Yano T, Yagi T, Sled VD, Ohnishi T. Expression and characterization of the 66-kilodalton (NQO3) iron-sulfur subunit of the proton-translocating NADH-quinone oxidoreductase of Paracoccus denitrificans.
J Biol Chem 1995;
270:18264-70. [PMID:
7629145 DOI:
10.1074/jbc.270.31.18264]
[Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The proton-translocating NADH-quinone oxidoreductase (NDH-1) of Paracoccus denitrificans is composed of at least 14 dissimilar subunits which are designated NQO1-14 and contains one noncovalently bound FMN and at least five EPR-visible iron-sulfur clusters (N1a, N1b, N2, N3, and N4) as prosthetic groups. Comparison of the deduced primary structures of the subunits with consensus sequences for the cofactor binding sites has predicted that NQO1, NQO2, NQO3, NQO9, and probably NQO6 subunits are cofactor binding subunits. Previously, we have reported that the NQO2 (25 kDa) subunit was overexpressed as a water-soluble protein in Escherichia coli and was found to ligate a single [2Fe-2S] cluster with rhombic symmetry (gx,y,z = 1.92, 1.95, and 2.00) (Yano, T., Sled', V.D., Ohnishi, T., and Yagi, T. (1994) Biochemistry 33, 494-499). In the present study, the NQO3 (66 kDa) subunit, which is equivalent to the 75-kDa subunit of bovine heart Complex I, was overexpressed in E. coli. The expressed NQO3 subunit was found predominantly in the cytoplasmic phase and was purified by ammonium sulfate fractionation and anion-exchange chromatography. The chemical analyses and UV-visible and EPR spectroscopic studies showed that the expressed NQO3 subunit contains at least two distinct iron-sulfur clusters: a [2Fe-2S] cluster with axial EPR signals (g perpendicular, parallel = 1.934 and 2.026, and L perpendicular parallel = 1.8 and 3.0 millitesla) and a [4Fe-4S] cluster with rhombic symmetry (gx,y,z = 1.892, 1.928, and 2.063, and Lx,y,z = 2.40, 1.55, and 1.75 millitesla). The midpoint redox potentials of [2Fe-2S] and [4Fe-4S] clusters at pH 8.6 are -472 and -391 mV, respectively. The tetranuclear cluster in the isolated NQO3 subunit is sensitive toward oxidants and converts into [3Fe-4S] form. The assignment of these iron-sulfur clusters to those identified in the P. denitrificans NDH-1 enzyme complex and the possible functional role of the NQO3 subunit is discussed.
Collapse