51
|
Kim J, Guhl S, Babina M, Zuberbier T, Artuc M. Integration of the human dermal mast cell into the organotypic co-culture skin model. Methods Mol Biol 2014; 1192:69-85. [PMID: 25149485 DOI: 10.1007/978-1-4939-1173-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The organotypic co-culture skin model has been providing an advanced approach to the in vitro investigation of the skin. Mast cells, containing various mediators such as tryptase and chymase, are thought to contribute to many physiological and pathological events of the skin interactively with other cells. Here, we introduce an organotypic co-culture skin model which successfully integrates human dermal mast cells for further study of mast cell interactions with fibroblasts and keratinocytes.
Collapse
Affiliation(s)
- Jonghui Kim
- Klinik für Dermatologie, Venerologie, und Allergologie, Allergie-Centrum-Charité, Charité, Charité-Campus Mitte, Luisenstraße 2, 10117, Berlin, Germany
| | | | | | | | | |
Collapse
|
52
|
Wang Y, Kahaleh B. Epigenetic repression of bone morphogenetic protein receptor II expression in scleroderma. J Cell Mol Med 2013; 17:1291-9. [PMID: 23859708 PMCID: PMC4159013 DOI: 10.1111/jcmm.12105] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/21/2013] [Accepted: 06/08/2013] [Indexed: 01/09/2023] Open
Abstract
Germline mutations in the bone morphogenetic protein type II receptor (BMPRII) gene play an essential role in the pathogenesis of familial pulmonary arterial hypertension (FPAH). In view of the histological similarities between scleroderma (SSc) and FPAH arterial lesion, we examined the expression levels of BMPRII in SSc microvascular endothelial cells (MVEC). Oxidative stress and serum starvation were used to examine apoptotic responses of MVECs. BMPRII expression levels were determined by RT-PCR and by Western blot. Epigenetic regulation of BMPRII expression was examined by the addition of epigenetic inhibitors to MVECs cultures, by methylation-specific PCR, and by sequence analysis of DNA methylation pattern of the BMPRII promotor region. SSc-MVECs were more sensitive to apoptotic signals than were normal-MVECs. A significant decrease in BMPRII expression levels in SSc-MVECs was noted, whereas no significant differences in the expression levels of BMPRIA and BMPRIB were observed. Similar reduction in expression levels was noted in SSc skin biopsies. The expression level of BMPRII in SSc-MVECs was normalized by the addition of 2-deoxy-5-azacytidine and trichostatin A to cell cultures. Extensive CpG sites methylation in the BMPRII promoter region was noted in SSc-MVECs with no detectable site methylation in control-MVECs. SSc-MVECs are more sensitive to apoptotic triggers than are control-MVECs. The enhanced apoptosis may be related to epigenetic repression of BMPRII expression as apoptosis of control-MVECs can be augmented by knocking down BMPRII expression. The role of BMPRII underexpression in the pathogenesis of SSc vasculopathy is suggested and should be investigated further.
Collapse
Affiliation(s)
- Yongqing Wang
- Division of Rheumatology and Immunology, University of Toledo, Toledo, OH, USA
| | | |
Collapse
|
53
|
Datta Mitra A, Raychaudhuri SP, Abria CJ, Mitra A, Wright R, Ray R, Kundu-Raychaudhuri S. 1α,25-Dihydroxyvitamin-D3-3-bromoacetate regulates AKT/mTOR signaling cascades: a therapeutic agent for psoriasis. J Invest Dermatol 2013; 133:1556-64. [PMID: 23314787 DOI: 10.1038/jid.2013.3] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The efficacy of 1α,25-dihydroxyvitamin D3 (Vit-D) limits its topical use despite its profound effects on cellular differentiation, proliferation, and immunomodulation. Therefore, in search for a more effective analog of Vit-D, in this study we have evaluated the antiproliferative and proapoptotic effects of 1α,25-dihydroxyvitamin D3-3-bromoacetate (BE). Proliferation and apoptosis studies in normal human epidermal keratinocytes (NHEKs) were conducted by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), CFSE (carboxy fluorescein succinimidyl ester) dilution, and Annexin V assays. Western blot analysis and real-time PCR were performed to determine its effect on signal transduction. A reconstructed human epidermis (RHE) model was used to further validate the therapeutic role of BE in psoriasis. BE was significantly more potent than an equivalent concentration of Vit-D in inhibiting growth and survival of human keratinocytes. The antimitotic effect was found to be due to the inhibition of phosphorylation of serine/threonine protein kinase (AKT) and its downstream target, mammalian target of rapamycin (mTOR). In the RHE model, BE reversed IL-22-induced psoriasiform changes more effectively than Vit-D. Interestingly, BE inhibited the IL-22-induced gene expression of AKT1, MTOR, chemokines [IL-8 and RANTES (regulated upon activation, normal T-cell expressed and secreted)], and psoriasin (S100A7) more significantly than Vit-D. These results suggest the potential of BE as a prospective therapeutic agent for psoriasis.
Collapse
Affiliation(s)
- Ananya Datta Mitra
- IM/Rheumatology, Allergy and Clinical Immunology, University of California Davis School of Medicine, Sacramento, California, USA
| | | | | | | | | | | | | |
Collapse
|
54
|
Dagouassat M, Gagliolo JM, Chrusciel S, Bourin MC, Duprez C, Caramelle P, Boyer L, Hue S, Stern JB, Validire P, Longrois D, Norel X, Dubois-Randé JL, Le Gouvello S, Adnot S, Boczkowski J. The cyclooxygenase-2-prostaglandin E2 pathway maintains senescence of chronic obstructive pulmonary disease fibroblasts. Am J Respir Crit Care Med 2013; 187:703-14. [PMID: 23328527 DOI: 10.1164/rccm.201208-1361oc] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
RATIONALE Chronic obstructive pulmonary disease (COPD) is associated with lung fibroblast senescence, a process characterized by the irreversible loss of replicative capacity associated with the secretion of inflammatory mediators. However, the mechanisms of this phenomenon remain poorly defined. OBJECTIVES The aim of this study was to analyze the role of prostaglandin E2 (PGE2), a prostaglandin known to be increased in COPD lung fibroblasts, in inducing senescence and related inflammation in vitro in lung fibroblasts and in vivo in mice. METHODS Fibroblasts were isolated from patients with COPD and from smoker and nonsmoker control subjects. Senescence markers and inflammatory mediators were investigated in fibroblasts and in mice. MEASUREMENTS AND MAIN RESULTS Lung fibroblasts from patients with COPD exhibited higher expression of PGE2 receptors EP2 and EP4 as compared with nonsmoker and smoker control subjects. Compared with both nonsmoker and smoker control subjects, during long-term culture, COPD fibroblasts displayed increased senescent markers (increased senescence associated-β galactosidase activity, p16, and p53 expression and lower proliferative capacity), and an increased PGE2, IL-6, IL-8, growth-regulated oncogene (GRO), CX3CL1, and matrix metalloproteinase-2 protein and cyclooxygenase-2 and mPGES-1 mRNA expression. Using in vitro pharmacologic approaches and in vivo experiments in wild-type and p53(-/-) mice we demonstrated that PGE2 produced by senescent COPD fibroblasts is responsible for the increased senescence and related inflammation. PGE2 acts either in a paracrine or autocrine fashion by a pathway involving EP2 and EP4 prostaglandin receptors, cyclooxygenase-2-dependent reactive oxygen species production and signaling, and consecutive p53 activation. CONCLUSIONS PGE2 is a critical component of an amplifying and self-perpetuating circle inducing senescence and inflammation in COPD fibroblasts. Modulating the described PGE2 signaling pathway could provide a new basis to dampen senescence and senescence-associated inflammation in COPD.
Collapse
Affiliation(s)
- Maylis Dagouassat
- Faculté de Médecine, Université Paris-Est, UMR U955, Créteil, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Susienka MJ, Medici D. Vascular endothelium as a novel source of stem cells for bioengineering. BIOMATTER 2013; 3:24647. [PMID: 23603799 PMCID: PMC3749277 DOI: 10.4161/biom.24647] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endothelial plasticity, the ability of endothelial cells to alter their lineage commitment to generate other cell types, is involved in many developmental and pathological processes. It was recently shown that vascular endothelial cells are converted to a mesenchymal stem cell phenotype through a process known as endothelial-mesenchymal transition (EndMT). EndMT is characterized as a morphological and phenotypical transformation of endothelial cells that has been implicated in cardiac development, cancer, fibrosis and heterotopic ossification. Here we describe the molecular and cellular basis for EndMT-dependent generation of endothelial-derived stem cells and their potential for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Michael J Susienka
- Department of Orthopaedics; Warren Alpert Medical School of Brown University; Providence, RI USA; Division of Hematology/Oncology; Department of Medicine; Warren Alpert Medical School of Brown University; Providence, RI USA; Laboratory for Regenerative Medicine; Rhode Island Hospital; Providence, RI USA; Cardiovascular Research Center; Rhode Island Hospital; Providence, RI USA; Center for Biomedical Engineering; Brown University; Providence, RI USA
| | - Damian Medici
- Department of Orthopaedics; Warren Alpert Medical School of Brown University; Providence, RI USA; Division of Hematology/Oncology; Department of Medicine; Warren Alpert Medical School of Brown University; Providence, RI USA; Laboratory for Regenerative Medicine; Rhode Island Hospital; Providence, RI USA; Cardiovascular Research Center; Rhode Island Hospital; Providence, RI USA; Center for Biomedical Engineering; Brown University; Providence, RI USA
| |
Collapse
|
56
|
Sandu C, Dumas M, Malan A, Sambakhe D, Marteau C, Nizard C, Schnebert S, Perrier E, Challet E, Pévet P, Felder-Schmittbuhl MP. Human skin keratinocytes, melanocytes, and fibroblasts contain distinct circadian clock machineries. Cell Mol Life Sci 2012; 69:3329-39. [PMID: 22627494 PMCID: PMC11114759 DOI: 10.1007/s00018-012-1026-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 05/02/2012] [Accepted: 05/03/2012] [Indexed: 12/22/2022]
Abstract
Skin acts as a barrier between the environment and internal organs and performs functions that are critical for the preservation of body homeostasis. In mammals, a complex network of circadian clocks and oscillators adapts physiology and behavior to environmental changes by generating circadian rhythms. These rhythms are induced in the central pacemaker and peripheral tissues by similar transcriptional-translational feedback loops involving clock genes. In this work, we investigated the presence of functional oscillators in the human skin by studying kinetics of clock gene expression in epidermal and dermal cells originating from the same donor and compared their characteristics. Primary cultures of fibroblasts, keratinocytes, and melanocytes were established from an abdominal biopsy and expression of clock genes following dexamethasone synchronization was assessed by qPCR. An original mathematical method was developed to analyze simultaneously up to nine clock genes. By fitting the oscillations to a common period, the phase relationships of the genes could be determined accurately. We thereby show the presence of functional circadian machinery in each cell type. These clockworks display specific periods and phase relationships between clock genes, suggesting regulatory mechanisms that are particular to each cell type. Taken together, our data demonstrate that skin has a complex circadian organization. Oscillators are present not only in fibroblasts but also in epidermal keratinocytes and melanocytes and are likely to act in coordination to drive rhythmic functions within the skin.
Collapse
Affiliation(s)
- Cristina Sandu
- Department of Neurobiology of Rhythms, Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, 5 rue Blaise Pascal, 67084 Strasbourg, France
| | - Marc Dumas
- LVMH Recherche, 185 avenue de Verdun, 45804 Saint Jean de Braye Cedex, France
| | - André Malan
- Department of Neurobiology of Rhythms, Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, 5 rue Blaise Pascal, 67084 Strasbourg, France
| | - Diariétou Sambakhe
- Department of Neurobiology of Rhythms, Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, 5 rue Blaise Pascal, 67084 Strasbourg, France
- Unit of Mathematics and Computer Science, University of Strasbourg, 7 rue René Descartes, 67084 Strasbourg, France
| | - Clarisse Marteau
- LVMH Recherche, 185 avenue de Verdun, 45804 Saint Jean de Braye Cedex, France
| | - Carine Nizard
- LVMH Recherche, 185 avenue de Verdun, 45804 Saint Jean de Braye Cedex, France
| | - Sylvianne Schnebert
- LVMH Recherche, 185 avenue de Verdun, 45804 Saint Jean de Braye Cedex, France
| | - Eric Perrier
- LVMH Recherche, 185 avenue de Verdun, 45804 Saint Jean de Braye Cedex, France
| | - Etienne Challet
- Department of Neurobiology of Rhythms, Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, 5 rue Blaise Pascal, 67084 Strasbourg, France
| | - Paul Pévet
- Department of Neurobiology of Rhythms, Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, 5 rue Blaise Pascal, 67084 Strasbourg, France
| | - Marie-Paule Felder-Schmittbuhl
- Department of Neurobiology of Rhythms, Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, 5 rue Blaise Pascal, 67084 Strasbourg, France
| |
Collapse
|
57
|
Mitra A, Raychaudhuri SK, Raychaudhuri SP. IL-22 induced cell proliferation is regulated by PI3K/Akt/mTOR signaling cascade. Cytokine 2012; 60:38-42. [PMID: 22840496 DOI: 10.1016/j.cyto.2012.06.316] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/27/2012] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Interleukin 22 (IL-22), a relatively new cytokine has been found to induce significant proliferation of human keratinocytes and fibroblast like synoviocytes (FLS) and thus plays an important role in the pathogenesis of autoimmune diseases like psoriasis and rheumatoid arthritis (RA) which are characterized by hyperproliferation of keratinocytes and FLS respectively. PI3K/Akt/mTOR signaling cascade plays crucial role in cell growth and survival. Therefore our objective was to see the regulatory role of PI3K/Akt/mTOR signaling cascade in IL-22 induced proliferation of keratinocytes and FLS. METHODS Normal human epidermal keratinocytes (NHEK) and FLS were isolated from skin of healthy volunteer's undergone plastic surgery and synovial tissue of psoriatic arthritis (PsA) and RA patients respectively. IL-22 induced proliferation of NHEK and FLS was measured by MTT assay. Phosphorylation of Akt/mTOR was determined by western blot assay and further confirmed by real time polymerase chain reaction (RT-PCR). RESULTS We observed that IL-22 induced significant proliferation of NHEK and FLS which was effectively inhibited by dual kinase (PI3K/mTOR) inhibitor, NVP-BEZ235 and specific mTOR inhibitor, Rapamycin. In NHEK and FLS, IL-22 significantly induced phosphorylation of Akt and mTOR which was effectively blocked by Rapamycin and NVP-BEZ235. Further we did RT-PCR in NHEK and found that IL-22 significantly upregulated AKT1 and MTOR gene. CONCLUSION These results show that IL-22 induced proliferation of NHEK and FLS is dependent on PI3K/Akt/mTOR signaling pathway. This novel observation provides the scope to develop new therapeutics targeting PI3K/Akt/mTOR signaling pathway in autoimmune diseases like psoriasis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Anupam Mitra
- Dermatology, University of California School of Medicine, Davis, CA, USA.
| | | | | |
Collapse
|
58
|
Skin explant cultures as a source of keratinocytes for cultivation. Cell Tissue Bank 2012; 14:317-24. [PMID: 22850975 DOI: 10.1007/s10561-012-9330-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/13/2012] [Indexed: 10/28/2022]
Abstract
Cultivated human keratinocytes can be used successfully in the treatment of burn patients, but efforts to heal burns and other wounds can be hampered by the very small skin biopsies available for cultivation of transplantable keratinocyte sheets. A small biopsy (and correspondingly small number of enzymatically isolated keratinocytes for use in classical cultivation techniques) can lead to a low yield of multilayer sheets for clinical application or unacceptably long cultivation times. One way of addressing this is to make use of skin remnants remaining after enzymatic digestion and culture cells migrating out of these skin explants. Sufficient numbers of explant-derived keratinocytes can be obtained to facilitate additional routine cultivation of these cells. Biopsy remnants can be used to initiate explant cultures repeatedly (we were able to re-use pieces of skin 10 times and still obtain useful numbers of keratinocytes) and this "passaging" yields substantially more cells for classical cultivation than would be available from conventional methodology alone, and in a comparable timeframe. Another advantage of this method is that it does not require additional biopsies to be procured from already-compromised patients and overcomes problems associated with contamination of skin samples with resistant hospital-acquired bacterial infections common during prolonged hospitalization.
Collapse
|
59
|
Short exposure to collagenase and coculture with mouse embryonic pancreas improve human dermal fibroblast culture. Biotechnol Appl Biochem 2012; 59:254-61. [DOI: 10.1002/bab.1020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 04/02/2012] [Indexed: 12/21/2022]
|
60
|
Geetha N, Mihaly J, Stockenhuber A, Blasi F, Uhrin P, Binder BR, Freissmuth M, Breuss JM. Signal integration and coincidence detection in the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) cascade: concomitant activation of receptor tyrosine kinases and of LRP-1 leads to sustained ERK phosphorylation via down-regulation of dual specificity phosphatases (DUSP1 and -6). J Biol Chem 2011; 286:25663-74. [PMID: 21610072 PMCID: PMC3138245 DOI: 10.1074/jbc.m111.221903] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 05/23/2011] [Indexed: 01/02/2023] Open
Abstract
Diverse stimuli can feed into the MAPK/ERK cascade; this includes receptor tyrosine kinases, G protein-coupled receptors, integrins, and scavenger receptors (LDL receptor-related protein (LRP)). Here, we investigated the consequence of concomitant occupancy of the receptor tyrosine kinases (by EGF, basic FGF, VEGF, etc.) and of LRP family members (by LDL or lactoferrin). The simultaneous stimulation of a receptor tyrosine kinase by its cognate ligand and of LRP-1 (by lactoferrin or LDL) resulted in sustained activation of ERK, which was redirected to the cytoplasm. Accordingly, elevated levels of active cytosolic ERK were translated into accelerated adhesion to vitronectin. The sustained ERK response was seen in several cell types, but it was absent in cells deficient in LRP-1 (but not in cells lacking the LDL receptor). This response was also contingent on the presence of urokinase (uPA) and its receptor (uPAR), because it was absent in uPA(-/-) and uPAR(-/-) fibroblasts. Combined stimulation of the EGF receptor and of LRP-1 delayed nuclear accumulation of phosphorylated ERK. This shift in favor of cytosolic accumulation of phospho-ERK was accounted for by enhanced proteasomal degradation of dual specificity phosphatases DUSP1 and DUSP6, which precluded dephosphorylation of cytosolic ERK. These observations demonstrate that the ERK cascade can act as a coincidence detector to decode the simultaneous engagement of a receptor tyrosine kinase and of LRP-1 and as a signal integrator that encodes this information in a spatially and temporally distinct biological signal. In addition, the findings provide an explanation of why chronic elevation of LRP-1 ligands (e.g. PAI-1) can predispose to cancer.
Collapse
Affiliation(s)
- Nishamol Geetha
- From the Department of Vascular Biology and Thrombosis Research and
| | - Judit Mihaly
- From the Department of Vascular Biology and Thrombosis Research and
| | | | - Francesco Blasi
- the Department of Molecular Biology and functional Genomics, Dipartimento di Biotechnolgia (DiBiT), San Raffale Scientific Research Institute, 20132 Milan, Italy
| | - Pavel Uhrin
- From the Department of Vascular Biology and Thrombosis Research and
| | - Bernd R. Binder
- From the Department of Vascular Biology and Thrombosis Research and
| | - Michael Freissmuth
- Insitute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria and
| | | |
Collapse
|
61
|
Markello TC, Pak LK, St Hilaire C, Dorward H, Ziegler SG, Chen MY, Chaganti K, Nussbaum RL, Boehm M, Gahl WA. Vascular pathology of medial arterial calcifications in NT5E deficiency: implications for the role of adenosine in pseudoxanthoma elasticum. Mol Genet Metab 2011; 103:44-50. [PMID: 21371928 PMCID: PMC3081917 DOI: 10.1016/j.ymgme.2011.01.018] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 01/28/2011] [Accepted: 01/28/2011] [Indexed: 01/31/2023]
Abstract
Arterial Calcification due to Deficiency of CD73 (ACDC) results from mutations in the NT5E gene encoding the 5' exonucleotidase, CD73. We now describe the third familial case of ACDC, including radiological and histopathological details of the arterial calcifications. The medial lesions involve the entire circumference of the elastic lamina, in contrast to the intimal plaque-like disease of atherosclerosis. The demonstration of broken and fragmented elastic fibers leading to generalized vascular calcification suggests an analogy to pseudoxanthoma elasticum (PXE), which exhibits similar histopathology. Classical PXE is caused by deficiency of ABCC6, a C type ABC transporter whose ligand is unknown. Other C type ABC proteins transport nucleotides, so the newly described role of adenosine in inhibiting vascular calcification, along with the similarity of ACDC and PXE with respect to vascular pathology, suggests that adenosine may be the ligand for ABCC6.
Collapse
Affiliation(s)
- Thomas C Markello
- NIH Undiagnosed Diseases Program, Office of Rare Disease Research and National Human Genome Research Institute and NIH Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
St Hilaire C, Ziegler SG, Markello TC, Brusco A, Groden C, Gill F, Carlson-Donohoe H, Lederman RJ, Chen MY, Yang D, Siegenthaler MP, Arduino C, Mancini C, Freudenthal B, Stanescu HC, Zdebik AA, Chaganti RK, Nussbaum RL, Kleta R, Gahl WA, Boehm M. NT5E mutations and arterial calcifications. N Engl J Med 2011; 364:432-42. [PMID: 21288095 PMCID: PMC3049958 DOI: 10.1056/nejmoa0912923] [Citation(s) in RCA: 356] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Arterial calcifications are associated with increased cardiovascular risk, but the genetic basis of this association is unclear. METHODS We performed clinical, radiographic, and genetic studies in three families with symptomatic arterial calcifications. Single-nucleotide-polymorphism analysis, targeted gene sequencing, quantitative polymerase-chain-reaction assays, Western blotting, enzyme measurements, transduction rescue experiments, and in vitro calcification assays were performed. RESULTS We identified nine persons with calcifications of the lower-extremity arteries and hand and foot joint capsules: all five siblings in one family, three siblings in another, and one patient in a third family. Serum calcium, phosphate, and vitamin D levels were normal. Affected members of Family 1 shared a single 22.4-Mb region of homozygosity on chromosome 6 and had a homozygous nonsense mutation (c.662C→A, p.S221X) in NT5E, encoding CD73, which converts AMP to adenosine. Affected members of Family 2 had a homozygous missense mutation (c.1073G→A, p.C358Y) in NT5E. The proband of Family 3 was a compound heterozygote for c.662C→A and c.1609dupA (p.V537fsX7). All mutations found in the three families result in nonfunctional CD73. Cultured fibroblasts from affected members of Family 1 showed markedly reduced expression of NT5E messenger RNA, CD73 protein, and enzyme activity, as well as increased alkaline phosphatase levels and accumulated calcium phosphate crystals. Genetic rescue experiments normalized the CD73 and alkaline phosphatase activity in patients' cells, and adenosine treatment reduced the levels of alkaline phosphatase and calcification. CONCLUSIONS We identified mutations in NT5E in members of three families with symptomatic arterial and joint calcifications. This gene encodes CD73, which converts AMP to adenosine, supporting a role for this metabolic pathway in inhibiting ectopic tissue calcification. (Funded by the National Human Genome Research Institute and the National Heart, Lung, and Blood Institute of the National Institutes of Health.).
Collapse
|
63
|
Rubins KH, Hensley LE, Relman DA, Brown PO. Stunned silence: gene expression programs in human cells infected with monkeypox or vaccinia virus. PLoS One 2011; 6:e15615. [PMID: 21267444 PMCID: PMC3022624 DOI: 10.1371/journal.pone.0015615] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/12/2010] [Indexed: 12/20/2022] Open
Abstract
Poxviruses use an arsenal of molecular weapons to evade detection and disarm host immune responses. We used DNA microarrays to investigate the gene expression responses to infection by monkeypox virus (MPV), an emerging human pathogen, and Vaccinia virus (VAC), a widely used model and vaccine organism, in primary human macrophages, primary human fibroblasts and HeLa cells. Even as the overwhelmingly infected cells approached their demise, with extensive cytopathic changes, their gene expression programs appeared almost oblivious to poxvirus infection. Although killed (gamma-irradiated) MPV potently induced a transcriptional program characteristic of the interferon response, no such response was observed during infection with either live MPV or VAC. Moreover, while the gene expression response of infected cells to stimulation with ionomycin plus phorbol 12-myristate 13-acetate (PMA), or poly (I-C) was largely unimpaired by infection with MPV, a cluster of pro-inflammatory genes were a notable exception. Poly(I-C) induction of genes involved in alerting the innate immune system to the infectious threat, including TNF-alpha, IL-1 alpha and beta, CCL5 and IL-6, were suppressed by infection with live MPV. Thus, MPV selectively inhibits expression of genes with critical roles in cell-signaling pathways that activate innate immune responses, as part of its strategy for stealthy infection.
Collapse
Affiliation(s)
- Kathleen H. Rubins
- Departments of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
| | - Lisa E. Hensley
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - David A. Relman
- Departments of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Patrick O. Brown
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
64
|
Outgrowth of fibroblast cells from goat skin explants in three different culture media and the establishment of cell lines. In Vitro Cell Dev Biol Anim 2010; 47:83-8. [PMID: 21108049 DOI: 10.1007/s11626-010-9373-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 11/08/2010] [Indexed: 01/12/2023]
Abstract
Three different commercially available media, known to support human and porcine-specific fibroblast cultures, were tested for their growth potential on goat skin explants. Although outgrowth of fibroblasts was observed in all media tested, irrespective of breed, porcine-specific media exhibited higher rate of growth. Using this media, three fibroblast cell lines (GSF289, GSF737, and GSF2010) from ear skin explants of normal healthy dairy goats of Kiko and Saanen breed were successfully established in culture. Liquid nitrogen stocks of these frozen cells had a viability rate of 96.2% in in vitro cultures. These cells were morphologically indistinguishable from the cell stocks prior to freezing. Analysis of the growth of a fifth passage culture revealed an 'S' shaped growth curve with a population doubling time of 25 h. The cell lines were found negative for microbial, fungal, and mycoplasma contaminations. These goat skin fibroblast lines and the simple method of their isolation and freezing with high rate of viability will provide additional tools to study molecular mechanisms that regulate fibroblast function and for genetic manipulation of small ruminants.
Collapse
|
65
|
Kamata M, Liu S, Liang M, Nagaoka Y, Chen ISY. Generation of human induced pluripotent stem cells bearing an anti-HIV transgene by a lentiviral vector carrying an internal murine leukemia virus promoter. Hum Gene Ther 2010; 21:1555-67. [PMID: 20524893 DOI: 10.1089/hum.2010.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The recent development of induced pluripotent stem cells (iPSCs) by ectopic expression of defined reprogramming factors offers enormous therapeutic opportunity. To deliver these factors, murine leukemia virus (MLV)-based vectors have been broadly used in the setting of hematopoietic stem cell transplantation. However, MLV vectors have been implicated in malignancy induced by insertional mutagenesis, whereas lentiviral vectors have not. Furthermore, the infectivity of MLV vectors is limited to dividing cells, whereas lentiviral vectors can also transduce nondividing cells. One important characteristic of MLV vectors is a self-silencing property of the promoter element in pluripotent stem cells, allowing temporal transgene expression in a nonpluripotent state before iPSC derivation. Here we test iPSC generation using a novel chimeric vector carrying a mutant MLV promoter internal to a lentiviral vector backbone, thereby containing the useful properties of both types of vectors. Transgene expression of this chimeric vector was highly efficient compared with that of MLV vectors and was silenced specifically in human embryonic stem cells. Human fetal fibroblasts transduced with the vector encoding each factor were efficiently reprogrammed into a pluripotent state, and these iPSCs had potential to differentiate into a variety of cell types. To explore the possibility of iPSCs for gene therapy, we established iPSC clones expressing a short hairpin RNA (shRNA) targeting chemokine receptor 5 (CCR5), the main coreceptor for HIV-1. Using a reporter construct for CCR5 expression, we confirmed that CCR5 shRNA was expressed and specifically knocked down the reporter expression in iPSCs. These data indicate that our chimeric lentiviral vector is a valuable tool for generation of iPSCs and the combination with vectors encoding transgenes allows for rapid establishment of desired genetically engineered iPSC lines.
Collapse
Affiliation(s)
- Masakazu Kamata
- Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
66
|
Kamata M, Liang M, Liu S, Nagaoka Y, Chen ISY. Live cell monitoring of hiPSC generation and differentiation using differential expression of endogenous microRNAs. PLoS One 2010; 5:e11834. [PMID: 20676373 PMCID: PMC2911382 DOI: 10.1371/journal.pone.0011834] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 06/29/2010] [Indexed: 12/24/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) provide new possibilities for regenerative therapies. In order for this potential to be achieved, it is critical to efficiently monitor the differentiation of these hiPSCs into specific lineages. Here, we describe a lentiviral reporter vector sensitive to specific microRNAs (miRNA) to show that a single vector bearing multiple miRNA target sequences conjugated to different reporters can be used to monitor hiPSC formation and subsequent differentiation from human fetal fibroblasts (HFFs). The reporter vector encodes EGFP conjugated to the targets of human embryonic stem cell (hESC) specific miRNAs (miR-302a and miR-302d) and mCherry conjugated to the targets of differentiated cells specific miRNAs (miR-142-3p, miR-155, and miR-223). The vector was used to track reprogramming of HFF to iPSC. HFFs co-transduced with this reporter vector and vectors encoding 4 reprogramming factors (OCT4, SOX2, KLF4 and cMYC) were mostly positive for EGFP (67%) at an early stage of hiPSC formation. EGFP expression gradually disappeared and mCherry expression increased indicating less miRNAs specific to differentiated cells and expression of miRNAs specific to hESCs. Upon differentiation of the hiPSC into embryoid bodies, a large fraction of these hiPSCs regained EGFP expression and some of those cells became single positive for EGFP. Further differentiation into neural lineages showed distinct structures demarcated by either EGFP or mCherry expression. These findings demonstrate that a miRNA dependent reporter vector can be a useful tool to monitor living cells during reprogramming of hiPSC and subsequent differentiation to lineage specific cells.
Collapse
Affiliation(s)
- Masakazu Kamata
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Min Liang
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Shirley Liu
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Yoshiko Nagaoka
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Irvin S. Y. Chen
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
67
|
Jacobsen F, Mertens-Rill J, Beller J, Hirsch T, Daigeler A, Langer S, Lehnhardt M, Steinau HU, Steinstraesser L. Nucleofection: a new method for cutaneous gene transfer? J Biomed Biotechnol 2010; 2006:26060. [PMID: 17489014 PMCID: PMC1698260 DOI: 10.1155/jbb/2006/26060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background. Transfection efficacy after nonviral gene transfer in primary epithelial cells is limited. The aim of this study was to compare transfection efficacy of the recently available method of nucleofection with the established transfection reagent FuGENE6. Methods. Primary human keratinocytes (HKC), primary human fibroblasts (HFB), and a human keratinocyte cell line (HaCaT) were transfected with reporter gene construct by FuGENE6 or Amaxa Nucleofector device. At corresponding time points, β-galactosidase expression, cell proliferation (MTT-Test), transduction efficiency (X-gal staining), cell morphology, and cytotoxicity (CASY) were determined.
Results. Transgene expression after nucleofection was significantly higher in HKC and HFB and detected earlier (3 h vs. 24 h) than in FuGENE6. After lipofection 80%–90% of the cells remained proliferative without any influence on cell morphology. In contrast, nucleofection led to a decrease in keratinocyte cell size, with only 20%–42% proliferative cells.
Conclusion. Related to the method-dependent increase of cytotoxicity, transgene expression after nucleofection was earlier and higher than after lipofection.
Collapse
Affiliation(s)
- Frank Jacobsen
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Buerkle-de-la Camp Platz 1, Bochum 44789, Germany
| | - Janine Mertens-Rill
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Buerkle-de-la Camp Platz 1, Bochum 44789, Germany
| | - Juergen Beller
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Buerkle-de-la Camp Platz 1, Bochum 44789, Germany
| | - Tobias Hirsch
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Buerkle-de-la Camp Platz 1, Bochum 44789, Germany
| | - Adrien Daigeler
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Buerkle-de-la Camp Platz 1, Bochum 44789, Germany
| | - Stefan Langer
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Buerkle-de-la Camp Platz 1, Bochum 44789, Germany
| | - Marcus Lehnhardt
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Buerkle-de-la Camp Platz 1, Bochum 44789, Germany
| | - Hans-Ulrich Steinau
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Buerkle-de-la Camp Platz 1, Bochum 44789, Germany
| | - Lars Steinstraesser
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Buerkle-de-la Camp Platz 1, Bochum 44789, Germany
- *Lars Steinstraesser:
| |
Collapse
|
68
|
Kaneski CR, Schiffmann R, Brady RO, Murray GJ. Use of lissamine rhodamine ceramide trihexoside as a functional assay for alpha-galactosidase A in intact cells. J Lipid Res 2010; 51:2808-17. [PMID: 20526001 DOI: 10.1194/jlr.d007294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fabry disease is an X-linked disorder caused by mutations in the GLA gene encoding for alpha-galactosidase A (AGA, EC 3.2.1.22). Measurement of AGA enzyme activity using cell homogenates can easily identify men with Fabry disease, but in women, the degree of X-inactivation in the tested tissue may produce activities in homogenates that are indistinguishable from normal. Monti et al. developed a series of lissamine rhodamine-labeled glycosphingolipid substrates that can be used to measure clearance of these lipids in intact cells (1). We report here that one of these substrates, lissamine rhodamine ceramide trihexoside (LR-CTH), can be used as a probe for functional activity of AGA in intact fibroblasts, endothelial cells, and T-lymphocytes from patients with Fabry disease. By utilizing standard detection techniques, such as microscopic imaging, fluorescence microplate spectrophotometry, and flow cytometry, cells with impaired AGA activity can easily be distinguished from wild-type (WT) cells, and these two cell types can be isolated into separate populations using fluorescence-activated cell sorting (FACS). The assay we report here can be adapted to evaluate new therapies by high-throughput screening, can aid in the study of AGA activity in living cells, and can assist in the diagnosis of women with the Fabry trait.
Collapse
Affiliation(s)
- Christine R Kaneski
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
69
|
Tang L, Cui T, Wu JJ, Liu-Mares W, Huang N, Li J. A rice-derived recombinant human lactoferrin stimulates fibroblast proliferation, migration, and sustains cell survival. Wound Repair Regen 2010; 18:123-31. [DOI: 10.1111/j.1524-475x.2009.00563.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
70
|
Heffernan TP, Kawasumi M, Blasina A, Anderes K, Conney AH, Nghiem P. ATR-Chk1 pathway inhibition promotes apoptosis after UV treatment in primary human keratinocytes: potential basis for the UV protective effects of caffeine. J Invest Dermatol 2009; 129:1805-15. [PMID: 19242509 PMCID: PMC2829385 DOI: 10.1038/jid.2008.435] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
New approaches to prevent and reverse UV damage are needed to combat rising sunlight-induced skin cancer rates. Mouse studies have shown that oral or topical caffeine promotes elimination of UV-damaged keratinocytes through apoptosis and markedly inhibits subsequent skin cancer development. This potentially important therapeutic effect has not been studied in human skin cells. Here, we use primary human keratinocytes to examine which of several caffeine effects mediates this process. In these cells, caffeine more than doubled apoptosis after 75 mJ cm(-2) of ultraviolet light B (UVB). Selectively targeting two of caffeine's known effects did not alter UVB-induced apoptosis: inhibition of ataxia-telangiectasia mutated and augmentation of cyclic AMP levels. In contrast, siRNA against ataxia-telangiectasia and Rad3-related (ATR) doubled apoptosis after UV through a p53-independent mechanism. Caffeine did not further augment apoptosis after UVB in cells in which ATR had been specifically depleted, suggesting that a key target of caffeine in this effect is ATR. Inhibition of a central ATR target, checkpoint kinase 1 (Chk1), through siRNA or a new and highly specific inhibitor (PF610666) also augmented UVB-induced apoptosis. These data suggest that a relevant target of caffeine is the ATR-Chk1 pathway and that inhibiting ATR or Chk1 might have promise in preventing or reversing UV damage.
Collapse
Affiliation(s)
- Timothy P. Heffernan
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129
| | - Masaoki Kawasumi
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129
| | - Alessandra Blasina
- Pfizer La Jolla Global Research and Development, San Diego, California 92121
| | - Kenna Anderes
- Pfizer La Jolla Global Research and Development, San Diego, California 92121
| | - Allan H. Conney
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854
| | - Paul Nghiem
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| |
Collapse
|
71
|
Xie T, Nguyen T, Hupe M, Wei ML. Multidrug resistance decreases with mutations of melanosomal regulatory genes. Cancer Res 2009; 69:992-9. [PMID: 19155314 DOI: 10.1158/0008-5472.can-08-0506] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Whereas resistance to chemotherapy has long impeded effective treatment of metastatic melanoma, the mechanistic basis of this resistance remains unknown. One possible mechanism of drug resistance is alteration of intracellular drug distribution either by drug efflux or sequestration into intracellular organelles. Melanomas, as well as primary melanocytes from which they arise, have intracellular organelles, called melanosomes, wherein the synthesis and storage of the pigment melanin takes place. In this study, comparisons of congenic cells with and without functional molecules regulating melanosome formation show that sensitivity to the chemotherapeutic agent cis-diaminedichloroplatinum II (cis-platin) significantly increases with the mutation of genes regulating melanosome formation, concomitant disruption of melanosome morphology, and loss of mature melanosomes. Absence of the melanosomal structural protein gp100/Pmel17 causes increased cis-platin sensitivity. Independent mutations in three separate genes that regulate melanosome biogenesis (Dtnbp1, Pldn, Vps33a) also result in increased cis-platin sensitivity. In addition, a mutation of the gene encoding the integral melanosomal protein tyrosinase, resulting in aberrant melanosome formation, also causes increased cis-platin sensitivity. Furthermore, sensitivity to agents in other chemotherapeutic classes (e.g., vinblastine and etoposide) also increased with the mutation of Pldn. In contrast, a mutation in another melanosomal regulatory gene, Hps1, minimally affects melanosome biogenesis, preserves the formation of mature melanosomes, and has no effect on cis-platin or vinblastine response. Together, these data provide the first direct evidence that melanosomal regulatory genes influence drug sensitivity and that the presence of mature melanosomes likely contributes to melanoma resistance to therapy.
Collapse
Affiliation(s)
- Tong Xie
- Department of Dermatology, University of California-San Francisco, San Francisco, California, USA
| | | | | | | |
Collapse
|
72
|
Rubins KH, Hensley LE, Bell GW, Wang C, Lefkowitz EJ, Brown PO, Relman DA. Comparative analysis of viral gene expression programs during poxvirus infection: a transcriptional map of the vaccinia and monkeypox genomes. PLoS One 2008; 3:e2628. [PMID: 18612436 PMCID: PMC2440811 DOI: 10.1371/journal.pone.0002628] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 05/02/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Poxviruses engage in a complex and intricate dialogue with host cells as part of their strategy for replication. However, relatively little molecular detail is available with which to understand the mechanisms behind this dialogue. METHODOLOGY/PRINCIPAL FINDINGS We designed a specialized microarray that contains probes specific to all predicted ORFs in the Monkeypox Zaire (MPXV) and Vaccinia Western Reserve (VACV) genomes, as well as >18,000 human genes, and used this tool to characterize MPXV and VACV gene expression responses in vitro during the course of primary infection of human monocytes, primary human fibroblasts and HeLa cells. The two viral transcriptomes show distinct features of temporal regulation and species-specific gene expression, and provide an early foundation for understanding global gene expression responses during poxvirus infection. CONCLUSIONS/SIGNIFICANCE The results provide a temporal map of the transcriptome of each virus during infection, enabling us to compare viral gene expression across species, and classify expression patterns of previously uncharacterized ORFs.
Collapse
Affiliation(s)
- Kathleen H Rubins
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America.
| | | | | | | | | | | | | |
Collapse
|
73
|
Rinn JL, Wang JK, Liu H, Montgomery K, van de Rijn M, Chang HY. A systems biology approach to anatomic diversity of skin. J Invest Dermatol 2008; 128:776-82. [PMID: 18337710 DOI: 10.1038/sj.jid.5700986] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human skin exhibits exquisite site-specific morphologies and functions. How are these site-specific differences specified during development, maintained in adult homeostasis, and potentially perturbed by disease processes? Here, we review progress in understanding the anatomic patterning of fibroblasts, a major constituent cell type of the dermis and key participant in epithelial-mesenchymal interactions. The gene expression programs of human fibroblasts largely reflect the superimposition of three gene expression profiles that demarcate the fibroblast's position relative to three developmental axes. The HOX family of homeodomain transcription factors is implicated in specifying site-specific transcriptional programs. The use of gene, tiling, and tissue microarrays together gives a comprehensive view of the gene regulation involved in patterning the skin.
Collapse
Affiliation(s)
- John L Rinn
- Department of Dermatology, Stanford University, Stanford, California, USA
| | | | | | | | | | | |
Collapse
|
74
|
Raychaudhuri SP, Jiang WY, Raychaudhuri SK. Revisiting the Koebner phenomenon: role of NGF and its receptor system in the pathogenesis of psoriasis. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:961-71. [PMID: 18349121 PMCID: PMC2276420 DOI: 10.2353/ajpath.2008.070710] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/11/2008] [Indexed: 12/12/2022]
Abstract
Nerve growth factor (NGF) influences the key pathological events of psoriasis: keratinocyte proliferation, angiogenesis, and T-cell activation. We have systematically examined the kinetics of NGF expression, keratinocyte proliferation, and migration of T lymphocytes in the epidermis in Koebner-induced developing psoriatic plaques. In skin traumatized by the tape-stripping method (n = 12), a marked up-regulation of NGF in Koebner-positive lesions (n = 7) was observed 24 hours after trauma. Synthesis of NGF reached its maximum level in the 2nd week. Furthermore, cultured keratinocytes from nonlesional skin of psoriasis patients produced 10 times higher levels of NGF compared with keratinocytes from healthy individuals. To substantiate the in vivo effect of NGF secreted by keratinocytes in psoriatic plaques, we studied psoriatic plaques and normal human skin in a SCID-human skin xenograft model. The transplanted psoriatic plaques demonstrated marked proliferation of NGF-R (p75)-positive nerve fibers compared with only a few nerves in the transplanted normal human skin. Our results demonstrate that 1) in a developing psoriatic lesion, up-regulation of NGF together with keratinocyte proliferation are early events and precede epidermotropism of T lymphocytes; 2) keratinocytes in patients with psoriasis are primed to produce elevated levels of NGF; and 3) NGF synthesized by these keratinocytes is functionally active.
Collapse
Affiliation(s)
- Siba P Raychaudhuri
- Veterans Administration Medical Center and Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California-Davis, Sacramento, CA, USA.
| | | | | |
Collapse
|
75
|
Shen JS, Meng XL, Schiffmann R, Brady RO, Kaneski CR. Establishment and characterization of Fabry disease endothelial cells with an extended lifespan. Mol Genet Metab 2007; 92:137-44. [PMID: 17644384 PMCID: PMC2063578 DOI: 10.1016/j.ymgme.2007.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 06/05/2007] [Accepted: 06/05/2007] [Indexed: 11/20/2022]
Abstract
Fabry disease is an inborn error of glycosphingolipid catabolism resulting from a deficiency of lysosomal enzyme alpha-galactosidase A. The major clinical manifestations of the disease, such as stroke, cardiac dysfunction, and renal impairment, are thought to be caused by vasculopathy due to progressive accumulation of globotriaosylceramide in vascular endothelial cells. The pathogenesis of the vasculopathy has not been elucidated. Since in vitro studies using primary endothelial cells are hampered by the limited lifespan of these cells, the availability of cultured endothelial cells with an extended lifespan is critical for the study of the vasculopathy of Fabry disease. We therefore generated an endothelial cell line from a Fabry hemizygote by introduction of human telomerase reverse transcriptase gene. The cell line has markedly extended lifespan compared to parental primary cells. The cells stably express many key markers of endothelial cells such as von Willebrand factor, CD31, CD34, and endothelial nitric oxide synthase (eNOS) and retain functional characteristics such as uptake of acetylated low-density lipoprotein, responsiveness to angiogenic growth factors, up-regulation of eNOS production upon extracellular stimuli, and formation of tube-like structures on Matrigel basement membrane matrix. The cells show significantly reduced activity of alpha-galactosidase A compared with primary endothelial cells from normal individuals and accumulate globotriaosylceramide in lysosomes. This cell line will provide a useful in vitro model of Fabry disease and will facilitate systematic studies to investigate pathogenic mechanisms and explore new therapeutic approaches for Fabry disease.
Collapse
Affiliation(s)
- Jin-Song Shen
- Developmental and Metabolic Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health
| | - Xing-Li Meng
- Laboratory of Clinical Genomics, National Institute of Child Health and Human Development, National Institutes of Health
| | - Raphael Schiffmann
- Developmental and Metabolic Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health
| | - Roscoe O. Brady
- Developmental and Metabolic Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health
| | - Christine R. Kaneski
- Developmental and Metabolic Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health
| |
Collapse
|
76
|
Aberg KM, Racz E, Behne MJ, Mauro TM. Involucrin Expression Is Decreased in Hailey–Hailey Keratinocytes Owing to Increased Involucrin mRNA Degradation. J Invest Dermatol 2007; 127:1973-9. [PMID: 17392835 DOI: 10.1038/sj.jid.5700785] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hailey-Hailey disease (HHD) (MIM 16960) is an autosomal-dominant blistering skin disease caused by a mutation in the Ca2+-ATPase ATP2C1 (protein SPCA1), responsible for controlling Ca2+ concentrations in the cytoplasm and Golgi in human keratinocytes. Cytosolic Ca2+ concentrations, in turn, play a major role in the regulation of keratinocyte differentiation. To study how ATP2C1 function impacts keratinocyte differentiation, we assessed involucrin expression in HHD keratinocytes. Involucrin is a protein that makes up the cornified envelope of keratinocytes and is expressed in response to increased intracellular Ca2+ concentrations. Even though HHD keratinocytes suffer from abnormally high cytosolic Ca2+, we found that these cells expressed lower involucrin protein levels at both low and high extracellular Ca2+ concentrations when compared with normal control keratinocytes. Decreased involucrin protein levels were caused by lower involucrin mRNA levels in HHD keratinocytes. Decreased involucrin mRNA, in turn, was caused by increased rates of involucrin mRNA degradation. Ca2+-sensitive involucrin AP-1 promotor activity was increased, both in HHD keratinocytes and in an small interfering RNA (siRNA) experimental model, suggesting compensatory promoter upregulation in the face of increased mRNA degradation. This report provides new insights into differentiation defects in HHD and its relationship to Ca2+ signaling.
Collapse
Affiliation(s)
- Karin M Aberg
- Department of Dermatology, University of California, San Francisco, California, USA
| | | | | | | |
Collapse
|
77
|
Chaudhuri V, Karasek MA. Mechanisms of microvascular wound repair II. Injury induces transformation of endothelial cells into myofibroblasts and the synthesis of matrix proteins. In Vitro Cell Dev Biol Anim 2007; 42:314-9. [PMID: 17316065 DOI: 10.1290/0607044.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 09/06/2006] [Indexed: 01/14/2023]
Abstract
Under normal growth conditions, in vitro dermal microvascular endothelial cells (HDMEC) retain an epithelioid morphology and do not synthesize matrix proteins found increased in scar tissue. When injured by a standard scratch, cells at the wound edge and within the culture transform into spindle-shaped, myofibroblast-like cells. To determine if the transformed cells synthesize matrix proteins, expression of type I collagen and alpha smooth muscle actin (alpha-SMA) was investigated by immunohistochemistry and quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). Twelve hours following injury, a major upregulation in expression of alpha-SMA and type I collagen was observed both in cells proximal and distal to the wound edge. Cells with the typical morphology of myofibroblasts and displaying intracellular alpha-SMA positive fibrils were observed in HDMEC throughout the culture. In contrast, type IV collagen, a basement membrane protein, was not detected in migrating cells. Following completion of wound repair (24-36 h), type I collagen was no longer expressed and type IV collagen synthesis increased to prewound levels. Quantitative RT-PCR confirmed the changes in gene expression for both type I collagen and alpha-SMA at each time point during repair. These results demonstrate that normal skin microvascular endothelial cells retain an ability to transform into myofibroblast-like cells when injured and to synthesize matrix proteins not expressed in noninjured cells. The synthesis of matrix proteins by injured endothelial cells suggests a direct role for the endothelium in the pathology of scar formation.
Collapse
Affiliation(s)
- Vaishali Chaudhuri
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
78
|
Chaudhuri V, Potts BR, Karasek MA. Mechanisms of microvascular wound repair I. Role of mitosis, oxygen tension, and I-kappa B. In Vitro Cell Dev Biol Anim 2007; 42:308-13. [PMID: 17316064 DOI: 10.1290/0607043.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 10/03/2006] [Indexed: 01/05/2023]
Abstract
To better understand the mechanisms of both normal reendothelialization and neointimal hyperplasia following injury, human dermal microvascular endothelial cells (HDMEC) were isolated from neonatal foreskin and studied in an in vitro model of the microvascular endothelium. In a standard 3-mm wound of nonproliferative HDMEC cultures, reendothelialization was complete at 32 h at a 20.8% (atmospheric) O(2) level. Inhibition of mitosis by mitomycin C did not reduce reendothelialization and both actinomycin D and cycloheximide inhibited repair by 80%. To determine if signals from injured cells communicated with noninjured cells, diffusion of the dye Lucifer Yellow was followed into injured and surrounding noninjured HDMEC. Diffusion was increased into both injured and noninjured cells, indicating a role for gap junctional intercellular communication (GJIC) in HDMEC wound repair. To determine if a more physiologic O(2) tension (5%) also increased vascular repair, reendothelialization at 5% O(2) was compared to 20.8% O(2) (atmospheric) levels and found to be increased by up to 50% at 5% O(2) at 12 and 24 h postinjury. I-kappa B alpha, the inhibitory subunit of NF-kappa B (a transcription factor activated by oxidative stress), was upregulated following wounding. Retroviral transfection of I-kappa B alpha into HDMEC increased the rate of reendothelialization by 35%, supporting an inhibitory role for NF-kappa B in the control of HDMEC migration.
Collapse
Affiliation(s)
- Vaishali Chaudhuri
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
79
|
Chaudhuri V, Zhou L, Karasek M. Inflammatory cytokines induce the transformation of human dermal microvascular endothelial cells into myofibroblasts: a potential role in skin fibrogenesis. J Cutan Pathol 2007; 34:146-53. [PMID: 17244026 DOI: 10.1111/j.1600-0560.2006.00584.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The myofibroblast plays a central role in wound contraction and in the pathology of fibrosis. The origin(s) of this important cell type in skin has not been firmly established. METHODS Human epithelioid dermal microvascular endothelial cells (HDMEC) were isolated from foreskin tissue and maintained in cell culture. The transformation of epithelioid HDMEC into myofibroblasts (EMT) was induced by the inflammatory cytokines interleukin-1beta (IL-1beta) or tumour necrosis factor-alpha (TNF-alpha), and the transformed cells were characterized by electron microscopy, immunohistochemistry and quantitative RT-PCR. RESULTS After short-term exposure to IL-1beta or TNF-alpha (<3 days), EMT was reversible; after long-term exposure (>10 days), EMT was permanent. The transformed cells were identified as myofibroblasts by cytoplasmic microfilaments with dense bodies and attachment plaques, by the expression of alpha-smooth muscle actin, type I collagen and calponin, and by quantitative RT-PCR gene expression of type I collagen and alpha-smooth muscle actin. CONCLUSIONS Long-term exposure to TNF-alpha or IL-1beta induced the permanent transformation of HDMEC into myofibroblasts in cell culture. A similar transformation following chronic inflammatory stimulation in vivo may explain one source of myofibroblasts in skin fibrogenesis.
Collapse
Affiliation(s)
- V Chaudhuri
- Department of Dermatology, Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
80
|
Boswell SA, Ongusaha PP, Nghiem P, Lee SW. The protective role of a small GTPase RhoE against UVB-induced DNA damage in keratinocytes. J Biol Chem 2006; 282:4850-4858. [PMID: 17170105 DOI: 10.1074/jbc.m610532200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RhoE, a p53 target gene, was identified as a critical factor for the survival of human keratinocytes in response to UVB. The Rho family of GTPases regulates many aspects of cellular behavior through alterations to the actin cytoskeleton, acting as molecular switches cycling between the active, GTP-bound and the inactive, GDP-bound conformations. Unlike typical Rho family proteins, RhoE (also known as Rnd3) is GTPase-deficient and thus expected to be constitutively active. In this study, we investigated the response of cultured human keratinocyte cells to UVB irradiation. RhoE protein levels increase upon exposure to UVB, and ablation of RhoE induction through small interfering RNA resulted in a significant increase in apoptosis and a reduction in the levels of the pro-survival targets p21, Cox-2, and cyclin D1, as well as an increase of reactive oxygen species levels when compared with control cells. These data indicate that RhoE is a pro-survival factor acting upstream of p38, JNK, p21, and cyclin D1. HaCat cells expressing small interfering RNA to p53 indicate that RhoE functions independently of its known associates, p53 and Rho-associated kinase I (ROCK I). Targeted expression of RhoE in epidermis using skin-specific transgenic mouse model resulted in a significant reduction in the number of apoptotic cells following UVB irradiation. Thus, RhoE induction counteracts UVB-induced apoptosis and may serve as a novel target for the prevention of UVB-induced photodamage regardless of p53 status.
Collapse
Affiliation(s)
- Sarah A Boswell
- Dermatology Division, University of Washington, Seattle, Washington 98109
| | - Pat P Ongusaha
- Cutaneous Biology Research Center (CBRC), Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129 and the
| | - Paul Nghiem
- Dermatology Division, University of Washington, Seattle, Washington 98109
| | - Sam W Lee
- Cutaneous Biology Research Center (CBRC), Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129 and the.
| |
Collapse
|
81
|
Karasek MA. Does transformation of microvascular endothelial cells into myofibroblasts play a key role in the etiology and pathology of fibrotic disease? Med Hypotheses 2006; 68:650-5. [PMID: 17045756 DOI: 10.1016/j.mehy.2006.07.053] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 07/29/2006] [Indexed: 11/23/2022]
Abstract
Fibrosis is a major cause of human death and disability. It has been hypothesized widely that activation of resident tissue fibroblasts is responsible for the increase in matrix protein synthesis present in fibrotic tissue. More recent studies in vitro of the physiology of human dermal microvascular endothelial cells and their transformation into spindle-shaped cells by proinflammatory cytokines may provide a new explanation for the increase in myofibroblasts in fibrotic diseases. In cell culture human dermal microvascular endothelial cells transform reversibly into 2 distinct cell phenotypes observed in the endothelium in vivo: an epithelioid phenotype present in a homeostatic microvasculature and a more spindle-shaped phenotype present in an inflammed and a reactive microvasculature. When epithelioid endothelial cell cultures are exposed to proinflammatory cytokines typically increased in fibrosis in vivo (e.g. TNF-alpha and IL-beta) for sustained periods, epithelioid dermal microvascular endothelial cells transform into a spindle-shaped morphology. Many of the transformed cells are identified as myofibroblast-like cells by electron microscopy (cytoplasmic microfilaments with attachment plaques), matrix protein synthesis (type I collagen, alpha smooth muscle actin, calponin) and by RT-PCR analysis of matrix protein mRNA. Following injury to an endothelial cell culture a similar (but reversible) transformation into myofibroblast-like cells also is induced. Drugs known to slow the clinical progression to fibrosis in vivo (e.g. phosphodiesterase inhibitors, antibodies to inflammatory cytokines) are the the same drug types capable of inhibiting endothelial cell tranformation in vitro. The in vivo and in vitro observations made on blood vessel physiology and pathology following sustained inflammation support a hypothesis that endothelial cell transformation into myofibroblast-like cells may begin to explain the increase in matrix proteins and myofibroblasts pathognomonic of fibrotic disease. The experimental and clinical evidence leading to and supporting this hypothesis is presented and discussed in this report.
Collapse
Affiliation(s)
- Marvin Arthur Karasek
- Stanford University, Dermatology, 269 Campus Dr, CCSR Bldg, Rm 2115, Stanford, CA 94305, United States.
| |
Collapse
|
82
|
Rinn JL, Bondre C, Gladstone HB, Brown PO, Chang HY. Anatomic demarcation by positional variation in fibroblast gene expression programs. PLoS Genet 2006; 2:e119. [PMID: 16895450 PMCID: PMC1523235 DOI: 10.1371/journal.pgen.0020119] [Citation(s) in RCA: 374] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Accepted: 06/13/2006] [Indexed: 11/18/2022] Open
Abstract
Fibroblasts are ubiquitous mesenchymal cells with many vital functions during development, tissue repair, and disease. Fibroblasts from different anatomic sites have distinct and characteristic gene expression patterns, but the principles that govern their molecular specialization are poorly understood. Spatial organization of cellular differentiation may be achieved by unique specification of each cell type; alternatively, organization may arise by cells interpreting their position along a coordinate system. Here we test these models by analyzing the genome-wide gene expression profiles of primary fibroblast populations from 43 unique anatomical sites spanning the human body. Large-scale differences in the gene expression programs were related to three anatomic divisions: anterior-posterior (rostral-caudal), proximal-distal, and dermal versus nondermal. A set of 337 genes that varied according to these positional divisions was able to group all 47 samples by their anatomic sites of origin. Genes involved in pattern formation, cell-cell signaling, and matrix remodeling were enriched among this minimal set of positional identifier genes. Many important features of the embryonic pattern of HOX gene expression were retained in fibroblasts and were confirmed both in vitro and in vivo. Together, these findings suggest that site-specific variations in fibroblast gene expression programs are not idiosyncratic but rather are systematically related to their positional identities relative to major anatomic axes.
Collapse
Affiliation(s)
- John L Rinn
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Chanda Bondre
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
| | - Hayes B Gladstone
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Patrick O Brown
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
- * To whom correspondence should be addressed. E-mail: (HYC); (POB)
| | - Howard Y Chang
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California, United States of America
- * To whom correspondence should be addressed. E-mail: (HYC); (POB)
| |
Collapse
|
83
|
Yam GHF, Bosshard N, Zuber C, Steinmann B, Roth J. Pharmacological chaperone corrects lysosomal storage in Fabry disease caused by trafficking-incompetent variants. Am J Physiol Cell Physiol 2006; 290:C1076-82. [PMID: 16531566 DOI: 10.1152/ajpcell.00426.2005] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fabry disease is a lysosomal storage disorder caused by deficiency of alpha-galactosidase A (alpha-Gal A) resulting in lysosomal accumulation of glycosphingolipid globotriosylceramide Gb3. Misfolded alpha-Gal A variants can have residual enzyme activity but are unstable. Their lysosomal trafficking is impaired because they are retained in the endoplasmic reticulum (ER) by quality control. Subinhibitory doses of the competitive inhibitor of alpha-Gal A, 1-deoxygalactonojirimycin (DGJ), stabilize mutant alpha-Gal A in vitro and correct the trafficking defect. We showed by immunolabeling that the chaperone-like action of DGJ significantly reduces the lysosomal Gb3 storage in human Fabry fibroblasts harboring the novel mutations T194I and V390fsX8. The specificity of the DGJ effect was proven by RNA interference. Electron microscopic morphometry demonstrated a reduction of large-size, disease-associated lysosomes and loss of characteristic multilamellar lysosomal inclusions on DGJ treatment. In addition, the pre-Golgi intermediates were decreased. However, the rough ER was not different between DGJ-treated and untreated cells. Pulse-chase experiments revealed that DGJ treatment resulted in maturation and stabilization of mutant alpha-Gal A. Genes involved in cell stress signaling, heat shock response, unfolded protein response, and ER-associated degradation show no apparent difference in expression between untreated and DGJ-treated fibroblasts. The DGJ treatment has no apparent cytotoxic effects. Thus our data show the usefulness of a pharmacological chaperone for correction of the lysosomal storage in Fabry fibroblasts harboring different mutations with residual enzyme activity. Pharmacological chaperones acting on misfolded, unstable mutant proteins that exhibit residual biological activity offer a convenient and cost-efficient therapeutic strategy.
Collapse
Affiliation(s)
- Gary Hin-Fai Yam
- Division of Cell and Molecular Pathology, Department of Pathology, University of Zurich, CH-8091 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
84
|
Duong HS, Zhang Q, Kobi A, Le A, Messadi DV. Assessment of morphological and immunohistological alterations in long-term keloid skin explants. Cells Tissues Organs 2006; 181:89-102. [PMID: 16534203 DOI: 10.1159/000091098] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2005] [Indexed: 11/19/2022] Open
Abstract
One of the major impediments in keloid research is the lack of a keloid animal model that can mimic human keloid. This imposes investigative constraints on studying cellular interactions and biochemical processes that normally occur in vivo. Our main objective is to establish an in vitro model for maintaining long-term viable keloid dermal explants as a tool for investigating the pathogenesis of keloid scar formation. Explants of adult keloid scars were cultured in vitro by embedding them in enriched collagen gel matrix and maintaining them for up to 6 weeks, whereupon changes in tissue morphology and cellular differentiation were examined. The effects of medium enrichment, air versus liquid submersion, and different substrates on the explants were examined. Our results indicated that keloid explants embedded in a collagen gel matrix were morphologically better preserved than explants placed on a plastic substrate. Explants with epidermis at the air-liquid interface had better morphology than collagen-submerged explants, and there were no differences between serum-free and serum-supplemented explant cultures. Immunohistochemical and apoptotic analyses were performed to assess cellular viability and differentiation. In situ hybridization confirmed that keloid fibroblasts had sustained collagen type I gene expression throughout the 6 weeks in culture, thus validating the integrity of a long-term keloid culture system. In conclusion, the collagen-embedded skin explant system demonstrates that keloid tissues could be maintained for up to 6 weeks for long-term in vitro studies.
Collapse
Affiliation(s)
- Hai S Duong
- Department of Oral Biology and Medicine, School of Dentistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
85
|
Bokhari SM, Zhou L, Karasek MA, Paturi SG, Chaudhuri V. Regulation of skin microvasculature angiogenesis, cell migration, and permeability by a specific inhibitor of PKCalpha. J Invest Dermatol 2006; 126:460-7. [PMID: 16374459 DOI: 10.1038/sj.jid.5700071] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Activation of protein kinase C (PKC) induces phenotypic changes in the morphology of microvascular endothelial cells that affect major functions of the microvasculature. These functions include the first stages of sprouting in angiogenesis, cell migration following wounding, and vascular permeability. The specific isoform(s) of PKC responsible for each of these changes has not been previously identified. In this study, we used two inflammatory agents, IL-1beta and phorbol myristic acetate, to activate PKC isozymes and specific inhibitors of PKCalpha (Gö6976) and PKCbeta (hispidin) to distinguish how each of these isoform(s) controls angiogenesis, wound healing, and permeability. In all cases, only inhibition of PKCalpha inhibited each of these functions when compared to the inhibition of PKCbeta. Additional analysis of the mechanism of action of Gö6976 (RT-PCR, Western blots, and immunohistochemistry) of the changes in the phosphorylated and nonphosphorylated forms of PKCalpha in the cell membrane and cytoplasm confirmed the specificity of PKCalpha inhibition by Gö6976. These studies therefore indicate a specific and a regulatory role of the PKCalpha isoform in three major endothelial cell functions that are important in the maintenance of microvascular homeostasis.
Collapse
Affiliation(s)
- Sirosh M Bokhari
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
86
|
Li J, Zhou L, Tran HT, Chen Y, Nguyen NE, Karasek MA, Marinkovich MP. Overexpression of laminin-8 in human dermal microvascular endothelial cells promotes angiogenesis-related functions. J Invest Dermatol 2006; 126:432-40. [PMID: 16374451 PMCID: PMC2535788 DOI: 10.1038/sj.jid.5700089] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study examined the effects of endogenous overexpression of laminin-8 on angiogenesis and wound healing in primary human dermal microvascular endothelial cells (HDMECs). HDMECs expressed laminin-8 and laminin-10, but no other laminins, as determined by radioimmunoprecipitation assay using a panel of antibodies to individual laminin chains. To study laminin-8 function, full-length human laminin alpha4 cDNA was retrovirally transferred to HDMEC, and specific overexpression of laminin-8 was verified by Western blot. Laminin-8 overexpression promoted endothelial cell spreading and migration in scratch assays and accelerated angiogenic tubule formation in collagen gel overlay assays. Strong inhibitory effect of beta1 integrin and weak inhibition by alphavbeta3 integrin antibodies were observed in laminin-8-stimulated cell migration, but only beta1 integrin antibodies affected tubule formation. These studies suggest that laminin-8 overexpression may prove to be a useful method to engineer HDMECs to promote angiogenesis and wound repair.
Collapse
Affiliation(s)
- Jie Li
- Dermatology Service, Palo Alto VA Health Care System, Stanford University School of Medicine, Stanford, California, USA
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Lisa Zhou
- Dermatology Service, Palo Alto VA Health Care System, Stanford University School of Medicine, Stanford, California, USA
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Hoang T. Tran
- Dermatology Service, Palo Alto VA Health Care System, Stanford University School of Medicine, Stanford, California, USA
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Yi Chen
- Dermatology Service, Palo Alto VA Health Care System, Stanford University School of Medicine, Stanford, California, USA
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Ngon E. Nguyen
- Dermatology Service, Palo Alto VA Health Care System, Stanford University School of Medicine, Stanford, California, USA
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Marvin A. Karasek
- Dermatology Service, Palo Alto VA Health Care System, Stanford University School of Medicine, Stanford, California, USA
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA
| | - M. Peter Marinkovich
- Dermatology Service, Palo Alto VA Health Care System, Stanford University School of Medicine, Stanford, California, USA
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
87
|
Wang H, Van Blitterswijk CA, Bertrand-De Haas M, Schuurman AH, Lamme EN. Improved enzymatic isolation of fibroblasts for the creation of autologous skin substitutes. In Vitro Cell Dev Biol Anim 2005; 40:268-77. [PMID: 15723562 DOI: 10.1290/0408055.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The number of medical applications using autologous fibroblasts is increasing rapidly. We investigated thoroughly the procedure to isolate cells from skin using the enzymatic tissue dissociation procedure. Tissue digestion efficiency, cell viability, and yield were investigated in relation to size of tissue fragments, digestion volume to tissue ratio, digestion time, and importance of other protease activities present in Clostridium histolyticum collagenase (CHC) (neutral protease, clostripain, and trypsin). The results showed that digestion was optimal with small tissue fragments (2-3 mm3) and with volumes tissue ratios > or =2 ml/g tissue. For incubations < or =10 h, the digestion efficiency and cell isolation yields were significantly improved by increasing the collagenase, neutral protease, or clostripain activity, whereas trypsin activity had no effects. However, a too high proteolytic activity of one of the proteases present in CHC digestion solution or long exposure times interfered with cell viability and cell culture yields. The optimal range of CHC proteases activities per milliliter digestion solutions was determined for digestions < or =10 h (collagenase 2700-3900 Mandl U/ml, neutral protease 5100-10,000 caseinase U/ml, and clostripain 35-48 BAEE U/ml) and for longer digestions (>14 h) (collagenase 1350- 3000 U/ml, neutral protease 2550-7700 U/ml, and clostripain 18-36 U/ml). Using these conditions, a maximum fibroblast expansion was achieved when isolated cells were seeded at 1 x 10(4) cells/cm2. These results did not only allow selection of optimal CHC batches able to digest dermal tissue with an high cell viability but also significantly increased the fibroblast yields, enabling us to produce autologous dermal tissue in a clinically acceptable time frame of 3 wk.
Collapse
Affiliation(s)
- Hongjun Wang
- Institute of Biomedical Technology, Twente University, 7500 AE Enschede, The Netherlands
| | | | | | | | | |
Collapse
|
88
|
Schultheiss D, Lorenz RR, Meister R, Westphal M, Gabouev AI, Mertsching H, Biancosino C, Schlote N, Wefer J, Winkler M, Stief CG, Jonas U. Functional Tissue Engineering of Autologous Tunica Albuginea: A Possible Graft for Peyronie’s Disease Surgery. Eur Urol 2004; 45:781-6. [PMID: 15149752 DOI: 10.1016/j.eururo.2004.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2004] [Indexed: 01/01/2023]
Abstract
OBJECTIVES The aim of the present study was to generate a tissue engineered type of mechanically stable graft suitable for surgical replacement of the tunica albuginea penis. METHODS Porcine fibroblasts isolated from open fascia biopsies were seeded on decellularized collagen matrices and then cultivated in a bioreactor under continuous multiaxial stress for up to 21 days (n=12). Static cultures without mechanical stress served as controls. Cell proliferation, cell alignment, and de novo synthesis of extracellular matrix proteins (proteoglycans, procollagen I, elastin) in these grafts was evaluated by hematoxylin-eosin, pentachrome, and immuno-staining. Additionally, the enzymatic isolation of porcine fibroblasts from X4mm skin punch biopsies (n=8) was evaluated. RESULTS Mechanically strained cultures of fibroblasts showed a homogeneous multilayer matrix infiltration and a regular cell alignment in the direction of strain axis after 7 days, as well as a de novo production of extracellular matrix proteins compared to the static control. A large amount of viable fibroblasts was easily obtained from small skin punch biopsies. CONCLUSION This study shows that continuous multiaxial stimuli improve proliferation and extracellular matrix synthesis of mature fibroblasts reseeded on a biological matrix making this a feasible autologous tissue engineered graft for penile surgery. For the clinical setting fibroblasts harvested from small skin biopsies can be a comfortable cell source.
Collapse
Affiliation(s)
- Dirk Schultheiss
- Department of Urology and Pediatirc Urology and Tissue Engineering Network, Hannover Medical School, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Liu JY, Hafner J, Dragieva G, Seifert B, Burg G. Autologous cultured keratinocytes on porcine gelatin microbeads effectively heal chronic venous leg ulcers. Wound Repair Regen 2004; 12:148-56. [PMID: 15086765 DOI: 10.1111/j.1067-1927.2004.012205.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have established a specific bioreactor microcarrier cell culture system using porcine gelatin microbeads as carriers to produce autologous keratinocytes on a large scale. Moreover, we have shown that autologous keratinocytes can be cultured on porcine collagen pads, thereby forming a single cell layer. The objective of this study was to compare efficacy and safety of autologous cultured keratinocytes on microbeads and collagen pads in the treatment of chronic wounds. Fifteen patients with recalcitrant venous leg ulcers were assigned to three groups in a single-center, prospective, uncontrolled study: five underwent a single treatment with keratinocyte monolayers on collagen pads (group 1); another five received a single grafting with keratinocyte-microbeads (group 2); and the last five received multiple, consecutive applications of keratinocyte-microbeads 3 days apart (group 3). All patients were followed for up to 12 weeks. By 12 weeks, there was a mean reduction in the initial wound area of 50, 83, and 97 percent in the three groups, respectively. The changes in wound size were statistically significant between the first and third groups (p= 0.0003). Keratinocyte-microbeads proved to be more effective than keratinocyte monolayers on collagen pads when the former were applied every 3 days. Rapid availability within 10-13 days after skin biopsy and easy handling represent particular advantages.
Collapse
Affiliation(s)
- Jin Yu Liu
- Department of Dermatology, University Hospital of Zurich, Switzerland
| | | | | | | | | |
Collapse
|
90
|
Veitch DP, Nokelainen P, McGowan KA, Nguyen TT, Nguyen NE, Stephenson R, Pappano WN, Keene DR, Spong SM, Greenspan DS, Findell PR, Marinkovich MP. Mammalian tolloid metalloproteinase, and not matrix metalloprotease 2 or membrane type 1 metalloprotease, processes laminin-5 in keratinocytes and skin. J Biol Chem 2003; 278:15661-8. [PMID: 12473650 DOI: 10.1074/jbc.m210588200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Laminin-5, a major adhesive ligand for epithelial cells, undergoes processing of its gamma2 and alpha3 chains. This study investigated the mechanism of laminin-5 processing by keratinocytes. BI-1 (BMP-1 isoenzyme inhibitor-1), a selective inhibitor of a small group of astacin-like metalloproteinases, which includes bone morphogenetic protein 1 (BMP-1), mammalian Tolloid (mTLD), mammalian Tolloid-like 1 (mTLL-1), and mammalian Tolloid-like 2 (mTLL-2), inhibited the processing of laminin-5 gamma2 and alpha3 chains in keratinocyte cultures in a dose-dependent manner. In a proteinase survey, all BMP-1 isoenzymes processed human laminin-5 gamma2 and alpha3 chains to 105- and 165-kDa fragments, respectively. In contrast, MT1-MMP and MMP-2 did not cleave the gamma2 chain of human laminin-5 but processed the rat laminin gamma2 chain to an 80-kDa fragment. An immunoblot and quantitative PCR survey of the BMP-1 isoenzymes revealed expression of mTLD in primary keratinocyte cultures but little or no expression of BMP-1, mTLL-1, or mTLL-2. mTLD was shown to cleave the gamma2 chain at the same site as the previously identified BMP-1 cleavage site. In addition, mTLD/BMP-1 null mice were shown to have deficient laminin-5 processing. Together, these data identify laminin-5 as a substrate for mTLD, suggesting a role for laminin-5 processing by mTLD in the skin.
Collapse
Affiliation(s)
- Dallas P Veitch
- Program in Epithelial Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Chang HY, Chi JT, Dudoit S, Bondre C, van de Rijn M, Botstein D, Brown PO. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci U S A 2002; 99:12877-82. [PMID: 12297622 PMCID: PMC130553 DOI: 10.1073/pnas.162488599] [Citation(s) in RCA: 851] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2002] [Indexed: 12/17/2022] Open
Abstract
A fundamental feature of the architecture and functional design of vertebrate animals is a stroma, composed of extracellular matrix and mesenchymal cells, which provides a structural scaffold and conduit for blood and lymphatic vessels, nerves, and leukocytes. Reciprocal interactions between mesenchymal and epithelial cells are known to play a critical role in orchestrating the development and morphogenesis of tissues and organs, but the roles played by specific stromal cells in controlling the design and function of tissues remain poorly understood. The principal cells of stromal tissue are called fibroblasts, a catch-all designation that belies their diversity. We characterized genome-wide patterns of gene expression in cultured fetal and adult human fibroblasts derived from skin at different anatomical sites. Fibroblasts from each site displayed distinct and characteristic transcriptional patterns, suggesting that fibroblasts at different locations in the body should be considered distinct differentiated cell types. Notable groups of differentially expressed genes included some implicated in extracellular matrix synthesis, lipid metabolism, and cell signaling pathways that control proliferation, cell migration, and fate determination. Several genes implicated in genetic diseases were found to be expressed in fibroblasts in an anatomic pattern that paralleled the phenotypic defects. Finally, adult fibroblasts maintained key features of HOX gene expression patterns established during embryogenesis, suggesting that HOX genes may direct topographic differentiation and underlie the detailed positional memory in fibroblasts.
Collapse
Affiliation(s)
- Howard Y Chang
- Departments of Dermatology, Biochemistry, Pathology, and Genetics, and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
92
|
Wu N, Opalenik S, Liu J, Jansen ED, Giro MG, Davidson JM. Real-time visualization of MMP-13 promoter activity in transgenic mice. Matrix Biol 2002; 21:149-61. [PMID: 11852231 DOI: 10.1016/s0945-053x(01)00192-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cutaneous wound repair involves extracellular matrix degradation, cell migration, matrix resynthesis and tissue remodeling. In the rodent, transcriptional regulation of collagenase-3 (MMP-13) most likely plays a role in these processes. Therefore, we isolated and characterized a 1.76-kb 5'-flanking region of the mouse MMP-13 gene. Assay of promoter activity by transient transfection of HT1080 cells and primary mouse skin fibroblasts allowed identification of several functional regions of the 5'-flanking DNA. Expression of luciferase reporter constructs in these cells was induced by phorbol myristate acetate (PMA), but not by transforming growth factor-beta(2) (TGF-beta(2)). To study the regulation of MMP-13 in cutaneous wound healing, we generated transgenic mouse lines harboring the firefly luciferase reporter gene under control of a 660-bp mouse MMP-13 promoter which showed maximal response. MMP-13 mRNA levels in transgenic lung fibroblasts increased 1.5-2.6-fold after PMA challenge. MMP-13 promoter activity in wounds was visualized and quantified in vivo as luciferase bioluminescence. MMP-13 expression was present at day 1 and maximal at day 18 post-wounding. Luciferase activity progressed from the wound margin towards the center of the wound. In situ hybridization showed the same spatial and temporal patterns for the luciferase and endogenous MMP-13 mRNA. Both signals localized predominantly to dermal fibroblasts at the wound periphery but not to granulation tissue or to keratinocytes. These results suggested that MMP-13 participated in the wound healing of acute wounds, and it was a significant factor in long-term remodeling of wound connective tissue in rodent skin.
Collapse
Affiliation(s)
- Nanjun Wu
- Department of Pathology, Vanderbilt University School of Medicine, C-3321 Medical Center North, Nashville, TN 37232-2561, USA
| | | | | | | | | | | |
Collapse
|
93
|
Nahm WK, Zhou L, Falanga V. Sustained ability for fibroblast outgrowth from stored neonatal foreskin: a model for studying mechanisms of fibroblast outgrowth. J Dermatol Sci 2002; 28:152-8. [PMID: 11858954 DOI: 10.1016/s0923-1811(01)00157-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fibroblast cultures derived from neonatal foreskin explants have been an important model for understanding the basic mechanisms of fibroblast function and activity. Neonatal foreskin has been routinely used for establishing such fibroblast cultures in vitro. In general, tissue explants and fibroblast cultures are established from freshly harvested neonatal foreskin tissue. It is unknown whether prolonged storage of tissue, even in optimal growth media and conditions would still result in successful explant outgrowth. Specifically, no studies have properly examined the maximal duration of foreskin storage that can produce viable fibroblasts with normal growth and synthetic characteristics. We, therefore, set out to isolate and propagate fibroblast cultures from neonatal foreskin tissue that had been kept in complete culture media at 4 degrees C for various periods of time. We found that outgrowth and propagation of viable fibroblasts in vitro occurred with foreskin samples obtained within 24 days after surgical harvesting. The morphology, cellular proliferative capacity (measured by [3H]-thymidine uptake), steady state levels of alpha1(I) procollagen mRNA, and collagenous protein synthesis were comparable among fibroblast cultures derived from foreskin explants established 3 days (control) and up to 24 days (but not 38 days) after tissue harvesting. These studies demonstrate that viable and functional fibroblasts, with apparently similar in vitro characteristics, can be isolated and propagated from explants of neonatal foreskin tissue that have undergone prolonged storage. Moreover, these findings may be useful in understanding the lack of fibroblast growth in such conditions as found in delayed wound healing and aging.
Collapse
Affiliation(s)
- Walter K Nahm
- Department of Dermatology and Skin Surgery, Roger Williams Medical Center, Boston University School of Medicine, 50 Maude Street, Providence, RI 02908, USA
| | | | | |
Collapse
|
94
|
Rochon MH, Gauthier MJ, Auger FA, Germain L. Simultaneous isolation of keratinocytes and fibroblasts from a human cutaneous biopsy for the production of autologous reconstructed skin. CAN J CHEM ENG 2001. [DOI: 10.1002/cjce.5450790427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
95
|
van den Aardweg GJ, Morris GM, Bywaters A, Bakker EJ, Mooi WJ. Changes in epidermal radiosensitivity with time associated with increased colony numbers. Br J Radiol 2001; 74:434-44. [PMID: 11388992 DOI: 10.1259/bjr.74.881.740434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Epidermal clonogenic cell survival and colony formation following irradiation were investigated and related to radiosensitivity. A rapid in vivo/in vitro assay was developed for the quantification of colonies arising from surviving clonogenic cells in pig epidermis after irradiation. Bromodeoxyuridine (BrdU)-labelled cells in full thickness epidermal sheets were visualized using standard immunohistochemistry. In unirradiated skin, approximately 900 BrdU-positive cells mm(-2) were counted. In a time sequence experiment, BrdU-positive cell numbers increased from an average of 900 cells mm(-2) to approximately 1400 cells mm(-2) after BrdU-labelling for 2-24 h. In irradiated skin, colonies containing >/=16 BrdU-positive cells were seen for the first time at days 14/15 after irradiation. The number of these colonies per cm(2) as a function of skin surface dose yielded a cell survival curve with a D(0)-value (+/-SE) of 3.9+/-0.6 Gy. This relatively high D(0)-value is possibly due to a rapid fall off in depth dose distribution for the iridium-192 source and consequently a substantial contribution of hair follicular epithelium to colony formation. At 14/15 days after irradiation, the ED(50) level of 33.6 Gy for the in vivo response of moist desquamation corresponded with 2.7 colonies cm(-2). Surprisingly, the number of colonies increased with time after irradiation with an estimated doubling time of approximately 4 days, while the D(0)-value remained virtually unchanged. This increase in colony numbers could be due to migration of clonogenic cells, to the recruitment of dormant clonogenic cell survivors by elevated levels of cytokines, or to both. Although frequent biopsying caused increased cytokine levels, which had a systemic effect on unirradiated skin, it had no influence on colony formation in irradiated skin. Smaller colonies, containing 4-8 cells or 9-15 cells, were abundant, particularly after higher doses, which resulted in higher D(0)-values. The majority of these small colonies were abortive and did not progress to larger colonies. There was no statistical evidence for significant variations in the interanimal responses.
Collapse
Affiliation(s)
- G J van den Aardweg
- Department of Radiation Oncology, University Hospital Rotterdam-Daniel den Hoed Cancer Center/Dijkzigt Hospital, Josephine Nefkens Institute, PO Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
96
|
Romero LI, Zhang DN, Cooke JP, Ho HK, Avalos E, Herrera R, Herron GS. Differential expression of nitric oxide by dermal microvascular endothelial cells from patients with scleroderma. Vasc Med 2001; 5:147-58. [PMID: 11104297 DOI: 10.1177/1358836x0000500304] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vascular abnormalities in scleroderma are fundamental to the pathogenesis of this disease. The objective of this study was to characterize dermal microvascular endothelial cells (DMEC) isolated from scleroderma patients with respect to growth and expression of the constitutive form of endothelial nitric oxide synthase (eNOS). DMEC from patients with both systemic sclerosis (SSc) and localized scleroderma (Loc Scl) contained small intact microvascular structures in contrast to single cell isolations obtained from control skin. Immunoaffinity selection on anti-PECAM-1 beads yielded pure populations of DMEC expressing normal markers. While the morphology and initial growth of SSc DMEC closely paralleled control cells, the growth of SSc DMEC decreased with time in culture (doubling time of 3 days vs. 5 days). Expression of ecNOS mRNA was reduced in both Loc Scl and SSc as shown by semi-quantitative RT-PCR (p < 0.001). Western blots showed variable but generally lower ecNOS protein levels and decreased levels of nitrogen oxides in media were found from both SSc and Loc Scl relative to control cells. The results indicate an intrinsic defect in the mechanism of nitric oxide production in DMEC isolated from scleroderma patients and suggest its possible involvement in the pathophysiology of scleroderma.
Collapse
MESH Headings
- Adult
- Aged
- Cell Division
- Cells, Cultured
- Child
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/pathology
- Female
- Gene Expression Regulation, Enzymologic
- Humans
- Kinetics
- Male
- Microcirculation/pathology
- Microcirculation/physiopathology
- Middle Aged
- Nitric Oxide/metabolism
- Nitric Oxide Synthase/analysis
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase Type III
- Platelet Endothelial Cell Adhesion Molecule-1/physiology
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Scleroderma, Localized/enzymology
- Scleroderma, Localized/pathology
- Scleroderma, Localized/physiopathology
- Scleroderma, Systemic/enzymology
- Scleroderma, Systemic/pathology
- Scleroderma, Systemic/physiopathology
- Skin/blood supply
- Transcription, Genetic
Collapse
Affiliation(s)
- L I Romero
- Department of Dermatology, Stanford University School of Medicine, CA, USA
| | | | | | | | | | | | | |
Collapse
|
97
|
Yang J, Nagavarapu U, Relloma K, Sjaastad MD, Moss WC, Passaniti A, Herron GS. Telomerized human microvasculature is functional in vivo. Nat Biotechnol 2001; 19:219-24. [PMID: 11231553 DOI: 10.1038/85655] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previously we showed the superior in vitro survival of human telomerase reverse transcriptase (hTERT)-transduced human endothelial cells (EC). Here we show that retroviral-mediated transduction of hTERT in human dermal microvascular EC (HDMEC) results in cell lines that form microvascular structures when subcutaneously implanted in severe combined immunodeficiency (SCID) mice. Anti-human type IV collagen basement membrane immunoreactivity and visualization of enhanced green fluorescent protein (eGFP)-labeled microvessels confirmed the human origin of these capillaries. No human vasculature was observed after implantation of HT1080 fibrosarcoma cells, 293 human embryonic kidney cells, or human skin fibroblasts. Intravascular red fluorescent microspheres injected into host circulation were found within green "telomerized" microvessels, indicating functional murine-human vessel anastamoses. Whereas primary HDMEC-derived vessel density decreased with time, telomerized HDMEC maintained durable vessels six weeks after xenografting. Modulation of implant vessel density by exposure to different angiogenic and angiostatic factors demonstrated the utility of this system for the study of human microvascular remodeling in vivo.
Collapse
MESH Headings
- Angiogenesis Inhibitors/pharmacology
- Animals
- Basement Membrane/chemistry
- Capillaries/drug effects
- Capillaries/growth & development
- Cells, Cultured
- Chimera
- Collagen/analysis
- Collagen/pharmacology
- Collagen Type XVIII
- Dermis/blood supply
- Endostatins
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/transplantation
- Fibroblasts
- Humans
- Mice
- Mice, SCID
- Microcirculation/drug effects
- Microcirculation/growth & development
- Microspheres
- Models, Animal
- Neovascularization, Physiologic/drug effects
- Peptide Fragments/pharmacology
- Telomerase/genetics
- Telomerase/metabolism
- Telomere/genetics
- Transduction, Genetic
- Transplantation, Heterologous
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- J Yang
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
98
|
Hutcheson KA, Atkins BZ, Hueman MT, Hopkins MB, Glower DD, Taylor DA. Comparison of benefits on myocardial performance of cellular cardiomyoplasty with skeletal myoblasts and fibroblasts. Cell Transplant 2000; 9:359-68. [PMID: 10972335 DOI: 10.1177/096368970000900307] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cellular cardiomyoplasty (CCM), or introduction of immature cells into terminally injured heart, can mediate repair of chronically injured myocardium. Several different cell types, ranging from embryonic stem cells to autologous skeletal myoblasts, have been successfully propagated within damaged heart and shown to improve myocardial performance. However, it is unclear if the functional advantages associated with CCM depend upon the use of myogenic cells or if similar results can be seen with other cell types. Thus, we compared indices of regional contractile (systolic) and diastolic myocardial performance following transplantation of either autologous skeletal myoblasts (Mb) or dermal fibroblasts (Fb) into chronically injured rabbit heart. In vivo left ventricular (LV) pressure (P) and regional segment length (SL) were determined in 15 rabbits by micromanometry and sonomicrometry 1 week following LV cryoinjury (CRYO) and again 3 weeks after autologous skeletal Mb or dermal Fb transplantation. Quantification of systolic performance was based on the linear regression of regional stroke work and end-diastolic (ED) SL. Regional diastolic properties were assessed using the curvilinear relationships between LVEDP and strain (epsilon) as well as LVEDP and EDSL. At study termination, cellular engraftment was characterized histologically in a blinded fashion. Indices of diastolic performance were improved following CCM with either Mb or Fb. However, only Mb transplantation improved systolic performance; Fb transfer actually resulted in a significant decline in systolic performance. These data suggest that both contractile and noncontractile cells can improve regional material properties or structural integrity of terminally injured heart, as reflected by improvements in diastolic performance. However, only Mb improved systolic performance in the damaged region, supporting the role of myogenic cells in augmenting contraction. Further studies are needed to define the mechanism by which these effects occur and to evaluate the long-term safety and efficacy of CCM with any cell type.
Collapse
Affiliation(s)
- K A Hutcheson
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
99
|
Wang CK, Nelson CF, Brinkman AM, Miller AC, Hoeffler WK. Spontaneous cell sorting of fibroblasts and keratinocytes creates an organotypic human skin equivalent. J Invest Dermatol 2000; 114:674-80. [PMID: 10733672 DOI: 10.1046/j.1523-1747.2000.00938.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We show that an inherent ability of two distinct cell types, keratinocytes and fibroblasts, can be relied upon to accurately reconstitute full-thickness human skin including the dermal-epidermal junction by a cell-sorting mechanism. A cell slurry containing both cell types added to silicone chambers implanted on the backs of severe combined immunodeficient mice sorts out to reconstitute a clearly defined dermis and stratified epidermis within 2 wk, forming a cell-sorted skin equivalent. Immunostaining of the cell-sorted skin equivalent with human cell markers showed patterns similar to those of normal full-thickness skin. We compared the cell-sorted skin equivalent model with a composite skin model also made on severe combined immunodeficient mice. The composite grafts were constructed from partially differentiated keratinocyte sheets placed on top of a dermal equivalent constructed of devitalized dermis. Electron microscopy revealed that both models formed ample numbers of normal appearing hemidesmosomes. The cell-sorted skin equivalent model, however, had greater numbers of keratin intermediate filaments within the basal keratinocytes that connected to hemidesmosomes, and on the dermal side both collagen filaments and anchoring fibril connections to the lamina densa were more numerous compared with the composite model. Our results may provide some insight into why, in clinical applications for treating burns and other wounds, composite grafts may exhibit surface instability and blistering for up to a year following grafting, and suggest the possible usefulness of the cell-sorted skin equivalent in future grafting applications.
Collapse
Affiliation(s)
- C K Wang
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | |
Collapse
|
100
|
Zhou L, Dosanjh A, Chen H, Karasek M. Divergent effects of extracellular oxygen on the growth, morphology, and function of human skin microvascular endothelial cells. J Cell Physiol 2000; 182:134-40. [PMID: 10567925 DOI: 10.1002/(sici)1097-4652(200001)182:1<134::aid-jcp15>3.0.co;2-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Partial pressure of extracellular oxygen influences a number of major cellular functions. The purpose of this study was to determine if the proliferation, morphology, and synthesis of proteins important in the function of skin microvascular endothelial cells were significantly altered by an extracellular oxygen tension used to culture endothelial cells. Microvascular endothelial cells were isolated from the dermis of neonatal foreskins and were studied at a venous capillary oxygen level (5% O(2), 38 mm Hg) and at an atmospheric oxygen level (20.8% O(2,) 158 mm Hg). At all time points studied and at all passage numbers, a significant inhibition of proliferation was observed at 20.8% O(2) compared to identical cultures grown and subcultured at 5% O(2). Two morphologically distinct endothelial cell populations were observed at 5% O(2). When mediators of angiogenesis and inflammation-such as basic fibroblast growth factor (bFGF), phorbol myristate acetate (PMA), and interleukin-1beta (IL-1beta)-were studied, additional differences in proliferation were observed. Atmospheric O(2) inhibited the synthesis of a major basement membrane protein (Type IV collagen), a major surface protein (PECAM-1), and increased the synthesis of von Willebrand factor (vWf). The rate of vascular channel formation induced by collagen gels was decreased at 5% O(2). These results demonstrate that an increase in extracellular oxygen tension from 5 to 20.8% can significantly alter the cellular physiology of human skin microvascular endothelial cells.
Collapse
Affiliation(s)
- L Zhou
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | |
Collapse
|