mammals, turtles, fishes, some lizards and Xenopus. Birds, other species of lizards, crocodilians, marsupial mammals, snakes, tuatara, lamprey, and some other amphibians and one species of fish have gene orders that are less conserved. The most probable mechanism for new gene rearrangements seems to be tandem duplication and multiple deletion events, always associated with tRNA sequences. Some new rearrangements seem to be typical of monophyletic groups and the use of data from these groups may be useful for answering phylogenetic questions involving vertebrate higher taxonomic levels. Other features such as the secondary structure of tRNA, and the start and stop codons of protein-coding genes may also be useful in comparisons of vertebrate mitochondrial genomes.
Collapse
|
94
|
Zardoya R, Meyer A. Mitochondrial evidence on the phylogenetic position of caecilians (Amphibia: Gymnophiona). Genetics 2000; 155:765-75. [PMID: 10835397 PMCID: PMC1461123 DOI: 10.1093/genetics/155.2.765] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The complete nucleotide sequence (17,005 bp) of the mitochondrial genome of the caecilian Typhlonectes natans (Gymnophiona, Amphibia) was determined. This molecule is characterized by two distinctive genomic features: there are seven large 109-bp tandem repeats in the control region, and the sequence for the putative origin of replication of the L strand can potentially fold into two alternative secondary structures (one including part of the tRNA(Cys)). The new sequence data were used to assess the phylogenetic position of caecilians and to gain insights into the origin of living amphibians (frogs, salamanders, and caecilians). Phylogenetic analyses of two data sets-one combining protein-coding genes and the other combining tRNA genes-strongly supported a caecilian + frog clade and, hence, monophyly of modern amphibians. These two data sets could not further resolve relationships among the coelacanth, lungfishes, and tetrapods, but strongly supported diapsid affinities of turtles. Phylogenetic relationships among a larger set of species of frogs, salamanders, and caecilians were estimated with a mitochondrial rRNA data set. Maximum parsimony analysis of this latter data set also recovered monophyly of living amphibians and favored a frog + salamander (Batrachia) relationship. However, bootstrap support was only moderate at these nodes. This is likely due to an extensive among-site rate heterogeneity in the rRNA data set and the narrow window of time in which the three main groups of living amphibians were originated.
Collapse
Affiliation(s)
- R Zardoya
- Museo Nacional de Ciencias Naturales, Madrid, Spain.
| | | |
Collapse
|
95
|
Delarbre C, Escriva H, Gallut C, Barriel V, Kourilsky P, Janvier P, Laudet V, Gachelin G. The complete nucleotide sequence of the mitochondrial DNA of the agnathan Lampetra fluviatilis: bearings on the phylogeny of cyclostomes. Mol Biol Evol 2000; 17:519-29. [PMID: 10742044 DOI: 10.1093/oxfordjournals.molbev.a026332] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There are two competing theories about the interrelationships of craniates: the cyclostome theory assumes that lampreys and hagfishes are a clade, the cyclostomes, whose sister group is the jawed vertebrates (gnathostomes); the vertebrate theory assumes that lampreys and gnathostomes are a clade, the vertebrates, whose sister group is hagfishes. The vertebrate theory is best supported by a number of unique anatomical and physiological characters. Molecular sequence data from 18S and 28S rRNA genes rather support the cyclostome theory, but mtDNA sequence of Myxine glutinosa rather supports the vertebrate theory. Additional molecular data are thus needed to elucidate this three-taxon problem. We determined the complete nucleotide sequence of the mtDNA of the lamprey Lampetra fluviatilis. The mtDNA of L. fluviatilis possesses the same genomic organization as Petromyzon marinus, which validates this gene order as a synapomorphy of lampreys. The mtDNA sequence of L. fluviatilis was used in combination with relevant mtDNA sequences for an approach to the hagfish/lamprey relationships using the maximum-parsimony, neighbor-joining, and maximum-likelihood methods. Although trees compatible with our present knowledge of the phylogeny of craniates can be reconstructed by using the three methods, the data collected do not support the vertebrate or the cyclostome hypothesis. The present data set does not allow the resolution of this three-taxon problem, and new kinds of data, such as nuclear DNA sequences, need to be collected.
Collapse
Affiliation(s)
- C Delarbre
- Département d'Immunologie, Unité de Biologie Moléculaire du Gène, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Javier Juste B, Alvarez Y, Tabarés E, Garrido-Pertierra A, Ibáñez C, Bautista JM. Phylogeography of African fruitbats (Megachiroptera). Mol Phylogenet Evol 1999; 13:596-604. [PMID: 10620416 DOI: 10.1006/mpev.1999.0669] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Joint sequences from the mitochondrial cytochrome b and 16S rRNA genes of a wide representation of Megachiroptera were employed to evaluate the traditional taxonomic arrangement of African fruitbats and to examine their origins and evolutionary relationships. The resulting phylogenetic hypotheses are inconsistent with the previously established morphology-based subdivisions of Megachiroptera at the suprageneric level. Findings indicate the existence of an African clade, which appears to be formed by two endemic clades: the epomophorines and the myonycterines. According to our topologies, the genus Rousettus is monospecific in mainland Africa. Its traditional subgenera Stenonycteris and Lissonycteris appear closer to the myonycterines than to Rousettus. Topologies also indicate that the African genus Eidolon is not phylogenetically related to any other African fruitbat. It would seem that the arrival of fruitbats in Africa was a complex process involving at least three independent colonization events. One event took place probably in the Miocene via forested corridors that connected the African and Asian rain forest blocks, as for other groups of mammals. The resulting lineage diversified into most of the extant African fruitbats. Related to this clade, the Rousettus species group is thought to have arrived in Africa in more recent times, possibly by progressive displacement from the East through India. Finally, the present topologies suggest an independent colonization of Africa by ancestors of Eidolon.
Collapse
Affiliation(s)
- B Javier Juste
- Universidad Complutense de Madrid, Cludad Universitaria, Madrid, 28040, Spain
| | | | | | | | | | | |
Collapse
|
97
|
Hurst CD, Bartlett SE, Davidson WS, Bruce IJ. The complete mitochondrial DNA sequence of the Atlantic salmon, Salmo salar. Gene 1999; 239:237-42. [PMID: 10548724 DOI: 10.1016/s0378-1119(99)00425-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The complete sequence of the Atlantic salmon (Salmo salar) mitochondrial genome has been determined. The entire sequence is 16665 base pairs (bp) in length, with a gene content (13 protein-coding, two ribosomal RNA [rRNA] and 22 transfer RNA [tRNA] genes) and order conforming to that observed in most other vertebrates. Base composition and codon usage have been detailed. Nucleotide and derived amino acid sequences of the 13 protein-coding genes from Atlantic salmon have been compared with their counterparts in rainbow trout. A putative structure for the origin of L-strand replication (O(L)) is proposed, and sequence features of the control region (D-loop) are described.
Collapse
Affiliation(s)
- C D Hurst
- School of Chemical and Life Sciences, University of Greenwich, London, UK.
| | | | | | | |
Collapse
|
98
|
Abstract
Animal mitochondrial DNA is a small, extrachromosomal genome, typically approximately 16 kb in size. With few exceptions, all animal mitochondrial genomes contain the same 37 genes: two for rRNAs, 13 for proteins and 22 for tRNAs. The products of these genes, along with RNAs and proteins imported from the cytoplasm, endow mitochondria with their own systems for DNA replication, transcription, mRNA processing and translation of proteins. The study of these genomes as they function in mitochondrial systems-'mitochondrial genomics'-serves as a model for genome evolution. Furthermore, the comparison of animal mitochondrial gene arrangements has become a very powerful means for inferring ancient evolutionary relationships, since rearrangements appear to be unique, generally rare events that are unlikely to arise independently in separate evolutionary lineages. Complete mitochondrial gene arrangements have been published for 58 chordate species and 29 non-chordate species, and partial arrangements for hundreds of other taxa. This review compares and summarizes these gene arrangements and points out some of the questions that may be addressed by comparing mitochondrial systems.
Collapse
Affiliation(s)
- J L Boore
- Department of Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109-1048, USA.
| |
Collapse
|
99
|
Rasmussen AS, Arnason U. Molecular studies suggest that cartilaginous fishes have a terminal position in the piscine tree. Proc Natl Acad Sci U S A 1999; 96:2177-82. [PMID: 10051614 PMCID: PMC26756 DOI: 10.1073/pnas.96.5.2177] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Chondrichthyes (cartilaginous fishes) are commonly accepted as being sister group to the other extant Gnathostomata (jawed vertebrates). To clarify gnathostome relationships and to aid in resolving and dating the major piscine divergences, we have sequenced the complete mtDNA of the starry skate and have included it in phylogenetic analysis along with three squalomorph chondrichthyans-the common dogfish, the spiny dogfish, and the star spotted dogfish-and a number of bony fishes and amniotes. The direction of evolution within the gnathostome tree was established by rooting it with the most closely related non-gnathostome outgroup, the sea lamprey, as well as with some more distantly related taxa. The analyses placed the chondrichthyans in a terminal position in the piscine tree. These findings, which also suggest that the origin of the amniote lineage is older than the age of the oldest extant bony fishes (the lungfishes), challenge the evolutionary direction of several morphological characters that have been used in reconstructing gnathostome relationships. Applying as a calibration point the age of the oldest lungfish fossils, 400 million years, the molecular estimate placed the squalomorph/batomorph divergence at approximately 190 million years before present. This dating is consistent with the occurrence of the earliest batomorph (skates and rays) fossils in the paleontological record. The split between gnathostome fishes and the amniote lineage was dated at approximately 420 million years before present.
Collapse
Affiliation(s)
- A S Rasmussen
- Department of Genetics, Division of Evolutionary Molecular Systematics, University of Lund, Sölvegatan 29, S-223 62 Lund, Sweden
| | | |
Collapse
|
100
|
Gleeson DM, Howitt RL, Ling N. Genetic variation, population structure and cryptic species within the black mudfish, Neochanna diversus, an endemic galaxiid from New Zealand. Mol Ecol 1999; 8:47-57. [PMID: 9919697 DOI: 10.1046/j.1365-294x.1999.00528.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To investigate the phylogenetic relationships and geographical structure among landlocked populations of the black mudfish, Neochanna diversus, mitochondrial DNA nucleotide sequence data were sampled from seven populations from the Waikato and Northland regions of New Zealand. The complete D-loop region was sequenced from 70 individuals, with 913 bp from the tRNA-pro end used in population and phylogenetic analysis. A tandem repeat array, which ranged in size up to 200 bp, was found in most populations at the 3' end of the D-loop that was not able to be aligned for analysis. Of the seven sites sampled, two from Northland exhibited significant sequence divergence from all other sites. There was also a clear distinction among remaining Northland sites and those from the Waikato. An additional 518 bp segment of the 16S region was sequenced from all sites and compared with the other New Zealand mudfish species, N. apoda, N. burrowsius and the Tasmanian mudfish Galaxias (Neochanna) cleaveri using Galaxias maculatus as an outgroup. Both D-loop and 16S sequence data provided strong evidence for a cryptic species of mudfish present in Northland. The significant genetic structure apparent in the black mudfish appears most probably to be attributed to geological conditions during the Pliocene, where peat wetlands became apparent in the Waikato while Northland consisted of disjunct 'islands'. Conservation and management of these populations must take into account the historical processes that have shaped these patterns of genetic diversity.
Collapse
|